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Third-Power Law – Friend or Foe? 
 

Volker Bertram, DNV, Hamburg/Germany, volker.bertram@dnv.com  

Richard Marioth, Idealship, Itzehoe/Germany, rm@idealship.de 

 

Abstract 

 

This paper discusses the background and limitations of the third-power law, a.k.a. admiralty formula. 

The formula derives from generic considerations for power and resistance as functions of speed. It 

assumes constant resistance coefficients and propeller efficiency. These assumptions can only be used 

for small deviations from a given point on a baseline. Abusing the simple “law” may lead to wrong 

conclusions. 

 

1. The Admiralty Formula 

 

The maritime industry likes simple, largely empirical methods which allow quick estimates even if 

only a few global parameters are known. A prime example is the ‘Admiralty formula’: 

 

𝑃𝐵 =
∆2/3∙𝑉3

𝐶
      (1) 

 

PB is the (brake) power, Δ the displacement (mass), V the speed through water, and C is a constant. 

The formula may give good estimates if the baseline is “close enough (in geometrical properties and 

speed [)]”, Bertram (2012). A simplified version omits the mass term, implicitly assuming a given 

ship at constant draft and trim, and then puts power as proportional to the third power of speed 

(‘Third-power law’): 

 

𝑃 ~𝑉3      (2) 

 

The term ‘law’ may lead to a wrongful perception that the Admiralty formula expresses some 

fundamental physical relation that is always true. This is not the case and has often been stated, e.g. 

Völker (1974), Kristensen (2010), Bertram (2012), Berthelsen and Nielsen (2022). Hans Otto 

Kristensen found for containerships exponents between 2.5 and 7, where the low values appear for 

lower speeds, and the high values for (now unrealistically) high speeds [personal communication]. 

Berthelsen and Nielsen (2022) found for tankers exponents significantly lower than 3, the lower the 

speed, the lower the exponent. 

 

However, such is the lure of simple formulas that basic assumptions and resulting limitations are often 

forgotten or ignored. The Admiralty formula derives its name from the British Admiralty, which in its 

heydays (say, 200 years ago in the days of Horatio Nelson) was the leading authority on maritime 

knowledge. Those were simpler days in many ways. For example, ships did not have propellers yet. 

 

2. Effective power and delivered power 

 

The following subchapters will explain cursorily the theoretical background of the Admiralty formula. 

For more background, see e.g. chapter 3.1. of Bertram (2012). 

 

2.1. It looks reasonably fine for effective power 

 

The general definition ‘power = force · speed’ yields the effective power: 

 

𝑃𝐸 = 𝑅𝑇 ∙ 𝑉      (3) 

 

RT is the total calm-water resistance of the ship excluding resistance of appendages of the propeller 

and its periphery. The effective power PE is the power we would have to use to tow the ship without a 

mailto:volker.bertram@dnv.com
mailto:rm@idealship.de
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propulsive system. It makes most sense for a resistance test in a model basin, where the ship model 

without a propeller is moved by a carriage through the water, Fig.1. 

 

 
Fig.1: Set-up for resistance test in model basin, source: HSVA 

 

The calm-water resistance in Eq.(3) in turn is generally expressed as: 

 

𝑅𝑇 = 𝑐𝑇 ∙
𝜌

2
∙ 𝑉2 ∙ 𝑆      (4) 

 

Eq.(4) expresses then the resistance in the classical way, using a nondimensional resistance coefficient 

cT, speed squared, a reference area (typically using the zero-speed wetted surface of the hull), and the 

water density ρ to get the dimension of a force. If cT were constant over speed, then combining Eqs.(3) 

and (4) would yield a third-power law. Of course, it is not. That would be too simple. But maybe we 

can assume it in reasonably good approximation?  

 

Naval architects typically decompose the calm-water resistance into four components, Bertram 

(2012): 

 

• Friction resistance – induced by shear forces between hull and water 

• Wave resistance – induced by wave making also in an ideal fluid without viscosity or friction 

• Air resistance – induced by the part above the water 

• Viscous pressure resistance – “the rest”, accounting for flow separation, interaction between 

the other resistance parts, changing wetted surface at forward speed, etc. 

 

The friction resistance coefficient is generally computed using the so-called ITTC’57 formula: 

 

𝑐𝐹 =
0.075

(𝑙𝑜𝑔10𝑅𝑛−2)2     (5) 

 

Rn is the Reynolds number (non-dimensional speed). The ITTC’57 formula is not a constant, but the 

resulting curve is rather horizontal, Fig.2; we may accept cF then as nearly constant.  

 

For medium speeds, the wave resistance coefficient is complex with local minima and maxima, 

definitely not constant, Fig.3. However, for lower speeds, the wave resistance goes rapidly to zero. 

 

The viscous pressure resistance is again a complex function of speed, but generally much smaller than 

the friction resistance. The air resistance is generally quite small. 
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Fig.2: Friction resistance coefficient over speed Fig.3: Wave resistance coefficient over speed 

 

Frictional resistance in design conditions is between 50% (offshore supply vessel) and 80% (very 

large crude carrier) of the total calm-water resistance in sea trial conditions. Fouling increases the 

percentage, so do lower speeds. Generally, we can assume that frictional resistance dominates most of 

the time in operational profiles of ocean-going vessels. 

 

2.2. Added resistance due to wind and waves 

 

So far, we have discussed only the resistance contributions for calm-water conditions. In real 

operation, there are further resistance contributions, notably due to wind and waves. 

 

Wind resistance corrections generally assume the wind resistance coefficient as independent of speed 

(and also typically that wind resistance coefficient is not dependent on draft respectively air draft, 

which is questionable, Bertram (2017), but at least ISO 19030 has a crude correction for the windage 

area. While large-scale flow separation makes a third-power law in principle questionable for wind 

resistance, we have no better suggestion. 

 

Wind waves and swell induce added resistance to ships. The popular Kreitner formula suggests no 

speed dependence of added resistance in waves, Bertram (2016). This is definitely wrong, but the 

relation between added resistance and ship speed is complex, and also not just quadratic on speed.  

 

In performance monitoring, wind, wind wave and swell added resistance components are estimated by 

more or less simplified correction formulas, assumed to scale as calm-water resistance for their contri-

bution on power and fuel consumption, and the measured power is then corrected (“normalized”). If 

the calm-water resistance is small, e.g. at low ship speed, the resulting errors from added resistance 

corrections can be significant.  

 

2.3. The propeller screws it up 

 

Unlike in the days when the Admiralty formula was formulated, normal ships now have propellers 

and we are not really interested in an effective power PE, but rather in the brake power PB at the 

engine which drives our fuel consumption. The two are connected through various efficiencies: 

 

𝑃𝐸 = 𝜂𝐻 ∙ 𝜂0 ∙ 𝜂𝑅 ∙ 𝜂𝑆 ∙ 𝑃𝐵    (6) 

 

These four efficiencies denote: 

 

• ηH – The ‘hull efficiency’ depends on the thrust deduction factor t and wake fraction w, which 

in turn depend on speed, draft, hull geometry etc. ηH can be less or greater than 1. It is thus 

not really an efficiency, which by definition cannot be greater than 100%. Most performance 

monitoring approaches conveniently consider it to be constant, taken from one condition in 

model tests or some obscure design formula. Oops, but compared to the other errors this is of 

secondary importance. 
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• η0 – The ‘open-water efficiency’ of a propeller is a highly nonlinear function of speed, Fig.4. 

Typically the design point is slightly to the left of the maximum, and propeller efficiency de-

creases towards lower speeds, say from 70% to 50%. This is the main factor why for slow-

steaming power depends rather on speed squared than on speed to the third power.  

 

 
Fig.4: (Open-water) propeller efficiency curve 

 

• ηR – Theoretically, the ‘relative rotative efficiency’ accounts for the differences between the 

open-water test and the inhomogeneous three-dimensional propeller inflow encountered in 

propulsion conditions. In reality, the propeller efficiency behind the ship cannot be measured 

and all hydrodynamic effects not included in the hull efficiency, are included in ηR. ηR again is 

not truly an efficiency. Typical values for single-screw ships range from 1.02 to 1.06. As var-

iations are small, it will not affect the third-power law assumption much. 

• ηS – The ‘shaft efficiency’ accounts for the transmission losses through shaft and – if applica-

ble – gear boxes. It is close to 1 and we can ignore any speed dependence for our purposes. 

 

The key contribution to a change in the third-power law comes thus through the open-water propeller 

efficiency which introduces a different exponent dependent on ship speed.  

 

3. Limitations of applicability 

 

3.1. Where it works 

 

To slightly modify a quote from Lord of the Rings: One does not simply approximate a speed-power 

curve over a larger speed range. But one can use such simple approximation for small variations in 

speed or displacement. ISO 19030 allows using the Admiralty formula for variations up to 5% from a 

given baseline. The problem is that for most ships, the baselines do not extend far enough to lower 

speeds and are not spaced close enough over draft; thus many data points would be lost if following 

the strict 5% margins. The temptation to ignore the standard is understandable – and a trap. 

 

The formula may also be used for very qualitative considerations, e.g. for trying the basic EEDI 

philosophy of IMO. The EEDI is computed following (a simplified formula): 

 

EEDI= 
Power ∙ SFOC ∙ CO2 factor

Cargo capacity ∙ speed
 (6) 

 

Assuming the third-power law, we then get EEDI to be proportional to speed squared. IMO wants 

ships to go slower, implicitly rewarding slower ship design speeds resulting in installed engines with 

lower power (and lower fuel consumption respectively lower emissions to air).  

 

3.2. Where it is abused 

 

Most naval architectural estimation formulas are intended for contract/design conditions. Berthelsen 

and Nielsen (2022) analyzed the exponents of 85 tanker vessels. Fig.5 shows the results of this study 
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with an added cubical curve (red) that crosses the model test at 14 kn. The curves deviate significantly 

below 12 kn, i.e. for these low speeds assuming the third-power law leads to large errors. 

 

 
Fig.5: Draught and speed dependent regression model from Berthelsen and Nielsen (2022) study with 

an added cubical speed vs. power curve in red. 

 

Interpolating between far-spaced baselines (e.g. ballast and design conditions) and extrapolating to 

much lower speeds, as frequently done to avoid creating dense hydrodynamic knowledge bases by 

either CFD (Computational Fluid Dynamics) or machine learning, leads to high errors. Krapp and 

Bertram (2016) report 10% difference on average between simple third-power application vs. detailed 

CFD analyses for a containership. Trying to bridge large variations using simple formulas does not 

work in ship hydrodynamics. There are too many factors and non-linearities in the physics involved. 

Fig.6 shows as an example of the massive wave breaking at intermediate draft for a containership, 

where the resulting resistance is almost the same as for design draft, albeit with a very different mix in 

the resistance components. 

 

 
Fig.6: Breaking waves at partial draft introduce strong linearities 

 

4. Conclusion 

 

All models are wrong, but some are useful. The simple Admiralty formula (or third-power law) is 

decidedly wrong, but still useful when 
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• order of magnitude suffices 

• only calm-water conditions are considered 

• friction resistance dominates 

• used for small variations of speed or displacement (< 5%) 

 

It may be misleading in other cases.  
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Simulation-based Digital Twins for Ship Performance Monitoring 

 

Sven Albert, Numeca Ingenieurbüro, Altdorf/Germany, sven.albert@numeca.de 

Thomas Hildebrandt, Numeca Ingenieurbüro, Altdorf/Germany, thomas.hildebrandt@numeca.de 

Volker Bertram, DNV, Hamburg/Germany, volker.bertram@dnv.com 

 

Abstract 

 

This paper introduces the state of the art in flow simulations with relevance to hull performance 

monitoring: resistance & propulsion simulations, seakeeping, rudder forces and wind forces. The 

paper describes general approaches, applications where we have confidence in CFD simulations and 

those where current applications reach their limits.  

 

1. Introduction to numerical fluid dynamics 

 

Numerical ship hydrodynamics denotes techniques to solve equations describing the physics of flows, 

Bertram (2012). The most important techniques for us are: 

 

• Potential-flow computations – Potential-flow codes do not model viscosity (and associated ef-

fects like the boundary layer). They also do not model breaking waves. On the other hand, 

they are fast and relatively easy to handle. 

• CFD (Computational Fluid Dynamics) – Codes (usually based on the Reynolds Averaged 

Navier Stokes Equations = RANSE) model viscosity directly in the field equations and are 

able to capture breaking waves. All major commercial codes and the open-source alternative 

OpenFOAM are verified in terms of numerical implementation, and their application is vali-

dated for many marine applications. 

 

More recently, such simulations have been denoted as hydrodynamic “Digital Twins”, where 

potential-flow simulations are low-fidelity twins and CFD simulations high-fidelity twins. Digital 

Twins may be created based on first principles (white box models) or machine learning (black box 

models), but mostly combine direct physical insight with empirical tuning or fitting. We will discuss 

here mainly the classical first-principle digital-twin approach, before discussing the next generation of 

Digital Twins employing machine learning. 

 

 
Fig.1: Example of more accessible CFD: CADENCE OnCloud for Fine/Marine 

 

mailto:sven.albert@numeca.de
mailto:thomas.hildebrandt@numeca.de
mailto:volker.bertram@dnv.com
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Over the past two decades, CFD has become more accessible (or “democratic”) to the wider maritime 

community, due to various developments: 

 

• Software has become more user-friendly, with streamlined, largely automated processes for 

geometry description, grid generation, computational model set-up, and post-processing. 

Modelling expertise may in narrow applications (such a speed-power curves for conventional 

ships) be incorporated in macros, i.e. automatic routines, allowing essentially “anybody” to 

run the application, Hochkirch and Hahn (2017), Gatin et al. (2019). 

• Computing power has become more accessible, even for small and medium enterprises, 

through more flexible business schemes where both CFD software licenses and computing 

power in the cloud can be rented “by the hour”, Fig.1, Hildebrandt and Reyer (2015). 

 

2. Applications 

 

2.1. Resistance & propulsion 

 

For performance monitoring, we are primarily interested in expressing ideal (= for smooth ships) 

power as function of draft, trim, and speed, in “baseline curves”. Important points in this respect are: 

 

• Wave making and wave breaking 

For design condition, wave making is generally minimized (using usually low-fidelity Digital 

Twins and/or model tests). For performance monitoring, we also need to look at off-design 

conditions, where breaking waves are important, Fig.2, Krapp and Bertram (2016). Thus 

high-fidelity Digital Twins should be employed (“free-surface RANSE” simulations in the 

jargon of CFD experts). 

 

 
Fig.2: Off-design draft and speed leads often to massive wave-breaking 

 

• Model scale or full scale 

Model tests violate some similarity laws, Bertram (2012): Wave-breaking and boundary 

layers are different from the full-scale ship, Hochkirch and Mallol (2013). Thus, CFD 

computations should be performed at full scale (“numerical sea trials”). Unfortunately, many 

CFD simulations in practice are performed at model-scale conditions, as customers like to use 

model tests to check the CFD simulations. With growing understanding of CFD, we should 

see a change in this practice and a move towards full-scale simulations. 

 

• Geometry simplifications 

Hull details such as welds are not captured by CFD models for power prediction. Variations 

in welds can account for significantly higher resistance. For a tanker, Ciortan and Bertram 
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(2014) give 2% for poor welds. Such welds also generate higher turbulence intensity than 

generally assumed in CFD computations, Fig.3. Sfiris et al. (2023) describe a weld fairing 

coating solution for welds, investigated by CFD. 

 

Microscopic or even changes in the order of mm are not captured geometrically in CFD 

models. While the roughness of surfaces can be varied in CFD computations, e.g. Östman et 

al. (2017,2019), Vargas and Shan (2017), Vargas et al. (2019), Zhang et al. (2021), there is 

no consensus among CFD experts how reliable such parameter studies are. However, the 

qualitative changes appear plausible. Our theoretical knowledge on roughness and boundary 

layers stems from ideal laboratory conditions, mostly for flat plates. Sea water with many 

impurities flowing over ship hulls with roughness levels in the mm order of magnitudes (with 

welds and fouling) may behave differently. Research into proving such differences is still in 

its infancy. In a notable example, Kaminaris et al. (2023) used CFD and 3D printed artificial 

barnacles on plates in experiments. 

 

Krapp et al. (2016) report 5.6% variations in measured power in sea trials for seven sister 

vessels. It is anybody’s guess how much of these variations are due to differences in the as-

built hulls and how much due to variations in the measuring process. However, unless 

detailed scans of the as-built hull are used to generate the CFD model, such variations will 

always have to be expected. CFD predictions (like model tests) can never be more accurate 

than these variations. For performance monitoring, a pragmatic approach is calibrating 

computations against sea trials. The difference between as-designed and as-built in geometry, 

as well as assorted simplification in the Digital Twin (e.g. the transition from laminar to 

turbulent flow) are then largely compensated. 

 

Often the propeller is not geometrically modelled, Fig.4; instead the main effects of the 

propeller are included via so-called body-forces. These are externally specified forces to 

mimic thrust and swirl of the propeller. For performance monitoring purposes, this modelling 

approach is fine. 

 

  
Fig.3: Welds increase frictional resistance, but 

are generally not captured in CFD models. 

Fig.4: Body-force propeller model in RANSE 

simulations 

 

• Flow simplifications 

Model tests assume laminar-turbulent flow transition at a given distance from the leading 

edge. As this distance does not scale properly, model tests enforce the transition by turbulence 

stimulators (sand strips or studs). In CFD, generally fully turbulent flow is assumed from the 

very beginning, although some researchers have used “numerical sand strips”. We believe 

that the standard approach with fully turbulent flow from the beginning may reflect the 

conditions for the real ship in even moderate sea states better than the model tests.  

 

The propeller behind the ship dominates the flow and makes discussions over the turbulence 

model rather academic for performance monitoring. 
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Take-home messages: 

 

• Properly performed CFD simulations are by now at least as accurate as model tests for full-

scale predictions. 

• Neither model tests nor CFD can account for as-built variations in sister vessels, but calibrat-

ing to sea trials can largely compensate for this. 

• For parameter variations (such as trim, draft and speed for a given hull), CFD is superior due 

to parallel processing and easier automation of analyses. (CFD simulations for trim optimiza-

tion tools should be reused for performance monitoring. If properly planned, this reuse of hy-

drodynamic information can lead to much better economics.) 

• CFD may support better hull maintenance strategies, such as deciding where to clean better or 

where to use more expensive coatings. 

 

2.2. Seakeeping and manoeuvring 

 

There is a multitude of computational methods for seakeeping with assorted strengths and short-

comings, Bertram (2012,2016). Primarily, performance monitoring needs added power estimates in 

small to moderate seaways. Here, linear analyses based on potential-flow theory are recommended as 

best overall approach. These analyses are relatively fast, allowing the investigation of many 

parameters (wavelength, wave direction, ship speed, draft, etc.). More complicated CFD methods 

capture also breaking waves and assorted nonlinearities, resulting in very good agreement for 

motions, Fig.6, e.g. Lagemann (2019). However, these codes require high computational effort and do 

not necessarily give better results for added resistance in waves, due to a combination of grid-

resolution issues and problems with subtracting the calm-water resistance, Bertram (2016). For long 

waves, CFD approaches may also be used to compute added resistance and power in waves, e.g. 

Gatin and Boxall (2021) for added resistance in swell to resolve a party-charter claim on ship 

performance. However, in most cases, there is little sense in going to the required expense of CFD 

simulations to create a knowledge base for added power in waves (think at least 30000-60000 € if you 

want to cover the variations of parameters needed), as long as we use crude estimates for the seaway. 

 

 

 
Fig.6: High-fidelity CFD simulation (left) and model texts (right) for yacht in head waves 

 

Rudder forces for rudders at small-to-moderate angles can be computed by semi-empirical methods, 

Söding (1998), Bertram (2012). CFD simulations are unnecessary overkill for performance 

monitoring. In normal ship operation at higher speeds, rudder angles are small. 
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2.3. Aerodynamics 

 

Although wind tunnel tests are still widely used, CFD has evolved as an alternative comparable in 

accuracy, level of detail, time requirements and cost, Fig.7. CFD could be combined with machine 

learning approaches to create fast and accurate models for wind forces, ideally for individual ships, 

but possibly also for classes of ships such a representative ship types. The validity of the semi-

empirical formulas used in ISO 19030 should be investigated by CFD, e.g. the assumption that the 

non-dimensional wind force coefficients remain (virtually) constant with draft variations for a ship, 

Bertram (2017). CFD might also be used to determine local flow variation at the location of wind 

anemometer, Moat et al. (2005), to compensate for local flow distortion due to the deckhouse and the 

other equipment. Alas, a lot could be done, and little is actually done in using CFD for better air 

resistance models. 

 

 
Fig.7: CFD simulations for wind forces and local flow investigations, source: Meyer Turku and 

FINETM/Marine (Numeca) 

 

3. Next-generation Digital Twins 

 

Meta-models derived using machine learning on CFD simulations for series of variations on a base 

hull geometry can yield reasonably accurate predictions virtually instantaneously. For (Wageningen 

B-series) propellers, this has been convincingly demonstrated by Numeca, Fig.8, with response times 

reduced from 2-3 hours to 20 s, Van den Boogard et al. (2022). Similarly, Ahmed et al. (2023) 

demonstrated the use of meta-models for power predictions for a family of planing hulls. In general, 

CFD simulations for parametric model variations can be used to train machine learning to predict both 

global quantities (such as forces) and local quantities (such as pressure distributions). 

 

  
Fig.8: CFD prediction and meta-model based on machine learning (ML) 
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4. Conclusions 

 

CFD has matured to be a viable and sometimes superior alternative to model tests. Specific applica-

tions with relevance to performance monitoring are: 

 

• Numerical sea trials, steady speed of ship in initially calm water with working propeller at 

full-scale conditions. Such simulations give reliable hydrodynamic knowledge bases for the 

calm-water performance of ships. They should be based on RANSE simulations (CFD) and 

may be performed now at reasonable cost in the cloud. 

• Seakeeping simulations are less important as we filter generally for moderate and higher sea-

ways. Simulations only make sense if seaways are identified with greater accuracy. Similarly, 

simple semi-empirical approaches suffice for manoeuvring and rudder forces. 

• CFD could be used more to derive better models for aerodynamics in performance monitor-

ing. 

• Meta-modelling (applying machine learning techniques such as Artificial Neural Nets) may 

be used based on CFD results to derive fast and accurate Digital Twins.  
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Abstract 

 

This paper is an attempt to analyse in detail how changing the trim of the vessel changes fuel con-

sumption. We are going to use a few examples of speed and draught combinations to reveal how 

changing trim changes different aspects of resistance and propulsion characteristics. The goal is to 

separate the changes in different resistance components: such as viscous and pressure, as well as 

different propulsion characteristics (wake fraction, thrust deduction factor), to better understand how 

trim optimisation works. The subject of this study is a container vessel, ship type that so far benefits 

from trim optimisation the most. 

 

1. Introduction 

 

Apart from being very colourful, CFD has another benefit: it allows us to dissect hull resistance and 

propulsion into its constituents, in a way that is difficult or impossible to do with experimental 

measurements. Let us use this feature to get a better understanding of how changing the trim saves 

fuel. First, we can look at how two main resistance components change with trim. Since they originate 

from different sources, pressure and friction resistance are calculated separately in CFD computations: 

the former by integrating pressure along the surface of the hull, and the latter by integrating viscous 

stress forces. In the experiment the two combine to compress the dynamometer together, and ratios 

can only be recovered by using some clever physics based on (well founded) assumptions. 

 

Reichel et al. (2014) give an overview of influential factors on fuel saving by changing the trim. Their 

findings are based on experience from model test experiments and give a useful insight into the 

individual components of trim optimisation savings. Similar overview is done here, however with 

attention to trends of different parameters with changing trim. 

 

2. Resistance and propulsion factors 

 

Here is a quick overview of the factors that we will be analysing in this paper. The most important 

factor is resistance. As mentioned earlier, using CFD, resistance force can be separated into pressure 

and friction resistance: 

𝑹𝑻 = 𝑹𝑷 + 𝑹𝑭, (1)  
 

with 𝑅𝑇 standing for total resistance, 𝑅𝑃 is pressure resistance, 𝑅𝐹 is friction resistance. Resistance is 

calculated in towed condition, i.e. without the effect of the propeller. In CFD and in the experiments, 

this is performed by towing the model, which is not equipped with a propeller, and measuring its 

resistance force. To calculate fuel savings, self-propelled condition needs to be considered as well. 

Here, the model is equipped with the propeller, whose action changes the hydrodynamic force acting 

on the hull, typically increasing it. The thrust 𝑇 of the propeller needs to be equal in magnitude to this 

force. The difference between thrust and towed resistance is expressed through the thrust deduction 

factor: 

𝒕 =
𝑻 − 𝑹𝑻

𝑻
. (2) 

 

The thrust deduction factor changes with trim, and thus influences the thrust required to propell the 

vessel. Changing the trim changes the submerged shape of the hull, which influences the flow around 

it. By the time the flow reaches the propeller at the stern, it has changed in different ways for different 
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trims. This changes the average inflow speed of the propeller, which is important since it determines 

the power that the propeller delivers to the flow, called thrust power: 

 

𝑷𝑻 = 𝑻 ⋅ 𝑽𝒂, (3) 
 

𝑉𝑎 denotes average inflow speed to the propeller. Lower thrust power means lower fuel consumption, 

which is achieved by lowering 𝑉𝑎. 𝑉𝑎 is typically expressed relative to ship speed by defining the wake 

fraction: 

𝒘 =
𝑽𝒔 − 𝑽𝒂
𝑽𝒔

, (4) 

 

𝑉𝑠 denotes ship speed. The main goal of ship propulsion is to propel the vessel with a certain speed. 

Theoretically the power that is required to do that is calculated as: 

 

𝑷𝑬 = 𝑽𝒔 ⋅ 𝑹𝑻, (5) 
 

This effective power is overcome with thrust power. The ratio between the two is the hull efficiency: 

 

𝜼𝑯 =
𝑷𝑬
𝑷𝑻

, (6) 

 

which, after a bit of algebraic fiddling, can be written as: 

 

𝜼𝑯 =
1 − 𝑡

1 − 𝑤
. (7) 

 

There are still a few pieces missing to get to fuel consumption: to achieve a thrust, the propeller needs 

to be rotated about its axis. This rotation requires power, the propeller delivered power, and can be 

calculated as the moment required to rotate the propeller at certain RPM. The ratio between delivered 

power 𝑃𝐷 and thrust power 𝑃𝑇 is determined by propeller efficiency, which is determined by 

conducting open water tests. The propeller has slightly different efficiency when working in open 

water, and when working behind the vessel. Thus, total propeller efficiency is calculated as a product 

of open water efficiency 𝜂𝑂 and relative rotative efficiency 𝜂𝑅. In CFD trim optimisation studies, the 

propeller is modelled using the actuator disc model which does not consider the relative rotative 

efficiency. It is assumed to be equal to 1 in this study for all conditions. This is justified by the fact 

that 𝜂𝑅 ranges from 0.98 and 1.02 in most cases, and according to Reichel et al. (2014) varies up to 

2% with changing trim. With that assumption, we can write: 

 

𝑷𝑫 =
𝑷𝑻
𝜼𝑶

. (8) 

 

Delivered power 𝑃𝐷 is proportional to fuel consumption, hence it serves a good proxy for observing 

fuel savings. Open water efficiency of the propeller depends on the RPM and inflow velocity 𝑉𝑎, 

where the RPM is in turn influenced by thrust. Hence, this factor also depends on trim. 

 

To summarize, the following factors will be analysed in this paper, since they depend on trim and 

influence fuel consumption: 

 

1. 𝑅𝑇, total resistance, 

2. 𝑅𝑃, pressure resistance, 

3. 𝑅𝐹, friction resistance, 

4. 𝑡, thrust deduction factor, 

5. 𝑤, wake fraction factor, 

6. 𝜂𝑂, propeller open water efficiency. 
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3. Container ship trim optimisation 

 

The subject of this analysis is a container vessel, with design speed of around 24 kn and design 

draught of 12 m. Select number of draught/speed combinations are analysed here in detail. In this 

paper, trim is expressed in the usual way: in meters, where it represents the difference between the 

stern and forward draught. Thus, positive trim corresponds to a deeper stern draught and therefore a 

bow up inclination. 

 

Fig.1 shows the trends of different factors for the first analysed condition: 7 m draught, 10 kn speed. 

This is a shallow draught for this vessel, as well as a low speed. The graphs are expressed in % 

change of the factor, with the mean value of the factor taken as referent. Obviously, pressure 

resistance dominates, with relative changes of 20%, where increasing the trim reduces resistance. 

However, since the speed is quite low, pressure resistance makes up a relatively small portion of the 

total resistance. Hence, the change in total resistance and power (~11.5% variation) is much less 

dramatic. Change in friction resistance is modest, however in the same direction as the change of 

pressure resistance. Propeller efficiency is also increasing with increasing trim, while hull efficiency 

is reducing. Wake fraction reduces with trim, which is favourable, but the trust deduction factor 

increases (albeit oscillatory), together producing a downward trend of the hull efficiency. Finally, if 

we compare the relative change in resistance and power, we observe that ignoring changes in 

propulsion factors would overestimate savings at 4 m trim. 

 

 
Fig.1: Draught = 7 m, Speed = 10 kn. Trends of different factors with varying trim. Right graph 

excludes pressure and friction resistance for better legibility of other factors. 

 

Why is the pressure resistance changing by so much? Fig.2 shows the pressure distribution along the 

hull for trims of 1 and 4 m. At 4 m trim, the bulbous bow is mostly above the waterline, creating a 
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smaller bow wave. This is likely to be the key reason why pressure resistance reduces by increasing 

trim. Since this condition is far from the design point of this vessel, the bulbous bow is a 

disadvantage, and reducing its effect reduces resistance. 

 

 
 

 
Fig.2: Pressure distribution: Draught = 7 m, Speed = 10 knots. Trim: 1 m (top) and 4 m (bottom). 

 

Let us skip ahead to the next operational point. We will now consider three different speeds for 

draught of 10 m, which is closer to the design draught. Considered speeds are 10, 15 and 20 kn, where 

the last one approaches the design speed. 

 

Fig.3 shows the factor trends for 10 kn at 10 m draught. Again, the largest variation is exhibited by 

pressure resistance, but it is not dominating in the same way as for the previous condition. 

Interestingly, there is a local maximum for power and resistance between 0 and 1 m trims. Wake 

fraction again shows a reduction with increasing trim, which is expected since the propeller disc is 

more exposed to the oncoming flow. Significant variation is found for wake, around 18% from 

minimum to maximum value. This time the thrust deduction factor shows an oscillatory and modest 

variation. The resulting hull efficiency mostly follows the downward trend of the wake fraction 

change with increasing trim. Unlike in the previous case, resistance and hull efficiency have opposite 

trends, hance their effect is superimposed. 

 

 
Fig.3: Draught = 10 m, Speed = 10 kn. Trends of different factors with varying trim. 
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Factor trends for 15 kn at 10 m draught are shown in Fig.4. Trends of propulsion factors resemble 

those at 10 kn, with the wake fraction falling with increasing trim with a variation of 24%. Hull 

efficiency again shows a small variation with a negative trend. Unlike at 10 kn, the pressure resistance 

shows a steep increase for positive trims. For negative trims it shows a less steep trend in the 

favourable direction. The result is a massive 40% variation in delivered power, because pressure 

resistance makes a larger portion of total resistance. Since pressure resistance is the dominating factor 

again, we expect to see differences in the ship-generated wave system. Indeed, Fig.5 shows that there 

is a large difference between pressure distribution around the bow, due to a significantly larger bow 

wave being generated at trim of 2 m. At this trim, the bulbous bow is approaching the free surface and 

there is a breaking wave crest developing, dissipating a lot of energy. Evidently the wave field 

generated by the bulbous bow does not interfere with the bow wave system in a favourable way. 

Hence, submerging the bulb deeper reduces its effect. We can conclude that this is because the speed 

of 15 kn is still far away from the design speed of the vessel, and that the bulb is doing more harm 

than good at this speed. 

 

 
Fig.4: Draught = 10 m, Speed = 15 kn. Trends of different factors with varying trim. Right graph 

excludes pressure and friction resistance for better legibility of other factors. 

 

 
 

 
Fig.5: Pressure distribution: Draught = 10 m, Speed = 15 kn. Trim: 2 m (top) and -3 m (bottom). 
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Fig.6: Draught = 10 m, Speed = 20 kn. Trends of different factors with varying trim. 

 

 
Fig.7: Draught = 12 m, Speed = 20 kn. Trends of different factors with varying trim. 

 

Moving further, Fig.6 shows factor variations for speed of 20 kn at 10 m draught. Pressure resistance 

has a significantly lower variation than at 15 kn of only 30%. Power changes by only 8%, much less 
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than at 15 kn. Add to this the fact that at even keel the vessel is close to performing optimally, and we 

can conclude that this is closer to the design operational point of the vessel compared to previous 

cases. Wake again shows a pronounced negative trend, while hull efficiency falls with higher trims. 

Like the previous case, trimming the bow up increases pressure resistance, again due to the bulb 

coming closer to the free surface. However, this is not nearly as dramatic as at 15 kn. It is likely that 

the interference is more favourable at 20 kn since bulb and bow wave system wavelengths have 

increased. 

 

Approaching the design condition for this vessel, Fig.7 shows the trends for draught 12 m and speed 

20 kn. Looking at the graph, it is apparent that the naval architects optimised the hull shape very well 

for minimising wave making resistance at even keel. Here, pressure resistance is minimal at even 

keel, while only small oscillations of other factors exist. Increasing or reducing the trim increases 

power, however the changes are relatively small. Possible savings in terms of fuel consumption are 

significantly smaller here than at shallower draughts and slower speeds. 

 

4. Conclusion 

 

From observing the trim optimisation data for a container ship, the following can be concluded: 

 

1. Pressure resistance varies the most with changing the trim, due to the large variations in 

wave-making resistance, 

2. Variations in friction resistance are modest, 

3. Variations in resistance and consequently power, are larger at lower draughts and lower 

speeds, further away from the operational design point of the vessel, 

4. Propulsion factors contribute to power trends with changing trim, even if the influence is sig-

nificantly smaller than that of pressure resistance, 

5. Variation of propulsion factors does not depend as much on the proximity of the ship’s design 

point, 

6. Variations in wake and thrust deduction factor can be significant (25%!), however they tend 

to compensate to yield a rather small variation in hull efficiency, and consequently in power. 
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Abstract 

 

The paper investigates the transformative impact of advanced fleet performance monitoring on the 

maritime industry, focusing on enhancing operational efficiency, ensuring environmental compliance, 

and improving safety. It evaluates the role of sensor technologies and data analytics in optimizing 

maritime operations, outlines the environmental advantages of such optimizations, and provide some 

(clever) ideas on how to use a Fleet Monitoring system for the Maritime sustainability. Moreover, the 

paper addresses implementation challenges, advocating for innovation and industry-wide collabora-

tion to navigate these hurdles successfully. 

 

1. Introduction  

 

In an era marked by rapid technological advancements and a pressing need for sustainable practices, 

the maritime industry is experiencing a paradigm shift towards more integrated and intelligent 

operations, advanced fleet performance monitoring systems stand at the forefront of this shift, 

leveraging sensor technologies and sophisticated data analytics to usher in a new era of maritime 

efficiency, environmental stewardship, and safety. Through an analysis of current capabilities and a 

forward-looking perspective on potential technological evolutions, the study aims to evaluate the 

operational improvements afforded by these technologies, explores their role in facilitating compliance 

with increasingly stringent environmental regulations, and anticipates the challenges and opportunities 

that lie ahead. By doing so, the paper seeks to contribute to the ongoing discourse on maritime 

innovation, offering insights and recommendations for stakeholders navigating the complexities of 

modern seafaring. 

 

2. Technological Advancements in Fleet Performance Monitoring 

 

The maritime industry's commitment to innovation has led to significant advancements in fleet 

performance monitoring technologies. These advancements are pivotal in optimizing operational 

efficiency, enhancing safety, and ensuring environmental sustainability. The integration of advanced 

sensor technologies has transformed traditional maritime operations into data-driven decision-making 

processes. 

 

2.1. Sensor Technologies in Maritime Operations 

 

Sensor technologies have become the cornerstone of modern fleet performance monitoring systems. 

These sensors, deployed extensively across vessels, collect real-time data on various parameters 

including engine performance, fuel consumption, cargo load, and navigational efficiency. The data 

collected offers a granular view of a vessel's operational status, enabling precise monitoring and 

optimization strategies. 

 

• Engine Performance Sensors: Engine performance sensors monitor the mechanical and 

thermal efficiency of a vessel's engine, providing data on fuel consumption, power output, and 

engine wear. This information is crucial for predictive maintenance and operational optimiza-

tion. 

• Fuel Consumption Sensors: These sensors track the amount of fuel consumed during voyages, 

allowing for the analysis of fuel efficiency and the identification of strategies to reduce fuel 

consumption, thereby lowering operational costs and emissions. 

• Cargo and Stability Sensors: Cargo and stability sensors measure the weight and distribution 

of cargo, ensuring optimal balance and stability of the vessel. This is essential for safe and 
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efficient voyages, especially in adverse weather conditions. For some ships, Trim optimization 

can be extremely beneficial. 

• Navigational Efficiency Sensors: Navigational sensors, including GPS and AIS, provide real-

time data on a vessel's location, speed, and course. This data is used for route optimization, 

avoiding congested or hazardous areas, and ensuring timely arrivals. 

 

3. Operational Efficiency through Data Analysis 

 

In the maritime industry, the leap towards digitalization, powered by advanced data analytics, has 

significantly enhanced operational efficiency. The interpretation and application of data collected 

through sensor technologies lead to optimized maritime operations, emphasizing fuel efficiency, 

predictive maintenance, and route optimization. 

 

3.1 Fuel Efficiency and Environmental Sustainability 

 

The quest for fuel efficiency is at the heart of maritime operational improvements, given its direct 

impact on operational costs and environmental sustainability. Advanced data analytics enable ship 

operators to analyze fuel consumption patterns in real-time, facilitating adjustments that lead to 

significant fuel savings and emission reductions. Techniques such as weather routing, speed 

optimization and trim optimization supported by data analytics, have proven effective in enhancing fuel 

efficiency. 

 

• Weather Routing: Utilizing predictive analytics to assess weather conditions and sea states, 

enabling the selection of routes that minimize fuel consumption while ensuring safety. This 

approach not only conserves fuel but also reduces greenhouse gas emissions, contributing to 

environmental sustainability. 

• Speed Optimization: Data analytics allow for the dynamic adjustment of vessel speed to 

optimize fuel efficiency. By analyzing data on sea conditions, vessel load, and fuel 

consumption, operators can determine the most fuel-efficient speed for different segments of a 

voyage. 

• Trim Optimization: the constant monitoring of the trim comparing to the optimal one lead to 

the least power and therefore to the lease consumption. 

 

3.2. Predictive Maintenance 

 

Predictive maintenance represents a significant advancement in maritime operations, enabled by data 

analytics. By analysing data from various sensors, operators can predict potential failures before they 

occur, scheduling maintenance activities proactively and avoiding unplanned downtime. 

 

• Vibration Analysis: Sensors monitoring engine and machinery vibrations can detect anomalies 

that precede failures, allowing for timely maintenance interventions. 

• Oil Analysis: Analysing data on oil properties can provide insights into the health of engines 

and machinery, predicting when maintenance is required to prevent wear or damage. 

• Alerting system: having an advanced Alerting system can lead to create very detailed and 

effective Alert that can help in identifying potential failure before they occur. 

 

Predictive maintenance, underpinned by sophisticated data analysis, not only enhances operational 

efficiency but also extends the lifespan of maritime assets.  

 

4. Environmental Impact and Regulatory Compliance 

 

In the context of growing environmental concerns and stringent regulatory standards, the maritime 

industry has increasingly focused on minimizing its environmental footprint while adhering to 

compliance mandates. Fleet performance monitoring systems play a pivotal role in achieving these 
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objectives, leveraging advanced technologies to ensure operational practices are both efficient and 

environmentally sustainable. 

 

4.1. Reduction of Environmental Footprint 

 

Advanced fleet performance monitoring systems enable the maritime industry to significantly reduce 

its environmental impact. By providing real-time data on fuel consumption, emissions, and engine 

efficiency, these systems facilitate informed decision-making that leads to more sustainable practices. 

 

• Emissions Monitoring: Real-time tracking of emissions, such as CO2, NOx, and SOx, helps 

ensure vessels operate within environmental compliance limits and adopt cleaner practices. The 

calculation and constant monitoring of these emissions helps in identifying potential issue and 

potential environmental noncompliance. 

• Fuel Optimization: Data analytics driven by fleet performance monitoring allows for the 

optimization of fuel use, substantially reducing greenhouse gas emissions. Strategies include 

optimizing voyage routes and speeds based on weather conditions and sea states, thus 

enhancing fuel efficiency. 

 

4.2. Compliance with Global and Regional Environmental Regulations 

 

Fleet performance monitoring systems are not only tools for operational optimization but also 

mechanisms for ensuring regulatory compliance. With the maritime industry subject to a complex 

framework of global and regional environmental regulations, these systems provide the necessary data 

and analytics to navigate compliance challenges effectively. 

 

• Global Compliance: The International Maritime Organization (IMO) sets global standards for 

emissions, waste management, and marine conservation. Fleet performance monitoring 

systems help operators stay abreast of these requirements, ensuring global compliance through 

detailed emissions reporting and fuel consumption logs. 

• Regional Regulations: In addition to global standards, maritime operations must also navigate 

regional regulations, such as Emission Control Areas (ECAs) and specific national laws like 

Biofouling Management and Ballast Water treatment. Real-time monitoring and data analysis 

enable vessels to adjust operations as needed to comply with these varied requirements. 

• Data Collection and ETS: Of course, we cannot avoid mentioning the Data collection 

regulation and ETS. Real-time monitoring but most importantly data reliability checks help in 

identify any issue in regards of the Emission that can cause several amounts of money of 

penalty. 

 

5. Challenges and Considerations in Implementing Advanced Monitoring Systems 

 

The adoption of advanced fleet performance monitoring systems, while offering significant benefits, 

also introduces a range of challenges and considerations that must be navigated by the maritime 

industry. The primary obstacles in the implementation of these technologies and proposes strategies to 

address them, ensuring successful integration and maximization of benefits. 

 

5.1 Technological Integration and Compatibility 

 

One of the foremost challenges lies in integrating new technologies with existing maritime 

infrastructure. The heterogeneity of systems across different vessels and fleets can complicate the 

deployment of unified monitoring solutions. 

 

• Interoperability Issues: Ensuring new monitoring systems can communicate and function 

seamlessly with older technologies onboard is crucial for comprehensive data analysis and 

operational efficiency. 
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• Upgrade Costs: The financial investment required to upgrade existing systems or retrofit older 

vessels with new technologies can be significant, potentially hindering widespread adoption. 
In general, there is the need to invest time and money to get money back. 

 

5.2. Cybersecurity and Data Privacy 

 

As maritime operations become increasingly reliant on digital technologies, the risks associated with 

cybersecurity breaches and data privacy violations grow. Protecting sensitive operational data against 

cyber threats is paramount. 

 

• Cybersecurity Measures: Implementing robust cybersecurity protocols and systems to 

safeguard against unauthorized access and cyberattacks is essential. 

• Data Privacy Regulations: Compliance with international data protection regulations ensures 

the confidentiality and integrity of collected data. 

 

5.3. Skilled Workforce and Training 

 

The effective utilization of advanced fleet performance monitoring systems requires a workforce 

proficient in digital technologies. Bridging the skills gap and ensuring personnel are adequately trained 

poses a significant challenge. 

 

• Workforce Development: Initiatives to educate and train maritime personnel in the use of 

advanced monitoring technologies are critical for their successful implementation. 

• Continuous Learning: Establishing programs for ongoing training and professional develop-

ment ensures the workforce remains adept at leveraging new technologies as they emerge. 

 

6. Monitoring towards Efficiency Some Ideas 

 

The implementation of advanced fleet performance monitoring technologies across the maritime 

industry has yielded significant operational, environmental, and safety benefits. These are some ideas 

that highlight the successful applications of these technologies and underline, again, why it is vital 

nowadays to have a Fleet Monitoring system. 

 

6.1 Idea 1: Optimizing Fuel Efficiency through Hull/propeller degradation over time 

 

Monitoring the Hull and Propeller degradation over time using continuous monitoring of Power and 

Consumption for propulsion is crucial to compare an actual value to a target; such KPI over time can 

be monitored to detect basically two aspects: 

 

1. The degradation over time can help in identifying which is the degradation limit that we would 

like to set. I.e. the degradation is now 10% above the expected and the ship will have to wait 1 

year and half before next drydock. The operator can monitor the degradation over time and 

receive an alert if such degradation is around 15%, so it can proceed with an inspection. 

2. The effectiveness of an intervention: sometimes, due to the environmental condition or due to 

not the very best provider or simply just because the Hull or the propeller where too dirty or 

old the intervention was not effective. 

 

6.2. Idea 2: Enhancing Safety with Predictive Analytics 

 

The system analysed historical data and real-time inputs to predict potential safety incidents before they 

occurred; using also intelligent Alerting system can led to a potential significant reduction in safety 

incidents over two years. The proactive approach to safety management significantly reduced downtime 

and insurance costs. Employing predictive analytics to anticipate and mitigate safety risks can lead to 

a safer operational environment and reduce the financial impact of incidents. 
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6.3. Idea 3: Achieving Environmental Compliance through Emissions Monitoring 

 

Facing stringent environmental regulations deploying an emissions monitoring and optimization 

system across its fleet. The system tracked emissions in real-time, ensuring compliance with global and 

regional standards. The regulatory requirements are successfully met all, avoiding potential fines and 

operational restrictions. The system can also identify areas where emissions could be further reduced, 

supporting the company’s sustainability goals. Real-time emissions monitoring systems are essential 

for ensuring regulatory compliance and identifying opportunities to exceed environmental performance 

targets. 

 

6.4. Idea 4: Many ships but just one system 

 

Having various age, type and size ships can lead the operators to have multiple system to monitor all 

the ships. However, having only one platform to monitor all the ships having the same KPI is beneficial 

and time (and cost) saving. 

 

6.5. Idea 5: Biofouling Management 

 

A system that can collect the position, speed and idling of the ship, but also collect the Inspection, 

Cleaning, drydock is the perfect tool for Biofouling management. By mapping the riskiest area of the 

world for fouling and monitoring the speed and time spent idling it is quite simple create alert and 

analytics to monitor and detect any possible situation that can lead to fouling. This is an example of 

smart monitoring and preventing excessive consumption nevertheless any issue with regulation. 

 

6.6. Idea 6: Hotel load monitoring and optimization 

 

In the Cruise sector, the Hotel Load monitoring and optimization is a key for enhancing the efficiency 

of their ships. By mapping all the consumers, it is then possible to see trends, to filter by cruise, weather, 

season and then identify the area to optimize. 

 

7. Policy Implications and Industry Standards 

 

The evolution of fleet performance monitoring technologies not only transforms maritime operations 

but also influences the regulatory landscape and industry standards. Regulatory bodies are always trying 

to standardize but sometimes they fail, or they take long time to create something. It is quite important 

that every party is represented in this discussion to not privilege any stakeholder of this industry. 

 

7.1. IMO and Classification society  

 

IMO and Classification society already contribute (for better or for worse) into create standard but also 

helps in complying with such regulation with all verification process. In the latest year Emission has 

been the focus but there are many areas where it is needed a standardization, for example AMS data 

ownership and protocol that are very different and very customized. This is, of course, not the fault of 

the Automation vendors but the problem is that there is not a high-level decision on the property of the 

data but only some interpretations and there is not a standard communication protocol for the output 

buy a real jungle of output’s languages custom NMEA, Modbus, OPC and analog. This lack of 

Standardization has only the effect to slow-down all the process and then limit the goal to be achieved 

(and drive data collection provider very crazy) 

 

7.2. Regional law 

 

From 2017 with MRV we have seen in recent years the continuous creation of new and sometimes quite 

different regulation from regional entity. Here is the best example of non-standardization because with 

IMO DCS, EU MRV and UK MRV that coexist that basically have the same aim but with different 

rules. ETS also enters the game, and it has new rules (different from EU MRV), and more regulation 



30 

will come. Not only pollutant data collection is affected by this phenomenon, also Ballast water 

treatment, Biofouling Management, Scrubber and most recently Shapoli. 

 

8. Conclusion 

 

The maritime industry stands at the threshold of a transformative era, propelled by the integration of 

advanced fleet performance monitoring technologies. Only Emission seems now to have convinced that 

good data are needed to not waste too much money (thanks to ETS, but let’s not forget FUEL EU 

MARITIME, defined by one customer “the bomb” for the shipping companies) 

 

The journey towards digital transformation is not without its challenges. Technological integration, 

cybersecurity, data privacy, and the development of a skilled workforce emerge as critical hurdles that 

must be navigated with strategic foresight. Moreover, the evolving regulatory landscape and the 

imperative for harmonized industry standards underscore the necessity for collaborative efforts among 

maritime stakeholders, regulatory bodies, and classification societies. 

 

Looking ahead, the maritime industry must remain agile, embracing continuous innovation and 

adaptation to leverage the full spectrum of benefits offered by fleet performance monitoring 

technologies and this is the real challenge because as it is known the maritime industry is the very last 

that apply technology.  

 

The active participation of maritime operators in policy advocacy and standard development is crucial 

for aligning regulatory frameworks with technological advancements, ensuring that the industry moves 

forward cohesively and sustainably. 

 

In conclusion, the future of maritime operations is undeniably digital. The successful integration of 

advanced monitoring systems promises not only to optimize operational practices but also to redefine 

the industry's environmental footprint and safety protocols. As the maritime sector sails into this new 

digital horizon, it does so with the potential to achieve unprecedented levels of efficiency and 

sustainability, marking a new chapter in the age-old narrative of seafaring. 

 

As the industry continues to evolve, it is the collective responsibility of all maritime actors to steer 

towards a future where technology and tradition sail in unison towards safer, cleaner, and more efficient 

horizons. 
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Abstract 

 

This study provides valuable insights into hydrodynamic performance and fuel efficiency of different 

coating types and roughness in a steady-state simulation of a container ship. The simulation process 

involves the use of computational fluid dynamics (CFD) software, which can model the flow around the 

ship’s hull without head of oblique incoming wave effects. Initially, the experimental channel flow tests 

were used to measure the frictional drag of different marine coatings and application finishes. The 

relationship between the coating roughness and frictional drag was quantified using empirical corre-

lations, which relate the frictional characteristics of coatings to combination of roughness parameters. 

As a result, a roughness function is derived and used as input to CFD simulation to improve the accu-

racy and reliability of the simulation results. The CFD software incorporates the effects of different 

coating types and roughness on the hull and provides a range of performance parameters, including 

viscous, pressure and total resistance under steady-state condition as a baseline study. By comparing 

the performance parameters of ships with different coating types and roughness, the simulation can 

identify the optimal combination of coating type and roughness that provides the best hydrodynamic 

performance and fuel efficiency. 

 

1. Introduction 

 

The combination of channel flow facilities and CFD simulations provides an effective approach for 

investigating roughness effects on hydrodynamic performance. The roughness allowance in the ITTC 

(International Towing Tank Conference) is a simplified approach based on empirical formulae that may 

fail to account for the effects of current coatings with low variable roughness values, ITTC (1978). The 

results from the channel flow facility, along with CFD simulations, provide a more comprehensive and 

flexible tool for studying and isolating the impacts of coating roughness on flow behaviour. Our exper-

imental approach, combined with CFD simulations, addresses the limitations of older roughness allow-

ance models, allowing authors to obtain more accurate roughness functions and gain a better under-

standing of the flow behaviours of modern coatings under in-service surface conditions, as was per-

formed in previous research studies, Yeginbayeva (2017), Schultz et al. (2015), Murphy et al. (2018). 

This information could be extremely useful in optimizing the coating application areas and performance 

of various marine vessels. 

 

Here are some key points that emphasize the benefits of channel flow facility and CFD simulations for 

studying roughness effects of hull coatings: 

 

• Isolation of Roughness Effects: channel flows allow researchers to isolate the influence of 

roughness without the confounding effects of external factors present in the testing vessel since 

it has a well-defined boundary condition, Monty (2005). By conducting controlled experiments 

with different coating types and roughness values systematically and under high Reynolds num-

ber regimes (𝑅𝑒𝑚≈215000), researchers can quantify the specific impact of roughness on flow 

patterns, drag, and boundary layer characteristics, Schultz et al. (2000), Schultz and Flack 

(2013). In contrast, the ITTC Performance Prediction Model is primarily based on empirical 

formulations derived from towing tank experiments Demirel et al. (2015), Kiosidou et al. 

(2017), and its applicability might be limited to specific vessel shapes and conditions. It can be 

challenging to precisely isolate the roughness effects in towing tanks, especially when other 

factors like scale effects, model shape, and boundary conditions come into play. In addition, 

corrections to adapt to different vessel types or operating conditions are required. The towing 

mailto:Zakari.midjiyawa@jotun.com
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tank method may not allow as much customization as CFD simulations in terms of complex 

geometries and flow conditions. 

• Generating Roughness Functions: Channel flow experiments can provide valuable data to es-

tablish roughness functions for different coating types. These functions describe the relation-

ship between the roughness height and the resultant skin frictional drag or velocity profile al-

terations, Ligrani and Moffat (1968), Shapiro (2004). These very coating specific functions can 

then be incorporated into CFD simulations, allowing the simulation of real-world conditions 

with varying roughness. 

• Improved Accuracy: The combination of channel flow experiments and CFD simulations offers 

a more accurate and reliable method to predict the impact of a specific coating on the vessels 

drag. By incorporating real roughness data into CFD models, researchers can achieve more 

accurate predictions of velocity profiles and boundary layer development. 

• Application to Modern Coatings: with advancements in coating technologies and improved ap-

plication techniques, the roughness characteristics of modern coatings may differ significantly 

from traditional surfaces. Traditionally, a standard value of 𝑘𝑠=150 µm has been inputted in the 

roughness allowance equation, ∆𝐶𝐹. Here 𝑘𝑠 indicates the roughness of hull surface and the 

roughness allowance ∆𝐶𝐹 per definition describes the effect of the roughness of the hull on the 

resistance, ITTC (1978). Channel flow facility and CFD simulations provide a flexible platform 

to investigate and account for these new coating types' effects on hydrodynamic performance 

(that could be a drag increase or reduction) more accurately. 

 

The primary aim of this paper is to evaluate the performance of selected hull coatings under the steady-

state numerical simulations of full-scale vessels using experimental channel-flow data as input. Our 

research seeks to provide valuable insights into the performance of different coatings, applied both in 

ideal laboratory conditions and simulated worst case dry-dock scenarios. By comprehensively evaluat-

ing the coatings' hydrodynamic behaviour in these controlled and roughened settings, the study aims to 

offer a holistic understanding of their impact on hydrodynamic resistance. By conducting this baseline 

study, the study can pave the way for future research to explore more complex scenarios that involve 

dynamic changes in flow like waves and propeller and biofouling effects. To accomplish the aim of this 

study, the following objectives are outlined: 

 

• Measuring the pressure-drop in channel flows with different marine coatings under varying flow 

velocities;  

• Utilizing the pressure drop data to calculate roughness functions as input for Computational Fluid 

Dynamics (CFD) simulations, enabling the assessment of coating effectiveness in mitigating re-

sistance in the steady-state numerical simulations; 

• Compare the performance of novel coating formulations with conventional coatings to identify po-

tential improvements and areas for further research. 

 

While channel flows may have certain limitations regarding representing large-scale flow structures, 

their use in conjunction with CFD simulations and roughness functions can significantly enhance the 

understanding of coating performance and its impact on full-scale vessels. This combined approach 

offers a powerful toolset for researchers to investigate and optimize coating designs and configurations 

for improved hydrodynamic performance. 

 

2. Methods 

 

2.1. Test samples 

 

By applying coatings in the controlled laboratory environment, the study aimed at ensuring precise and 

consistent application methods for different coating types which encompass a diverse range of proper-

ties that promise enhanced hydrodynamics and improved resistance to fouling. However, it is acknowl-

edged that complex environments and dynamic conditions are encountered by real-world marine vessels 
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during dry-docking and operations. Therefore, to bridge the gap between controlled laboratory experi-

ments and practical applications a roughness was deliberately introduced to some of the test coatings. 

In the Table I, the various coatings used in our research are classified based on surface type: coatings 

denoted with an 'R' signify 'Rough' surfaces simulating the roughness encountered during dry-docking 

conditions, while coatings denoted with an 'S' represent 'Smooth' surfaces applied in a controlled labor-

atory environment. Table I also includes smooth (PMMA) and rough reference (Course silicon grit) 

surfaces to facilitate the classification of coating results in terms of their hydrodynamic performances. 

 

Table I. Surface types and corresponding surface characteristics 

Coating 

type 

Surface condition Description 2D roughness profiles 

Smooth 

reference  

Nominally smooth sur-

face used as a reference 

surface to evaluate the 

effectiveness of differ-

ent coatings in reducing 

or increasing hydrody-

namic drag 

Poly (methyl meth-

acrylate) 

(PMMA) which is 

commonly known 

as acrylic or plexi-

glass 

 

Course 

silicon 

grit 

Rough reference 

F80 silicon carbide 

particles with aver-

age grain size of 

150-212 μm 

 

Sea-

Quantum 

X200-S 

 

 

Applied in controlled la-

boratory conditions 

 

 

A high-performing 

self-polishing coat-

ing with resistance-

mitigating proper-

ties 

 

Sea-

Quantum 

X200 -R 

 

 

Rough surface deliber-

ately roughened to simu-

late dry-docking condi-

tions 

 

A high-performing 

self-polishing coat-

ing with resistance-

mitigating proper-

ties 
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SeaQuest 

Endura-S 

Applied in controlled la-

boratory conditions 

 

A state-of-the-art 

biocide-infused sili-

cone-based coating 

 

SeaQuest 

Endura -R 

Rough surface deliber-

ately roughened to simu-

late dry-docking condi-

tions 

 

A state-of-the-art 

biocide-infused sili-

cone-based coating 

 

New 

Product 

Applied in controlled la-

boratory conditions 

 

A hybrid coating 

with a smooth, silk-

like finish 

 
 

2.2. Experimental study and roughness function calculations 

 

The surfaces presented in Table I were subjected to drag testing in our experimental channel-flow setup, 

allowing us to observe their behaviour under realistic hydrodynamic conditions. The technical details 

of the flowcell device installed at Jotun and the experimental setup can be found in Yeginbayeva et al. 

(2022). By employing the pressure drop methodology, which involves measuring the pressure drop 

across the surface in the channel flow within wide range of velocities, the effects of coatings on skin 

friction under different flow velocities is captured. The pressure drop over a channel surface can be 

related to the skin friction of the surface.  

 

The roughness function derived from the wide range roughness parameters offers a more refined repre-

sentation of the coating's roughness effects. It captures the nuanced relationship between surface char-

acteristics and skin friction across different flow velocities: 

 

(∆𝑈+)𝑟𝑜𝑢𝑔ℎ = (√
2

𝐶𝑓
)

𝑠𝑚𝑜𝑜𝑡ℎ

− (√
2

𝐶𝑓
)

𝑟𝑜𝑢𝑔ℎ

− 19.7 [(√
𝐶𝑓

2
)

𝑠𝑚𝑜𝑜𝑡ℎ

− (√
𝐶𝑓

2
)

𝑟𝑜𝑢𝑔ℎ

] 
(1) 

 

 

Where ∆𝑈+ is a dimensionless velocity decrement, 𝐶𝑓-skin frictional coefficient. ∆𝑈+ is typically used 

to describe turbulent boundary layer flows over rough surfaces. It is a measure of how the velocity near 

the wall differs from what it would be in a smooth (no roughness) boundary layer. 𝑘+ is another dimen-

sionless parameter used to characterize the effects of surface roughness. It represents the roughness 
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Reynolds number and provides information about the size and distribution of roughness elements on 

the surface. 𝑘+is calculated as the height of the roughness elements or 𝑘  (typically normalized by the 

boundary layer thickness, δ) divided by the viscous length scale (
∨

𝑢∗
), where ∨ is the kinematic viscosity 

of a fluid and 𝑢∗ is the friction velocity or 𝑘+ =
𝑘𝑢∗

∨
. In the ITTC method, the coating roughness is 

based on a single velocity and a single roughness parameter, such as Rt50 (the highest peak to lowest 

valley roughness sampled over 50 mm of evaluation length). This approach can be limiting and may 

not fully capture the coating finish. The roughness function approach allows for the consideration of 

various roughness parameters beyond just Rt50. It can encompass a broader set of roughness character-

istics, such as height distributions, shape factors, and spatial arrangements, depending on the complexity 

of the coating surface. This flexibility enables a more realistic representation of the coating's impact on 

skin friction, making the roughness function a more adaptable and robust tool for numerical simulations. 

The foundation of our roughness investigation lies in the meticulous collection and analysis of rough-

ness data. To achieve this, an optical surface profilometry was used scanning each coating sample to 

obtain a comprehensive representation of its surface as can be seen in Table I. As a result, we have 

derived an encompassing mathematical function that serves as a robust representation of the coatings 

roughness length scale:  

 

𝑘 = 1.9 × (
𝑅𝑡
𝑆𝑚

) × 𝑅𝑡 × 𝑒𝑅𝑠𝑘 × 𝑒𝑅𝑘𝑢 
(2) 

 

k denotes the roughness length scale, capturing the characteristic dimensions of the roughness fea-

tures. 

𝑅𝑡 signifies the peak-to-valley roughness. 

𝑆𝑚 corresponds to the spatial roughness parameter, representing the average spacing between surface 

features. Smoother surfaces inherently exhibit more widely spaces features, leading to a larger 𝑆𝑚, 

while rougher surfaces tend to have smaller 𝑆𝑚 values. 

𝑅𝑠𝑘 represents skewness, capturing the asymmetry in the height distribution of the surface 

𝑅𝑘𝑢 stands for kurtosis, reflecting the sharpness of the profile peaks.  

 

The use of these parameters in the roughness length scale serves a vital purpose. Importantly, the inclu-

sion of the spatial roughness parameter, 𝑆𝑚, 𝑅𝑠𝑘  and 𝑅𝑘𝑢, in the equation accounts for the distinctive 

arrangement of roughness features on the surface. The ratio 
𝑅𝑡

𝑆𝑚
 captures the relative amplitude of surface 

variations to their distance, allowing us to discern finer details in the surface profile. The exponential 

terms 𝑒𝑅𝑠𝑘 and 𝑒𝑅𝑘𝑢 enhance the function's sensitivity to asymmetry and sharpness of the surface pro-

file, respectively.  

 

2.3. CFD simulations 

 

The numerical simulations are performed using foam-extend version 5.1 coupled with the commercial 

extension Naval Hydro Pack developed by WIKKI, http://wikki.co.uk/.  The commercial extension has 

been validated for steady resistance, sea keeping, manoeuvring and free sailing simulations with and 

without propulsion using Overset meshing techniques. The interface capturing methods includes both 

VOF and LevelSet. Turbulence in Naval Hydro Pack is modelled using the ordinary k – ωSST as well 

as the corrected k – ωSST. The use of the ordinary k – ωSST leads to unusually high turbulence viscosity 

at the interface, Larsen and Fuhrman (2018). 

 

The VOF method, which is widely used in numerical hydrodynamics for interface capturing, offers the 

advantages of simple implementation and computational efficiency. In addition, it is well suited for 

large scale phase separation. However, it can lead to interface smearing or numerical ventilation, Gray-

Stephens (2019). This, sometimes, can lead to inaccurate estimation of wetted surface and ship viscous 

resistance. In this study, the LevelSet technique is used despite the additional computation effort.  

 

 

http://wikki.co.uk/
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2.4. Surface characteristics and numerical implementation 

 

The different surfaces described and quantified in section 2.1 are summarized in Fig.1 and Fig.2. Fig.1  

presents the flat plate skin frictional coefficients corresponding to the different surfaces designed at 

Jotun. The curves presented in Fig.1 serve as fundamental insights into the interplay between surfaces 

and fluid dynamics, crucial for enhancing hydrodynamic efficiency and optimizing drag reduction strat-

egies: the SeaQuantum-S maintains the drag levels exactly as the smooth reference even under turbulent 

flow conditions or higher Reynolds numbers. Conversely, the SeaQuantum-R, deliberately roughened 

to simulate dry-docking conditions, exhibit an abrupt increase as the flow starts, attesting to the domi-

nance of roughness induced turbulence at all flow velocities which ranges from 1m/s to 11 m/s. When 

comparing the SeaQuantum-R to the rough reference represented by a course silicon grit, this suggests 

a noteworthy similarity in terms of roughness characteristics and the resulting skin frictional behaviour. 

Roughness and drag performance vary when silicon coating or SeaQuest Endura-R are treated with a 

comparable kind of roughness, such as those found in SeaQuantum-R.   This results in a significant 

reduction of roughness parameters, approximately two times lower, and a considerable decrease (38-

45% over a tested Reynolds numbers) in skin friction characteristics for coatings with a biocide infused 

silicon-based coating. This difference in performance can be attributed to several factors, including the 

specific properties of the coatings, and how these properties interact with the fluid flow. It implies that 

even if two coatings have similar underlying roughness, other factors in their composition or structure 

can significantly affect their frictional behaviour. 

 

The curve for New-product throughout all range of Reynolds numbers remains below the smooth ref-

erence curve reflecting its ability to maintain low resistance. This performance unveils the products’ 

finely tuned silk-like surface texture to delay the onset of turbulent flow, to minimize drag and increase 

its hydrodynamic efficiency.  

 

 
Fig.1: Skin frictional coefficients of tested surfaces as a function of Reynolds number  

 

Fig.2 shows the velocity decrement function caused by the frictional drag of the different rough surfaces. 

Referred also as roughness function, ∆𝑈+ = 𝑓(𝑘+), it helps researchers understand the relationship 

between surface characteristics (such as texture, irregularities, or roughness height) and the resulting 

frictional drag. In Fig.2, k or the roughness length scale is derived from various roughness parameters 

as shown in Eq.(2). The roughness curves for SeaQuantum-R and Course silicon grit are steeper on the 



37 

upward slope, this means that as the parameter (e.g., Reynolds number) increases, the effect of surface 

roughness on the skin frictional drag increases rapidly. While others have a monotonic roughness func-

tion with a more straightforward relationship.  

 

 
Fig.2: Relationship between roughness function, ∆U+, of the surfaces and roughness Reynolds number 

k+, based on roughness length scale shown in Eq.(2) 

 

 
Fig.3: Relationship between roughness function, ∆U+, of the surfaces and the roughness Reynolds num-

ber, k+, based on roughness length scale, k = 1.9xRt 
 

The relationship between ∆𝑈+and 𝑘+was established by fitting an equation to experimental data points 

in Fig.2. This fitting was applied to all data sets except for the one associated with coarse silicon grit. 

Given that coarse silicon grit serves primarily as a reference and is rarely encountered in practical ap-

plications, fitting a model or function to the data points of this surface type is not typically necessary or 
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relevant. The roughness function, as originally described in Clauser (1956), has been implemented in 

OpenFOAM. The wall function formulation used for flows over rough solid wall was modified by in-

troducing the coefficients obtained through regression analysis based on the experimental work to rep-

resent the various coated surfaces employed in this study.  

 

Fig.3 shows the relationship between ∆𝑈+ = 𝑓(𝑘+), when k is based on 𝑅𝑡 parameter only obtained 

from laser profilometer measurements. As opposed to Fig.2, Fig.3 demonstrates an increasing gap be-

tween coatings with similar, smooth roughness profiles (see Table I) such as SeaQuantum X200-S, 

SeaQuest Endura-S and New Product. However, when multiple parameters are considered, Fig.2, these 

coatings collapse onto a single line of Colebrook-type monotonic curve. This observation suggests that 

the choice of roughness parameter used to define the roughness length scale can have a significant 

impact on the behaviour of an experimental data. When 𝑅𝑡 parameter is used in isolation, it might not 

fully capture all the nuances of the surface, resulting in a wider spread of data since surfaces with similar 

𝑅𝑡 values may have different textures. A “different texture” in this context means variation in the ar-

rangement, density and spacing of the roughness elements on a surface. 

 

3. Geometry and numerical set-up 

 

The ship used in this study is the KRISO (Korea Research Institute of Ships & Ocean) Container Ship 

(KCS), Fig.4, Table II, https://simman2014.dk/ship-data/moeri-container-ship/geometry-and-condi-

tions-moeri-container-ship/. The simulation is performed in full scale for a ship with LBP  230 m. The 

KCS ship, together with the KVLCC2 (Korean Very Large Crude Carrier), are some of the ships widely 

used for benchmarking studies in theoretical and experimental hydrodynamics which motivates the use 

of the KCS in this study. 

 

 
Fig.4: KRISO Container Ship 

 

Table II: KCS characteristics 

Length between the perpendiculars (LBP) 230.0 m  

Length of waterline (LWL) 232.5 m 

Beam at waterline (BWL) 32.2 m 

Depth (D) 19.0 m 

Design draft (T) 10.8 m 

Displacement (Δ) 52,030 m3 

Block coefficient (CB) 0.6505 

Ship wetted area with rudder (S) 9539 m2 

Longitudinal centre of gravity (LCG) from the aft peak 111.603 m 

Vertical centre of gravity (KG) from keel 7.28 m 

Moment of inertia (Kxx/B) 0.40 

Moment of inertia (Kyy/LBP, Kzz/LBP)  0.25 

 

The computational domain is illustrated in Fig.5, and the surface resolution in Fig.6. The domain ex-

tends one and half ship length from the ship forward to the inlet boundary. This ensures that the inlet is 

not affected by ship generated waves in the steady resistance simulations. Two ship lengths from the 

aft to the outflow and one ship length from the port and starboard sides to the side boundaries of the 

computational domain. The choice of these domain extension guarantees the development of wake 

flows from the aft, non-reflection, and non-diffraction of waves at the computational boundaries. 

https://simman2014.dk/ship-data/moeri-container-ship/geometry-and-conditions-moeri-container-ship/
https://simman2014.dk/ship-data/moeri-container-ship/geometry-and-conditions-moeri-container-ship/
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Fig.5: Computational domain  

 

 
Fig.6: Hull surface mesh resolution 

 

4. Results 

 

4.1. Wetted area and pressure distribution 

 

The wetted area and pressure distribution for the smooth surface is shown in Fig.7. The result shows 

the interface with clear distinction between water and air. The numerical ventilation sometimes ob-

served in methods involving VOF interface capturing is not observed in this study. As the ship sails 

through a calm sea, in the steady resistance set-up, ship generated waves can be observed via wetted 

surface profile as seen from the results. The corresponding dynamic pressure are also given in the same 

figure. The bulbous bow records the maximum local pressure as expected.  

 

The ship generated Kelvin waves are shown in Fig.8. The results are shown for the New Product, 

SeaQuest Endura-S, and SeaQuantum X200 (R and S). The maximum waves elevation is ~3.3 m for all 

the cases. However, there is a slight discrepancy between the maximum elevation at the wake for Sea-

Quantum X200-R. This suggest that further studies involving waves should be performed to understand 

the impact of surface coatings on the flow profiles and well as ship motions which might have a con-

siderable impact on the resistance and corresponding carbon footprint.  

 

The corresponding turbulent kinetic energy (TKE) is also shown in Fig.9. Even though the general 

highest TKE is obtained at the interface due to the ship generated waves, it can also be seen that the 

SeaQuantum X200-R, which corresponds to the roughest surface, has the highest TKE at the surface. 

This suggest that coating method of application has a considerable influence on the turbulence genera-

tion at the surface and, consequently, increase in viscous resistance. This agrees with the result obtained 
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in Demirel et al. (2017), whereby some relationship is observed between increase in TKE and resistance 

when the surface is characterised by considerable fouling.  

 

 
Fig.7: Estimated free surface elevation and dynamic pressure distribution for reference smooth case 

 

 
Fig.8: Estimated Kelvin waves with the corresponding surface elevation in metres for the New Product, 

SeaQuest Endura-S, SeaQuantum X200 (R and S). 
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4.2. Steady resistance for various surface and various Froude numbers 

 

The steady resistance result for the various cases is shown in Fig.10. The results are shown for Smooth 

Reference, SeaQuest Endura (R and S), and SeaQuantum X200 (R and S). Non-dimensional viscous 

drag coefficients are shown for five Froude numbers. In general, the total viscous drag force increases 

as the speed increases which corresponds to an increase in Froude number. This is because the faster 

the ship moves, the larger the wetted surface and the higher the wall shear stresses. The viscous forces 

not shown here show a similar pattern. However, the use of the drag coefficients which show a decrease 

with respect to increasing Froude number has been preferred in this paper since non-dimensional value 

can be easily used in comparing various results from various research. 

 

The Smooth Reference drag coefficients range from 1.25E-03 to 1.34E-03, Table III. The New Product 

coated surface shows the lowest drag coefficient which ranges from 1.19E-03 to 1.27E-03. This corre-

sponds to a reduction of around 5% in resistance estimation from the standard Smooth Reference. The 

SeaQuantum X200-R coated surface gives the highest drag coefficient. This represents approximately 

25% increase in drag coefficient compared to the Smooth Reference case. However, the SeaQuest En-

dura-R shows around 10% increase in drag coefficient. The SeaQuest Endura-S and SeaQuantum X200-

S show drag coefficient close to Smooth Reference but higher than the New Product coated surface.  

 

 
Fig.9: Estimated TKE for the New Product, SeaQuest Endura-S, SeaQuantum X200 (R and S) view for 

a cut at mid-section of the KCS ship 

 

Table III: Percentage change in viscous drag for various surface coatings  

Fn Smooth Ref. 
SeaQuest Endura-

R 
SeaQuest Endura-S 

 
SeaQuantum 

X200-R 
SeaQuan-

tumX200-S 
New Product 

0.20 1.34E-03 9.79% -0.07% 24.58% -1.52% -5.17% 

0.24 1.30E-03 9.67% 0.52% 25.41% -0.88% -4.98% 

0.26 1.28E-03 9.64% 0.75% 25.58% -0.66% -4.86% 

0.28 1.26E-03 9.76% 1.00% 26.14% -0.50% -4.79% 

0.30 1.25E-03 9.75% 1.16% 26.99% -0.28% -4.63% 
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Fig.10: Estimated viscous resistance at various Froude numbers for the smooth reference, new product, 

SeaQuest Endura (Rough and Smooth) and SeaQuantum X200 (R and S).  

 
Fig.11: Estimated total resistance at various Froude numbers for the smooth reference, new product, 

SeaQuest Endura (Rough and Smooth) and SeaQuantum X200 (R and S). 

 

The total resistance coefficient is shown in Table IV and Fig.11. The results show increasing resistance 

with increasing Froude number. This is because the pressure resistance increases with increasing Froude 

number. As expected, the smooth SeaQuantum-S and SeaQuest-S are closer to the Smooth Reference 

total resistances while the New Product shows the lowest total resistance. Like viscous drag result, the 
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SeaQuantum X200-R gives the highest total drag increase which is given in the range of 13 % compared 

to smooth reference.  

 

Table IV: Percentage change in total drag for various surface coatings 

Fn Smooth Ref. 
SeaQuest  
Endura-R 

SeaQuest  
Endura-S 

SeaQuantum  
X200-R 

SeaQuantum 
X200-S 

New Product 

0.20 2.28E-03 5.99% 0.33% 12.32% -0.77% -1.48% 

0.24 2.29E-03 4.59% 0.52% 14.20% 0.44% -0.72% 

0.26 2.48E-03 5.83% 0.13% 10.37% 0.00% -2.79% 

0.28 2.68E-03 5.59% 0.39% 9.78% -0.44% -2.53% 

0.30 3.16E-03 4.16% 0.36% 13.99% -0.31% -1.93% 

 

5. Conclusions 

 

The present work investigates large container ship viscous resistance using experimental and numerical 

simulation. Frictional resistances from different coatings are measured and their corresponding rough-

ness function are used in numerical computation. The full-scale resistance is estimated in steady-state 

condition without incoming head or oblique waves. The results are presented with respect to various 

Froude number. Since propulsion has not been included, fixed velocity has been specified instead of 

propulsive power. The findings are summarized as follows: 

 

• The new roughness length scale offers a more nuanced analysis of its impact on flow phenomena. 

By capturing a broader range of roughness characteristics, it contributes to more accurate predictive 

capabilities of the in-house CFD model. 

• Highest resistances are obtained for SeaQuantum X200-R which can be attributed to the underly-

ing roughness introduced deliberately to simulate dry-dock coating application. 

• SeaQuest Endura-S and SeaQuantum X200-S have resistance close to Smooth Reference case. 

• The lowest resistance is found in the newly developed coated termed here as New Product. The 

lowest resistance observed for this coating can be attributed to its unique hybrid composition, silk-

like surface finish, optimized surface energy, and the controlled laboratory conditions in which it is 

applied. 

 

The use of steady resistance simulation has been able to give a general quantification of viscous drag 

coefficient for the various coatings analysed. However, a complete hydrodynamic performance is re-

quired to conclusively quantify the various effects of these different surfaces. Further studies such as 

sea keeping and free sailing under head or oblique might be necessary to supplement the present work. 
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Abstract 

 

The International Maritime Organization has entered the EEXI and CII into force in 2023. This makes 

it increasingly important to predict and evaluate the fuel oil consumption of ships in operation. 

OCTARVIA project, where stakeholders in Japanese maritime cluster participated, developed three 

web applications: EAGLE-OCT.-web, SALVIA-OCT.-web, and OCTARVIA-web. This paper describes 

the overview of each web application and presents the analysis of sensor data collected onboard for 

evaluating ship performance in service and simulation of the fuel oil consumption in its lifecycle 

considering the effect of weather, fouling, and aging. 

 

1. Introduction 

 

The International Maritime Organization has been continuously discussing environmental regulations: 

EEDI, which began in 2013, covers ship performance at the design stage, while EEXI and CII, which 

has begun in 2023, cover ship performance at the operational stage. Stricter environmental regulations 

require shipyards to design ships with superior operational performance, and ship operators are under 

pressure to implement fuel-efficient operations. 

 

In general, ships are subject to disturbances such as waves and wind during operation, so in order to 

satisfy the environmental regulations, it is necessary to develop technologies for evaluating ship 

performance in actual seas that take disturbance effects into account in the ship's performance in calm 

water. In addition, for CII, it is necessary to evaluate the performance in actual seas considering the 

effects of vessel fouling and aging. In order to comply with environmental regulations, it is preferable 

to evaluate ships around the world using the same method. However, there is no international standard 

for in-service performance evaluation. 

 

OCTARVIA project, a joint research project by the Japanese Maritime Cluster, is conducting research 

and development with the aim of establishing international standards for evaluating the ship 

performance in a calm sea and actual seas, as well as the life cycle fuel consumption of main engines. 

The results of the project have been packaged as a web application with a view to promoting social 

implementation. This makes it possible to evaluate the performance using the method developed in the 

project anywhere in the world, as long as there is an Internet connection. In this paper, we introduce the 

web application and present an example of its application. 

 

2. Web applications developed by OCTARVIA project 

 

The intended users of the web application developed for the project include not only shipyards, but also 

shipping companies and makers. For this reason, consideration was given so that users who do not have 

detailed hull form data or model test data can also use the applications. 

 

OCTARVIA project built three web applications, as shown in Table I. These web applications are 

available on the cloud service of the National Maritime Research Institute (NMRI Cloud, 

https://cloud.nmri.go.jp/portal/pub/top) and can be used after creating a user account and completing 

mailto:sogihara@m.mpat.go.jp
mailto:kuroda@m.mpat.go.jp
mailto:tatsuya.akamatsu@one-line.com
mailto:tetsuo_yanagida@monohakobi.com
mailto:yoshihiko.sugimoto@molgroup.com
mailto:ito.ryu@jp.kline.com
https://cloud.nmri.go.jp/portal/pub/top
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the usage procedures. There is a paid version with full functionality and a trial version with limited 

functionality, and the trial version can be used free of charge. 

 

Table I: Web applications developed by OCTARVIA project. 

Web application Function 

EAGLE-OCT.-web Simple estimation of parameters required for evaluation 

of ship performance in actual seas 

SALVIA-OCT.-web Evaluation of ship performance using onboard 

monitoring data 

OCTARVIA-web Simulation of ship performance in service and fuel oil 

consumption from main engine during its lifecycle 

 

The relationship between the three applications is shown in Fig. 1. EAGLE-OCT.-web estimation 

results can be used as input for SALVIA-OCT.-web and OCTARVIA-web. Added resistance due to 

waves and wind, as well as that due to oblique navigation and steering, estimated by OCTARVIA-web, 

can be used in SALVIA-OCT.-web. In addition, it is possible to input the performance in calm water, 

which is the evaluation result of SALVIA-OCT.-web, to OCTARVIA-web and evaluate the 

performance under arbitrary sea conditions. Between the applications, data can be exchanged in JSON 

format, which allows users to run web applications smoothly. Furthermore, SALVIA-OCT.-web can 

acquire onboard monitoring data from ShipDC and hindcast data from POLARIS database by Japan 

Weather Association via API connection. 

 

 
Fig.1: Relationship between the three applications 

 

2.1. EAGLE-OCT.-web 

 

EAGLE-OCT.-web is an application for simple estimation of parameters required for evaluation of ship 

performance in actual seas, such as hull shape, propeller open characteristics, and self-propulsion 

factors, based on ship principal particulars. The inputs and outputs of this application are shown in 

Table II. Some of the output is shown in Fig.2. The ship type can be selected from container ship, car 

carrier, bulk carrier, and tanker, and the hull shape is estimated based on the mother ship type for each 

ship type installed to the application. The self-propulsion factors are estimated by regression equations 

derived from the tank test database. Propellers are determined by a simple design function implemented 

in the application. The details of the estimation can be found in Sogihara et al. (2019). 
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Table II: Inputs and outputs of EAGLE-OCT.-web 

Input Output 

✓ Ship type (Container ship, PCC, bulk car-

rier, and tanker are available.) 

✓ Length overall, length between perpen-

diculars, maximum breadth 

✓ Draft at mid, fore, aft in design full and 

operation condition 

✓ Design speed 

✓ Propeller diameter 

✓ Transmission efficiency and gear ratio of 

main engine 

✓ MCR of main engine and engine revolu-

tion at MCR 

✓ Sectional data (draft, half breadth, and 

area), waterplane 

✓ Blockage coefficient（CB, CP etc.） 

✓ Superstructure parameters 

✓ Longitudinal and vertical center of 

gravity 

✓ Height of transverse metacenter and 

natural roll period 

✓ Radius of gyration (pitch, roll, and 

yaw) 

✓ Self-propulsion factors 

✓ Propeller open characteristics 

 

 
Fig.2: Output examples of EAGLE-OCT.-web (left: waterplane, right: propeller open characteristics) 

 

2.2. SALVIA-OCT.-web 

 

SALVIA-OCT.-web is an application for evaluating ship performance using onboard monitoring data. 

The application is characterized by data filtering based on the apparent slip ratio and by the resistance 

criteria method (called ‘RCM’), developed, Sakurada et al. (2020), and validated, Sogihara et al. 

(2021), in the project, which is an evaluation method using the rate of increase in resistance. Another 

feature of this application is that it outputs quality information, defined by data scattering, for the 

evaluation results. 

 

The evaluation target in this application is mainly the ship performance in a calm sea. In addition, the 

application can also evaluate the ship performance in actual seas. Furthermore, by using onboard 

monitoring data collected over a long period of time, including dock to dock, the application can assess 

changes in ship performance over time due to fouling and aging. 

 

The onboard monitoring data, which is the principal inputs to this application, should include the items 

shown in Table III. For those items that are automatically measured on board, it is recommended to use 

the average value over a certain period of time. Not only the mean value but also the standard deviation 

can be entered, and data filtering on the standard deviation is also possible. Instantaneous values can 

also be used, but it should be noted that there is a concern that the data scattering may increase. 

 

Fig.3 shows the results of this application's evaluation of the ship performance in a calm sea. Fig.4 

indicates the evaluation of the time variation of the rate of increase of engine output at a constant ship 

speed.  

 

 

propeller advance coefficient: J

half breadth

10KQ

KT

Thrust coef.: KT

Torque coef.: KQ

longitudinal position
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Table III: Recommended items in the standard monitoring method 

Item Instrument, data source allowable error 

Ship speed over ground GPS 2% 

Course over ground GPS  

Ship speed through water Doppler log 1% 

Shaft horsepower Shaft horsepower meter 0.5% 

Engine revolution Revolution counter 1% 

Heading angle Gyro compass  

Wind Anemometer Relative wind speed: 5% 

Relative wind direction: 5° 

Sea state Wave data (hindcast or nowcast data 

is available), onboard measurement 

(radar, visual observation, etc.) 

Wave height: 0.1m 

Wave direction: 5° 

Rudder angle Rudder angle indicator  

Draft Visual observation at departure  

Longitudinal radius of 

gyration 

Measured value or simplified 

estimation 

 

 

 

 
Fig.3: Evaluation of the ship performance in a calm sea. (upper: relationship between ships speed and 

engine output, lower: quality information output) 

 

 
Fig.4: Time variation of the rate of increase of engine output 

Vw (knot)

BHP (kW)

Elapsed time (year)

出力増加率 (%)
Rate in power increase (percentage)

constant engine revolution

constant engine output
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2.3. OCTARVIA-web 

 

OCTARVIA-web is an application for simulating the ship performance in service and fuel oil consump-

tion from main engine during its lifecycle and has the three calculation modes shown in Table IV. 

 

Table IV: Calculation modes in OCTARVIA-web. 

Mode Function 

Prediction Short-term prediction of ship speed and fuel consumption 

in arbitrary sea conditions 

Index Calculation of total fuel oil consumption throughout its 

lifecycle from main engine 

Simulation for fouling 

and aging effect 

Estimating increase in power under constant ship speed in 

a calm sea 

 

The main function of the Prediction mode is the short-term prediction of ship speed and fuel 

consumption in arbitrary sea conditions, which can be used in the design phase to accurately predict the 

ship performance in actual seas and to design hull forms that consume less fuel. For example, the 

relationship between energy-saving effects and sea conditions can be quantitatively evaluated by 

adopting a hull form with less resistance increase in waves or a superstructure with less wind resistance. 

 

For the estimation of added resistance in waves, the method of Tsujimoto et al. (2015) is adopted, in 

which the diffraction component dominant in the short wavelength is modified in a practical way to 

ensure accuracy. Based on the frequency response function of added resistance in regular waves, added 

resistance in short crested irregular waves is calculated considering the directional spectrum of ocean 

waves, as shown in Fig.5. For the estimation of wind force coefficient including added resistance in 

wind, the regression formulae by Fujiwara et al. (2006), which is based on the results of wind tunnel 

tests on a large number of hull forms, is adopted. Wind force coefficient is calculated as indicated in 

Fig.6. Since both methods have been recognized as having the highest accuracy by the ITTC's expert 

committee, ITTC (2014), the incorporation of these methods ensures the accuracy of the application 

estimates. Furthermore, if the user has model test data on added resistance in waves or that in wind, it 

can be used as input, allowing for more accurate performance evaluation.  

 

 
Fig.5: Added resistance in short crested irregular waves 

 

When estimating fuel consumption, the user can select the operation mode of the main engine: constant 

main engine speed, fuel index control, constant main engine power, or constant ship speed. The 

application implements governor control, which allows the user to estimate fuel consumption taking 

into account the decrease in main engine revolution due to torque rich in rough weather. 

mean wave period [s]

primary wave

direction [deg.]

added resistance coef.
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Fig.6: Wind force coefficient. (including starboard and port side) 

 

Some of the calculations in the Index mode overlap with those in the Prediction mode; the Index mode 

allows long-term prediction of fuel consumption using the occurrence probability of weather on a user-

selected route, based on the performance prediction for the weather defined in the EC scale in Table V 

prepared for this application. Seven different routes can be selected for this application, and the 

occurrence probability of weather for each route is available, Kuroda and Sugimoto (2022). Fig.7 shows 

the occurrence probability of weather in West Pacific Ocean. In addition, the user can directly input the 

occurrence probability. 

 

Table V: Evaluation conditions 

EC True wind speed U 

[m/s] 

Significant wave 

height H [m] 

Mean wave period T 

[s] 

1 4.4 1.25 4.3 

2 6.9 2.00 5.5 

3 9.8 3.00 6.7 

4 12.6 4.00 7.7 

5 15.7 5.50 9.1 

6 19.0 7.00 10.2 

 

 
Fig.7: Route and occurrence probability of weather in West Pacific Ocean 

 

In the Index mode, the above long-term forecasting includes a function to calculate the fuel consumption 

of the main engine over the ship's life cycle by taking into account the effects of hull and propeller 

fouling during operation and the effects of aging on the hull and main engine, Kuroda and Sugimoto 

(2021). The time variation of fuel oil consumption throughout ship’s life can be calculated. This 
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function can be used to investigate the effects of paint differences and dock intervals on the main engine 

fuel consumption over the lifecycle. It can also be used for vessel allocation planning, as the impact of 

different routes on main engine fuel consumption over the life cycle can be evaluated to determine 

which route the vessel should be deployed on. 

 

3. Simulation of fuel oil consumption based on onboard monitoring data analysis 

 

Fig.8 shows the flowchart of FOC simulation based on onboard monitoring data analysis. It should be 

emphasized that the performance in a calm sea used in the simulation is evaluated by SALVIA-OCT.- 

web using onboard monitoring data, which means that input the accurate performance in a calm sea 

enables an accurate evaluation of performance in actual seas. Shipyards don't necessarily have to use 

EAGLE-OCT.-web since they usually have the detail data of hull form and model test data. On this 

respect, Sogihara et al. (2023) reported that the evaluation using EAGLE-OCT.-web was in close 

agreement with the evaluation using the aforementioned detailed data from the shipyard. This means 

that Performance in a calm sea evaluated by EAGLE-OCT.-web is accurate enough. 

 

In this section, performance prediction in actual seas and simulation of fuel oil consumption in lifecycle 

from main engine is presented, using the evaluated performance in a calm sea of Cape-Size bulk carrier 

following the flowchart in Fig.8. 

 

3.1 Performance prediction in actual seas 

 

Performance in a calm sea of the bulk carrier based on onboard monitoring data, which is fundamental 

performance for predicting performance in actual seas, results in Fig.9. This performance evaluation 

uses 5000 data measured with one hour interval. In the figure, ‘corrected’ means the corrected data for 

wind and waves whilst ‘fit’ and ‘eval’ denotes the data of resistance increase rate 50% and 10% from 

still water, respectively. ‘FIT’ is the resultant power-curve as output of SALVIA-OCT. The power-

curve shown in Fig.9 is input for OCTARVIA-web. 

 

The performance in actual seas is calculated by solving equilibrium equations expressing the external 

forces acting on a ship. After solving the equilibrium equations, the relationship between propeller 

revolution (equivalent to engine revolution in cases of low-speed diesel) and engine output and that 

between ship speed and engine output are obtained. Taking the engine characteristics into consideration, 

ship speed and fuel oil consumption are obtained as shown in Fig.10 for the bulk carrier in full and 

ballasted condition. 

 

3.2 Simulation of fuel oil consumption in lifecycle 

 

Based on the results above, simulation of fuel oil consumption in lifecycle can be conducted to estimate 

the effect of different paints on the fuel oil consumption. The methodology and formulation of the 

simulation is explained by Sogihara et al. (2022), and this paper mentions the summary. The simulation 

considers the fouling and aging effect, specifically, resistance increase due to the fouling and aging for 

hull and decrease of propeller efficiency due to fouling. This means that performance prediction in 

actual seas is conducted for each time step in assumed lifecycle period. For each time step, multiplying 

the performance indicated in Fig.10 by occurrence probability of weather shown in Fig.8 yields the 

expected speed and fuel oil consumption, which is carried out for both full and ballasted condition. 

Based on the expected value for both conditions, the expected value is calculated. Integrating the 

expected value at each time step throughout lifecycle yields fuel oil consumption in lifecycle. 

 

Fig.11 shows time variation of the expected fuel oil consumption with three different paints (excellent, 

normal, poor, obtained as product of performance in actual seas and occurrence probability of weather 

in West Pacific Ocean. From this figure, it can be seen that different paint performance has a different 

tendency to increase fuel consumption. 
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Fig.8: Flowchart of FOC simulation based on onboard monitoring data analysis 
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Fig.9: Performance in a calm sea based on monitoring data of Cape-size bulk carrier 

 

 
 

 
Fig.10: Ship speed and fuel oil consumption, Kuroda and Sugimoto (2021), (top: design full load 

condition, bottom: ballasted condition) 
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Fig.12 shows total fuel oil consumption from main engine in lifecycle as a result of intergeneration of 

time variation of fuel oil consumption in Fig.11. Fig.12 indicates that the fuel oil consumption from 

main engine differs depending on the paint performance. The fuel saving effect in lifecycle due to the 

use of excellent paint can be quantitatively evaluated, which is expected to predict an improvement of 

CII ranking. 

 

 
Fig.11: Time variations of expected values (left: ship speed, right: fuel oil consumption per day) 

 

 
Fig.12: Total fuel oil consumption [ton] in lifecycle of the cape-size bulk carrier 

 

4. Conclusions 

 

This paper provides an overview of the three web applications developed in OCTARVIA project and 

their application examples. These applications enable accurate performance evaluation even in the 

absence of detailed hull form data or model test data only if onboard monitoring data is available. 

Therefore, not only shipyards, but also shipping companies and makers can conduct various 

performance evaluations using onboard monitoring data. 

 

The performance in a calm sea obtained from the evaluation based on onboard monitoring data can not 

only be used for the applications presented in this paper but also for hull design and for voyage planning. 

Additionally, it is useful for evaluating the fuel saving effect due to the measures such as introducing 

excellent paints or optimizing maintenance plan on dock interval. It can also be used in the evaluation 

of EEXI and CII and can be utilized as a measure to comply with IMO regulations. 
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Abstract 

 

Reducing the GHG emissions from shipping will be an important contribution to limiting global 

warming. DNV is investing significantly in building knowledge about energy-saving technologies to 

build transparency and trust in the performance and value of such systems. The aim is to increase the 

uptake in the industry, to facilitate the transition to a more sustainable future. Two such energy saving 

technologies are Air Lubrication Systems (ALS) and Wind Assisted Propulsion Systems (WAPS). These 

two technologies can usually be switched on and off during normal operation. This paper elaborates 

on methods and challenges when assessing the long-term performance of such on-off energy saving 

technologies. Test procedures and how to compute savings are addressed. The paper discusses factors 

contributing to uncertainty in the saving estimates, ways of reducing the uncertainty and methods for 

quantifying the uncertainty. DNV develops procedures for such assessments to build confidence in the 

actual performance. 

 

1. Introduction 

 

IMO has taken an active role in fighting climate change. Since 2011 various legislations have been put 

into force affecting the fleet of vessels trading globally, IMO (2024). Requirements to energy efficiency 

are getting continuously stricter and the cost of fuel is expected to drastically increase. Solutions for 

which there was previously no economical initiative to explore become more attractive. Examples of 

such energy saving technologies are ALS (Air Lubrication Systems) and WAPS (Wind Assisted 

Propulsion Systems).  

 

Currently ~160 ALS systems are installed and 280 are on order, https://www.clarksons.net/wfr/fleet. 

Some of the larger vendors are Silverstream, Mitsubishi, HHI and Samsung. The systems work by 

exploiting different physical principles. Some systems reduce resistance by introducing air bubbles in 

the boundary layer, whereas others try to obtain an air layer or cavity avoiding contact between water 

and hull. More information on the different solutions can be found in e.g. Lee (2017), De Freitas (2018) 

and Mizokami (2019). Some literature is published on the performance of the systems. The evaluation 

methods vary from CFD to model tests and full-scale tests. Most of the presented results from full-scale 

tests are from sea trails, e.g. Lee et al. (2017), De Fereitas et al. (2018) and Mizokami and Kuroiwa 

(2019) and few consider in-service performance.  

 

Several WAPS technology solutions are today available for commercial vessels, either as retrofits or 

part of newbuilding. These can be categorized as Flettner rotor, rigid wingsail, soft or hybrid wingsail, 

soft sail, suction sail and kite. There are currently 36 WAPS systems installed and 51 in the orderbook, 

https://www.clarksons.net/wfr/fleet, with Flettner rotor as the most installed system today. The WAPS 

installed are supplied from designers like Norsepower, Anemoi Marine and Econowind. While many 

sources focus on performance prediction using model tests, CFD or other methods, e.g. Bataille et al. 

(2023), Eggers et al. (2023) and Eide et al. (2023), the published work related to full-scale verification 

of WAPS have in the past years mainly been focused on short-term assessment using sea trial procedure, 

such as Werner et al. (2021,2022). There are a few published long-term performance verification reports 

of WAPS using in-service measurements, such as Hurford (2019), however these are still restricted to 

single vessel cases and with less focus on the methodology for best industry practice. 

 

When assessing the performance of energy saving technologies, the proof of the pudding is the full-

scale in-service performance. Most energy saving technologies give small savings, which are difficult 

mailto:Eivind.Ruth@dnv.com
mailto:Johanna.Tranell@dnv.com
mailto:Olav.Rognebakke@dnv.com
mailto:Uwe.Hollenbach@dnv.com
https://www.clarksons.net/wfr/fleet
https://www.clarksons.net/wfr/fleet
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to distinguish from measurement noise and the effect of other modifications. However, ALS and WAPS 

are expected to yield savings in the higher range and could be possible to verify. Still the effect of the 

system can be difficult to assess in “before and after” assessments due to difference in vessel condition, 

vessel operation and environmental conditions. Methods trying to correct the results back to a reference 

condition usually show a significant scatter, even when a significant number of parameters like vessel 

speed, engine power, draft, trim and weather condition are considered. A major benefit of the ALS and 

WAPS systems are that they can be switched on and off relatively quickly. The idea presented herein 

is to exploit this property by comparing a measurement just before and just after the switch to estimate 

the relative saving. This will eliminate the need for corrections due to vessel condition, vessel operation 

and environmental conditions by assuming that the conditions are the same since the measurements are 

close in time. This assumption needs to be checked as part of the performance evaluation. As most 

corrections can be removed from the equations, the uncertainty in the savings estimate can be reduced. 

The purpose of the procedure developed by DNV is to assess the in-service performance of the systems 

from full scale in-service measurements. Done properly, the procedure should give a good 

understanding of the saving with respect to normal operation and CII. 

 

This paper sets out by discussing alternative methods to quantify the relative saving, followed by a 

recommended test sequence. Further, a virtual speed is introduced to improve the speed through water 

estimate. Corrections and filtering are discussed and finally saving computations including uncertainty 

estimates are presented. The paper outlines the ideas behind the DNV procedures for assessment of 

ALS and WAPS performance which when matured will be developed into formal DNV recommended 

practices. 

 

2. WAPS benefit by reduced power or increased speed? 

 

“What is the power saving of the energy saving system?” is one of the first questions asked when 

considering an energy saving technology. For most systems providing smaller saving up to 5-10% this 

is indeed the right question to ask and in theory, the reduced engine power used should be easy to 

observe while keeping the same speed. For vessels with WAPS, however, the power benefit may be 

significantly larger making it difficult to maintain vessel speed due to operational restrictions on the 

engine (e.g. it is not possible to sufficiently reduce RPM). Instead, part of the WAPS benefit is extracted 

as vessel speed gain. Since it then is unrealistic to operate at the same vessel speed in on and off 

condition, there is a need for two different methods of quantifying the performance. Firstly, a method 

of quantifying the power saving (method 1) when the vessel can reduce the engine power and maintain 

same speed, and secondly, a method when the ship increases the vessel speed (method 2). For the latter, 

it is not relevant to evaluate the on power at the off speed, i.e. the power difference between on and off 

conditions at the off speed. Instead, the power per distance sailed (closely related to tonne fuel per 

nautical mile) should be evaluated. 

 

While method 2 is always applicable, there are restrictions for when method 1 should be used. In the 

case of significantly increased vessel speed (method 2), the saving due to speed change is only linear in 

speed, whereas when correcting to the same vessel speed (method 1) the saving is roughly proportional 

to speed cubed. Hence, taking out the benefit in terms of reduced energy consumption (at same vessel 

speed) gives larger savings than taking it out in increased vessel speed. The saving in terms of power 

per sailed distance can always be evaluated (and neither speed nor power need to be same in on and off 

condition), however, the power saving should only be evaluated when the speed difference between the 

on and off condition is small, e.g. less than 1 [kn], to avoid too much influence of the (uncertain) speed 

correction on the results. 

 

3. Test sequence 

 

The main benefit of the on and off approach is that the measurements that are compared are close in 

time such that the non-monitored disturbances are as similar as possible. Hence, it is desirable that the 

measurements in on and off condition are conducted as close in time as possible. However, when 

starting and stopping the energy saving system, some time is required to obtain stationary conditions. 
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Hence it is recommended to follow a particular sequence when performing the measurements: 

 

1. Start approach: Turn energy saving technology on and set constant RPM. Start logging. 

2. Wait for sufficient time (approach time) for vessel to reach stationary conditions. 

3. End approach/Start measurement: No actions. 

4. Wait for sufficient time (measurement time) to get a good measurement. 

5. End measurement: No actions. 

6. Wait for some time to avoid influence of switching on measurements. 

7. Switching instance: turn off energy saving technology. Adjust to new constant RPM if neces-

sary. 

8. Wait for some time to avoid influence of switching on measurements. 

9. Start approach: No actions. 

10. Wait for sufficient time (approach time) for vessel to reach stationary conditions. 

11. End approach/Start measurement: No actions. 

12. Wait for sufficient time (measurement time) to get a good measurement. 

13. End measurement: No actions. 

14. Wait for some time to avoid influence of switching on measurements. 

 
Fig.1: Test procedure for vessel of ~64 000 tonnes 

 

A “Set” is defined as one on and one off condition immediately after each other, including the approach 

leading up to the first measurement. This sequence is also shown in Fig.1. For both ALS and WAPS 

systems, the onset of the system is faster than the response of the vessel to the change in forces. Hence, 

the approach time will be dominated by the vessel size. As a rule of thumb, it is recommended that the 

approach time is at least: 

 

𝑇approach, minimum [min] = 0.5√∇[tonne]
3

 

 

∇ is displacement. The measurement time needs to be sufficient to get a good and stable reading. For 

further postprocessing the measurements are averaged over the measurement period and 10 min is found 

to be a good trade-off between accuracy and need to minimize time between measurement periods. The 

switching buffer is included to ensure that switching does not affect the approach and measurement 

periods. Also note that several sets may be obtained consecutively by looping the procedure. 
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4. Virtual speed 

 

Independently of whether the benefit is taken out in terms of reduced power or increased speed, a good 

speed measurement is key to reducing uncertainty. Traditional measurements of speed through water 

are known to be unreliable and the highly accurate GPS speed does not include currents. Experience 

has shown that using the propeller for measuring the speed through water may give a better estimate as 

both RPM and torque measurements are much more reliable. The virtual speed has many similarities to 

the more traditional slip value and can be found by taking the Kq curve from the e.g. EEDI technical 

file and shift horizontally to fit all measured Kq-Js values (Js is the advance number with respect to 

vessel speed without any wake correction). Then for a measurement period, the vessel speed can be 

estimated by computing the Kq value and interpolate on the shifted EEDI Kq curve to determine Js, 

which again can be used to determine the vessel speed. The estimated change in speed (which is more 

important than the speed itself) from this approach is expected to be quite good. Note that for vessels 

with ALS, this system may affect the propeller wake and a separate Kq fit may be needed with the 

system on and off. 

 

5. Corrections and filtering 

 

The idea behind the on-off procedures is that the vessel conditions should be same in the on and off 

condition and the only difference should be if the energy saving technology is enabled or not. Hence, a 

minimum of filtering and corrections is necessary. Still some filtering should be done to ensure that 

there is no human induced changes or major change in the environment. It is suggested to only use tests 

conducted in deep water with constant shaft speed, constant vessel heading, constant vessel speed and 

without large changes in wind forces. The parameters should be constant throughout the set with 

exception of RPM, which should be constant from start approach to switching instance. 

 

In case the power saving is to be computed, method 1, a correction for the difference in ship speed is 

necessary. For WAPS, if the off condition is obtained by idling the sail, i.e. a physical adaption set-up 

where the sail is left upright, but in a position to obtain a fictious “no-sail” condition, correction due to 

wind resistance should be done to the off measurements. No other corrections should be applied.  

 

6. Savings computation 

 

The saving computation consist of two main steps: computation of saving in each set, and computation 

of the average long-term saving. The saving in all sets need to be computed in the same way, either as 

power saving or saving per nm, as discussed above. The procedure is elaborated below. 

 

6.1. Power saving (method 1) 

 

In this case the on and off measurements need to be corrected to the same vessel speed to estimate the 

power gain. In practice, we correct the on measurement to the speed of the off measurement as seen in 

Fig.2. 

 

The relative saving at the off speed is computed as: 

 

𝑥𝑖 =
𝑃shaft, on, i + 𝑃speed, i + 𝑃EST, i

𝑃shaft, off, i

− 1 

where 𝑃shaft, is measured shaft power, 𝑃speed, is power correction due to speed difference between on 

and off (where a negative number indicates a larger speed in the on condition), 𝑃EST 

is the power required by the energy saving technology (e.g. to rotate a Flettner rotor or pump air under 

the hull), 𝑥 is the relative saving (negative value means energy saved with system on) and i indices the 

different sets.  
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Fig.2: Correction of speed gain to power gain 

 

Applying this method gives larger benefit of speed increase than the saving per nm method as the power 

typically vary with speed cubed. 

 

6.2. Saving per distance sailed (method 2) 

 

In this case the power per distance sailed (approximately tonne fuel per nm) is the measure of efficiency: 

𝑧𝑖 =
𝑃shaft, i

𝑣i

 

where 𝑧𝑖 is the power per meter and 𝑣i is the vessel speed. The relative saving between the on and off 

condition is computed as: 

 

𝑥𝑖 =
𝑧on, i

𝑧off, i

− 1 =
𝑃shaft, on, i ∙ 𝑣off, i

𝑃shaft, off, i ∙ 𝑣on, i
− 1 

 

6.3. Uncertainty 

 

Independently of whether the saving is computed as power saving or saving per nm, the uncertainty 

analysis is the same. If we assume the saving estimates from each set is normally distributed (experience 

shows that this is the case) the mean value follows a student-t distribution and the estimated 90% 

confidence interval of the saving, [𝑥0.05, 𝑥0.95], can be determined as: 

 

𝑤𝑖 =
𝑃𝑠ℎ𝑎𝑓𝑡,𝑜𝑓𝑓,𝑖

∑ 𝑃𝑠ℎ𝑎𝑓𝑡,𝑜𝑓𝑓,𝑖𝑛
 

�̅� = ∑ 𝑥𝑖𝑤𝑖

𝑛

 

𝑠𝑥 = √(
n

𝑛 − 1
) ∑ 𝑤𝑖(𝑥𝑖 − �̅�𝑖)2

𝑛

 

𝑥0.05 = �̅� + 𝑡0.05,𝑛−1

𝑠𝑥

√𝑛
 

𝑥0.95 = �̅� + 𝑡0.95,𝑛−1

𝑠𝑥

√𝑛
 

 

where n is the number of sets, and 𝑤𝑖 is the set weight. An important feature of using the 90% confidence 

interval as the measure rather than simply taking the mean is that the minimum savings estimate is 
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likely to improve with more measurements as the confidence in the mean increases. This favours doing 

more measurements and including them in the statistics. 

 

6.4 Other effects and benefits 

 

In addition to the savings computed by the on-off methodology, both ALS and WAPS may be subject 

to other effects that are not captured in the method discussed here. ALS systems could on long term 

affect the fouling, see e.g. the white paper Kidd et al. (2023) which shows reduced fouling for ALS 

systems. ALS systems may also affect the flow around the propeller as the water around the propeller 

may contain air from the ALS system. This can affect the radiated underwater noise, onboard noise and 

the water density experienced by the propeller. In addition, the change of friction along the underwater 

hull due to the air may result in a different propeller wake than without ALS. For WAPS systems, 

vessels are reported to have benefits in terms of reduced ship motions, especially in roll. Furthermore, 

the weather routing is likely to be different with and without WAPS, which makes the two cases less 

comparable. In a practical case of a vessel with WAPS using the described method, the voyage will 

likely be routed for the purpose of exploiting the WAPS benefits, and the off condition will incorrectly 

be assumed to travel the same route. In addition, for both kind of systems, it would be possible that ship 

design and cargo capacity may be different adding additional complexity to true evaluations. 

 

7. Fuel savings 
 

The savings discussed above are purely related to the power savings and not fuel consumption. To get 

there the main and auxiliary engine specific fuel oil consumption as a function of shaft speed and torque 

needs to be considered. Some of the sail systems can be operated with no or negligible power input. 

This is different for example for the suction sails where electric power is needed for the fan drive, or 

for the rotor sails where an electric motor is engaged spinning the rotors. Even larger consumers of 

electric power are the compressors required by air lubrication systems. The net fuel savings depend 

very much on how the electric power for the above consumers is generated.  

 

In case a shaft generator is engaged the specific fuel oil consumption is that of the main engine. Just 

small mechanical and/or electrical losses need to be considered in the gear unit (if any) and in the 

electric switchboard(s).   

 

In case auxiliary diesel engines are engaged the difference in the specific fuel oil consumption between 

main engine and auxiliary diesel engines needs to be considered. At best the additional power demand 

of WAPS/ALS is so small that still one generator set can provide the necessary power at a beneficial 

utilization of the auxiliary diesel (e.g., at 70% MCR).  

 

A more unfavourable case would be that the additional power demand by WAPS/ALS requires 

engagement of a second auxiliary diesel, and both auxiliary diesels are running at a low utilization (e.g., 

at 40% MCR). In such a case the specific fuel oil consumption of the auxiliary diesels running at 

constant rpm may increase significantly. Auxiliary diesels running at variable rpm would improve the 

situation a bit. 

 

8. Conclusions 

 

For verification purpose using actual operational data from in-service measurements, ALS and WAPS 

as energy saving technologies have the advantageous characteristics of easily being turned on and off 

within a short period. Being able to compare measurements with and without the energy saving 

technology close in time eliminates or reduces uncertainties related to changes in operational and 

environmental conditions. Hence, a performance assessment of the systems from full-scale in-service 

measurements based on on-off tests should give a good understanding of the energy savings. 

 

Due to the potentially significant power contribution from WAPS, vessels operating with such a system 

may exploit the benefit by increasing the vessel speed and not only reducing power. If the vessel cannot 
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reduce the engine RPM sufficiently, it is not realistic to compare an on and off case at the "off" vessel 

speed. This calls for an alternative assessment method compared to when a vessel exploits the benefit 

by reducing the engine RPM and keeping constant vessel speed. The work described in this paper 

suggests evaluating the power per distance sailed and the power saving, respectively. For both methods, 

a relative saving (of power or power per distance sailed) can be computed. 

 

Typical speed through water measurements are usually uncertain or unreliable. Since a good speed 

measurement is key to reducing uncertainty in a performance assessment, it is proposed in this work to 

use a so-called virtual speed based on the propeller and measurements of its RPM and torque. 

 

In addition to the above-described benefits of using on-off tests, the procedure significantly reduces the 

number of necessary corrections to the measurement data. Since the vessel and environmental 

conditions are assumed to be constant, only minimum filtering is needed during measurement periods. 

Furthermore, in case of a WAPS unit, which is left raised during an off condition (so-called idling 

mode), corrections due to wind resistance should be applied. In general, the low number of corrections 

needed reduces the result uncertainty. 

 

Despite many benefits of using on-off test for performance assessment, there are some effects of the 

systems that are difficult to capture in the procedure described. For WAPS, weather routing plays an 

important role, and the off cases will incorrectly be assumed in environmental conditions sought by a 

weather routing algorithm optimised for the on cases. For both systems, ship design and cargo capacity 

may be different from the vessel not having installed the systems. Further limitations of the procedure 

are that the savings computed are purely power savings, not fuel or CO2 savings. For such a 

quantification, the main and auxiliary engine specific fuel oil consumption must be considered. How 

the required power to run the systems is generated can affect the net fuel savings of the systems, and 

hence a fuel consumption assessment may be necessary. 
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Abstract 

 

Assessment of vessel performance requires estimating various types of added resistance to the calm 

water resistance, with the most significant caused by the presence of wind, waves and fouling of the 

hull and propeller. In this paper, the performance prediction system VESPER is applied to the 

estimation of added resistance for two fleets, one of bulkers and one of containerships. Firstly, the bias 

and error of measurements from ship-mounted anemometers is investigated. The measured wind speeds 

were corrected for the anemometer height and compared with hindcast data. Two different pairs of 

anemometer heights and wind shear exponents were used and the Mean Bias Percentage Error (MBPE) 

between the anemometer and hindcast data was evaluated. The study showed an overestimation of wind 

speed from the anemometers due to flow acceleration by the presence of the superstructure and the ship 

itself. The acceleration was higher for containerships compared to bulkers. Also, for both fleets the 

acceleration was higher for side winds. Additionally, the change of the average Confidence Interval of 

the calculated total added resistance is presented after applying corrections for wind, waves and 

currents, using both the above wind data sets with and without corrections. For both fleets, the effect 

of fouling was calculated significantly higher compared to the effect of the weather.  Finally, the 

SPAWAVE method was applied to quantify the effect of waves, which, relative to the total added 

resistance, was calculated stronger for the bulkers compared to the containerships, while the effect of 

the wind was similar between the two ship types. 

 

1. Introduction 

 

The fuel efficiency and performance of vessels concerns the whole shipping industry due to 

environmental, regulatory and financial issues. High resistance during sailing increases the fuel cost 

and CO2 emissions. Efficient methods to reduce the resistance of the ship are sailing with optimum trim, 

installing energy saving devices, voyage optimization, sailing with clean hull and polished propeller 

etc. Avoiding sudden increases in fouling is advantageous for both the environment and shipping 

companies’ finances, which is the reason for the necessity of frequent monitoring of the ship’s fouling 

resistance. Estimating the resistance due to fouling requires to estimate firstly the resistance due to wind 

and waves as accurately as possible. 

 

The wind resistance rarely overcomes 10% of the total resistance according to Aage (1968). The 

longitudinal force is generally considered the largest part of the total wind resistance. However, 

Berlekom (1981) points out that the induced resistance from the increased ruder angle can be of the 

same magnitude as the longitudinal force for strong winds. Berlekom (1981) also mentions that the 

wave resistance is also of the same magnitude. Numerous wind tunnel investigations have been carried 

out by many, such as Blendermann (1994), Aage (1968) and Berlekom (1981), who provided wind drag 

coefficients for various vessel types. Wind coefficients collected by STA-JIP (2013) and coefficients 

estimated by the method of Fujiwara (2005) have also been adopted by ITTC (2014). For the estimation 

of the wind force, equally important to the wind coefficients is the relative wind climate input, which 

can be erroneously measured from anemometers due to flow disturbances. 

 

In the last few decades, a lot of effort with increased accuracy has been done in the prediction of wave 

added resistance with numerical methods by utilization of strip theory, e.g. Amini-Afshar and Bingham 
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(2021) or Rankine source panel codes and CFD. Although some of these methods are easily applicable 

during conceptual ship design, they are not so convenient in daily performance monitoring. Fortunately, 

numerous empirical and semi-analytical methods have been developed, which although have 

questionable accuracy, they are still robust and easily applied. A simple formula capturing the resistance 

due to diffraction was developed by Kreitner (1939). STAWAVE, adopted by IITC (2014), captures 

both the resistance from the diffracted and radiated waves but only for head waves. SPAWAVE 

developed by Grin (2022) within the SPA-JIP project, SNNM developed by Liu and Papanikolaou 

(2020) within the EU SHOPERA project and the DTU design tool developed by Nielsen (2015) and 

Martinsen (2016) are some of the wave resistance estimation methods for arbitrary heading angles, 

which have been widely validated. 

2. Ship Resistance 

 

As a ship sails through calm sea, many forces act on it, such as the viscous, the wave making, the air 

and appendage resistance. The speed – power curves in calm water are usually obtained by CFD, towing 

tank tests or sea trials. However, when the ship sails under a specific sea condition, added power, Fig.1, 

is required to overcome the additional resistance acting on the ship: 

 

TW T WR R R= +             (1) 

 

where TWR  is the total resistance under specific sea conditions 

TR  is the total resistance under calm sea 

WR  is the added resistance 

 

Added resistance is caused due to the effects of wind and waves, fouling on the hull, sailing in shallow 

water and differences between the sailing conditions of the ship throughout the calm water resistance 

and the added resistance estimation. The latter differences correspond to the water temperature and salt 

content, the displacement and the trim. 

 

 
Fig.1: Added power required to sail in specific weather conditions and power curve in calm water 

 

3. Vesper – Performance Prediction modelling 

 

In this study the vessel’s performance monitoring software VESPER has been used to estimate the 

various types of resistances. VESPER is a state-of-the-art system that interfaces various types of data 

such as noon, autolog, AIS and hindcast data and outputs reports related to main engine, auxiliary 

engine, compliance reports, hull and propeller performance among other features. Fig.2 shows a typical 

output of Vesper, which is the history of added resistance due to fouling. 
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Fig.2: Example of a vessel’s added resistance due to fouling 

 

The prediction of a vessel’s fouling resistance is based firstly on measuring the power (or fuel 

consumption) at a specific draft and speed, then correcting for the various types of added resistance 

(due to operational or environmental effects) and finally subtracting the power corresponding to the 

calm water resistance at the same speed and draft. The residual power is the one needed to overcome 

the resistance due to fouling of the hull and propeller.  

 

The applied corrections of the measured power due to the wind and wave resistance are also described 

in this section, since their magnitude is much higher than the other added resistance types, Berlekom 

(1981). The wind resistance is calculated by: 

 

2 21 1
( ) (0)

2 2
AA A R X T A S X TR V C A V C A  = −        (2) 

where A   is the air density, 

RV    the relative wind speed, 

SV    the ship’s speed, 

XC  the wind resistance coefficient, 

     the relative wind direction, 

TA   the maximum transverse section exposed to the wind 

 

Kreitner (1939) proposed a simple correction formula for the resistance due to waves, in the range of 

±45° off bow, using only wave height and ship dimensions. The formula has been slightly modified 

with correction factors to account for all wave directions: 

 
2
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=        (3) 

 

where W   is the wave height, 

B     the ship’s beam, 

BC    the block coefficient, 

W   is the water density, 

L      the ship’s length, 

XXC  the correction factor for all wave headings. 

 

This method for estimation of resistance due to waves, employed by ITTC (2005), captures the force 

due to the diffraction of the incident waves but omits the effect of the radiated waves due to the ship’s 

motion. ITTC recommends the use of the model for wave heights only up to 2 m. Bhushan (2021) 

compared recently developed more sophisticated models with this simplistic one, concluding that it 
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achieves comparable accuracy for low wave heights. In the study the SPAWAVE method is also 

utilized, which is an empirical method validated with numerous model tests. The method, developed by 

Grin (2022), captures both the force due to the diffraction of the incident waves and due to the radiated 

waves from the ship’s motion in all wave directions. Additionally, since the method was developed 

under the service performance analysis JIP, SPA-JIP (2008), there is no wave height limitation. 

 

4. Description of databases 

 

The constructed databases for the data analysis and resistance calculations consist of autolog data from 

two fleets, one of bulkers and one of containerships. The averages of the fleet’s particulars, which have 

been weighted according to the size of each class, are summarized in Table I. 

 

Table 1. Weighted averages of vessels’ particulars and other properties  
Bulkers Containerships 

LPP 192.4 m 342.6 m 

LOS 198.4 m 357.7 m 

B 32.1 m 48.7 m 

CB 0.8 0.64 

Tdesign 11.4 m 14.2 m 

Toperational 10.1 m 13.8 m 

Vdesign 14.8 kn 23.4 kn 

Voperational 12.1 kn 16.2 kn 

Hsuperstructure 15.2 m 33.6 m 

Bsuperstructure 21.1 m 31.7 m 

DWTdesign 47980 t 123392 t (13217 TEU) 

MCR 9340 kW 54915 kW 

 

The autolog signals of the speed over ground, speed through water, course over ground, draft aft and 

fore, relative wind speed and direction, fuel consumption, power and rpm are utilized in this study. To 

avoid unnecessary scatter, the autolog signals are filtered by detecting stable periods, as described by 

Montazeri (2019). The stationary periods are identified by the theory of probability of detection of a 

change in the mean and standard deviation. Finally, the stationary periods are averaged for timespan of 

1 hour. The bulkers database consists of about 65000 stable periods, from 54 vessels of 17 classes, 

covering about 3 years, while the signals from the containerships produced around 80000 datapoints, 

from 31 vessels of 5 classes, covering about 6 years.  

 

Hindcast data have been introduced at the timestamps and positions of the autolog measurements for 

comparison with anemometer data. The parameters of the hindcast data used in this analysis as well as 

the corresponding time and spatial resolution are summarized in Table II. 

 

Table II: Resolution of Hindcast data 

 Time resolution Spatial resolution 

True wind 6 hours 0.125° 

Significant height 6 hours 0.125° 

Currents 24 hours 0.083° 

 

5. Correlation of Anemometer Readings with Hindcast Data 

 

This section describes the analysis of the data from the two wind sources i.e., anemometer and hindcast. 

It is assumed that although the hindcast wind data may be biased to parameters relevant to the 

mathematical modelling or to the historic wind measurements included in them, they are not subject to 

biases related to vessels’ operational profile. Thus, the hindcast data can be utilized as reference for 
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identifying the biases’ origins of the anemometer readings, such as the presence of the superstructure 

and of containers or the anemometer’s location. 

 

5.1. Anemometer height correction 

 

The autolog readings from the on-board anemometer, located mostly on the top of the superstructure, 

measure the apparent wind speed and direction. The true wind vector is determined from these 2 signals 

combined with the speed over ground and the course over ground signal (from GPS), due to lack of the 

heading signal. The calculated true wind speed is finally corrected with Eq.(4) for the wind speed profile 

considering the anemometer height.  

 

( ) ( )
ref

z ref z

z
U z U z

z


 

=  
 

            (4) 

 

where ( )zU z  is the wind speed measured at height z , 

refz is the reference height (typically 10m), 

  wind shear exponent (typically 0.143). 

 

The direction of the true wind relative to the North from the hindcast models is compared with the same 

parameter from measurements of one vessel’s anemometer in Fig.3. These measurements cover 2 years. 

A shift of ±360° was applied, where it was necessary, at the hindcast wind direction before being 

compared with the one from anemometer. For instance, a 330° angle from hindcast was converted to -

30°, so that when compared against a 20° angle from anemometer, leads to a difference of 50° instead 

of 310°. Thus, the axis corresponding to the hindcast direction ranges from -180° to 540°. 

 

 
Fig.3: Comparison of true wind direction between hindcast and anemometer 

 

In Fig. 4, two sets of autolog datapoints from the same vessel were converted to true wind speed and 

are compared with the true wind speed from hindcast. One set corresponds to the autolog datapoints 

without correction for the height of the anemometer, while the other set with correction.  

 

The Mean Bias Percentage Error (MBPE) and the Mean Absolute Percentage Error (MAPE) were used 

as metrics for the assessment of the anemometer signals accuracy from the measurements of the whole 

two fleets. 
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Fig.4: Comparison of wind speed from anemometer (with and without correction for the anemometer 

height) with the wind speed from hindcast source 
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where xi is the wind speed from anemometer, 

yi is the wind speed from hindcast data, 

n is the number of datapoints. 

 

For the correction of the wind speed for the anemometer height, ITTC (2021) recommends 1 / 9 = , 

while ITTC (2014) recommends 1 / 7 =  for the wind shear exponent. The anemometer data analysis 

led to lower error compared to hindcast data with use of the latter exponent combined with the higher 

anemometer height.  

 

 
Fig.5: Sensitivity analysis of the correction of the wind speed readings for the anemometer height 

 

However, the higher exponent value may compensate for the wind acceleration unwantedly not only 

due to height from the sea level, but due to other effects. The MBPE from the anemometers of the 
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containerships are higher compared to the ones corresponding to the bulkers. The presence of containers 

may accelerate the wind, a behavior that can be noticed in Fig.5. The negative sign of the MBPE outlines 

that the measured wind speed is higher compared to the hindcast wind speed. 

 

5.2. Directional bias of anemometer  

 

This subsection attempts to show the biases of the anemometer due to its location and the presence of 

the superstructure or other features, which can be observed by looking into the dependence of the wind 

speed error against the direction of the true wind relative to the ship’s heading, shown in Fig.6. A wind 

angle of 0° signifies head wind.  

 

It was observed that numerous anemometers of some containerships showed significantly higher error 

compared to other containerships. It is unknown where these large differences in the errors originate 

between some ships. The almost double error was observed in vessels of same classes, thus generalized 

assumptions for the error’s source are avoided, i.e. due to the location of anemometer or ship’s 

geometry. Although the containerships’ general arrangements documents were available, the location 

of the anemometer was not identifiable. Additionally, the possibility of different convention between 

the anemometers’ readings is low since the dataflow was from the same installed equipment and API. 

Other possible sources may lie to the containers’ configuration, or poorly calibrated anemometers etc. 

Thus, the containerships dataset has been separated into two datasets. The error analysis for the 

containerships is applied twice. Once at the whole fleet and once at the fleet without the above-

mentioned anemometers, which is marked as “Containerships*” in Fig.6. 

 

 
Fig.6: Dependence of true wind speed error against hindcast wind direction (relative to the heading) 

 

The readings from the bulkers’ anemometers show accelerated wind speed mostly for head and beam 

winds, which could originate from the presence of the superstructure. Wind speed measurements, from 

both bulkers and containerships, show lower discrepancy from the hindcast wind speed when the wind 

is coming from the stern, 150°-210° relative to the ship’s heading. At this region, there is no acceleration 

of the wind speed for bulkers, while there is still slight acceleration for containerships. The presence of 

containers at the aft could explain this behavior. 

 

Wind direction measurements, from both bulkers and containerships, show higher deviance from the 

hindcast wind direction when the wind is coming from 60°-90° and 240°-270° relative to the ship’s 

heading, as illustrated in Fig.7. In this analysis, the anemometers of all the bulkers are mounted at the 

right side of the mast, for someone observing it from the fore, which is seen in Fig.8. Thus, the location 

of the anemometer either on the left or the right side of the mast may cause this behavior, meaning that 

the mast itself may cause not negligible distortion of the wind. Timeseries from two anemometers on 

the same vessel have shown discrepancy of 14° after change of 30° of a vessel’s heading, Stephens 

(2011). 
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Fig.7: Anemometer-hindcast true wind direction error against hindcast true wind direction (relative to 

heading) 

 

 
Fig.8: Typical frontage of the bulkers’ superstructure’s top 

 

The errors shown in Fig.6 and Fig.7 are fully coupled since they correspond to true wind values, which 

has been converted from the relative wind readings. The relative wind speed readings’ errors directly 

affect the calculation of the true wind direction, while the relative wind direction readings errors directly 

affect the calculation of the true wind speed as well. 

 

 
Fig.9: Distribution of measurements of 1-hour stable period against hindcast true wind direction 

(relative to heading) 
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Fig.9 shows the distribution of the stable periods of the measurements relative to the relative wind angle. 

Stable measurements of the wind coming from starboard and port side are significantly rarer, indicating 

that the mast distorts the flow significantly. Sudden gusts are also considered unstable throughout the 

process of detecting stable periods. Fig.6, Fig.7 and Fig.9 point out that the signals are more stable for 

tail winds. 

 

6. Results and Discussion 

 

The added resistance estimation by VESPER, similarly to other performance monitoring systems, is 

subject to scatter, which is introduced, among other sources, from the sensor errors or the inaccuracy 

of numerical weather data. It is necessary to quantify the prediction’s scatter, so that the increase or 

decrease of the prediction’s reliability can also be quantified by altering data inputs or resistance models 

i.e., wind climate from anemometer and hindcast or with and without currents involved. 

 

In section 3, Fig.2 shows the history of the estimated added resistance by Vesper, which is calculated 

with linear regression from the population of the historic autolog stable periods points. The result is 

accompanied with a 95% confidence interval: 

 

s
CI x z

n
=              (7) 

 

where x  is the mean of the added resistance points, 

z  is the value for the 95% confidence level, 

s   is the standard deviation of the added resistance points, 

n  is the amount of datapoints. 

 

Correcting the total added resistance for the added resistance due to wind, waves, currents etc., 

decreases the scatter and consequently the CI. The average change of CI of the total added resistance 

of all linear trends after applying these corrections are summarized in Fig.10. 

 

 
Fig.10: Change of the average Confidence Interval of the total added resistance after applying 

corrections for the various added resistance types 
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In performance systems, the severe weather (above 5 BF) is often filtered out when the wind and wave 

resistance is estimated. However, in the current analysis this filtration is not applied, so that the amount 

of datapoints between anemometer and hindcast weather are the same to avoid a biased CI score. 

Additionally, when the ships are sailing in severe weather the autolog signals become unstable. These 

unstable periods have been already filtered out, as explained in section 3. Thus, around 95% of the 

remaining autolog wind speed dataset is up to 5 BF. The same percentage accounts for the 

corresponding hindcast weather, which can be extracted from Fig.1 and Fig.2 in the Appendix. 

 

Correcting firstly for the wind, then correcting for both wind and waves, and finally also adding the 

currents, decreases the CI respectively by 24%, 36.4% and 50.6% for bulkers. The corresponding 

decreases for containerships are 16.5%, 24.7%, 48.3% and are depicted in Fig.10 from the pair of 

columns number 1, 2 and 6. The corresponding decreases for containerships are 16.5%, 24.7%, 48.3% 

and are depicted in Fig.10 from the pair of columns number 1, 2 and 6. Using wind data from the 

bulkers’ anemometers without correcting for the anemometer height led to 36.4% decrease of CI, while 

with correction leads to only 35.2%. The latter value was expected to be higher and possible reasons 

should be investigated further. Similarly, the correction for the anemometer height led to only 0.7% 

further reduction of CI for containerships ending up to 25.5%. The use of hindcast wind decreased 

further the CI to 26.4% for containerships, while the opposite behavior appeared for bulkers. A behavior 

which also should be investigated further. Finally, STA-JIP (2013) collected wind resistance 

coefficients for various ship types and drafts, which has also been adapted by ITTC (2014), presented 

in Fig.A-3 and Fig.A-4 in appendix. 

 

A magnitude comparison between the resistances due to wind, waves and fouling is also described in 

this section. The ratio of these types of resistance to the total added resistance is depicted in Fig.11. In 

this analysis, hindcast wind has been chosen to avoid the over-measured anemometer readings. 

Although around 90% of the hindcast waves are 2 m or less, as shown in Fig.A-2 in Appendix, the 

Kreitner (1939) wave resistance method was considered less reliable for the resistance magnitude 

comparison, so the SPAWAVE method was used instead, which has no wave height limit.  

 

 
Fig.11: Ratios of resistance types to the total added resistance 

 

For both bulkers and containerships, the resistance due to fouling is significantly higher than the other 

two types. The speed-power curves, which are usually extracted from the sea trials, could be under-

estimated, leading to direct overestimation of fouling resistance and underestimation of wind and wave 

resistance. Moreover, when the weather is severe the autolog signals are unstable, thus these periods 

are also filtered out. The absence of these periods also leads to underestimation of the ratio of the 

resistance due to weather to total added resistance, as well as to overestimation of the ratio of fouling 

resistance to the added resistance. Even if this is the case, the result of this analysis points out the 

importance of keeping the vessels’ hulls clean and propellers polished. 

 

Additionally, the ratio of wind resistance to wave resistance, which is not affected from the baseline, is 
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about 0.65 for the containerships, while for the bulkers the ratio is about 0.3. Molland et al. (2011) 

provided proportions of wind and wave resistances with increasing BN only in head seas. In his analysis 

also, the ratio of the effect of head wind to head waves on containerships is higher compared to other 

ship types. The windage area of this study’s containerships is multiple times wider compared to the 

bulkers, which partially explains the higher wind to wave resistance ratio. Additionally, Fig.A-3 and 

Fig.A-4 in Appendix, depict the wind coefficients proposed by ITTC (2014) for the two ship types. 

These coefficients are product of wind tunnel tests, where a bulker of 280k tons deadweight and a 

containership of 6800 TEU capacity were analyzed. According to these graphs, the wind forces on the 

containerships, either against or in favor to the sailing route, are stronger when the ships sail ballast 

without containers. This contradicts Andersen (2012), who analyzed the impact of various containers’ 

configurations (streamlined fore or aft, semi loaded or fully loaded etc.) with wind tunnel tests. The 

sizes of these two ships, of which the coefficients were adopted by ITTC, is not similar with the vessels’ 

size used in this study. Therefore, in this part of the study the coefficients proposed by Berlekom (2013) 

are used. 

 

Apart from the higher wind resistance of the containerships, their wave resistance is also lower, which 

is explained partially by these ships’ shape. Liu and Papanikolaou (2017) showed that lower beam to 

draft ratio is related with higher maxima of wave added resistance. This ratio is indeed lower for the 

containerships, however more investigation should be carried out to see how close the location of the 

maxima is to the operational wave spectrum. Additionally, Grin (2022) showed the maxima of wave 

added resistance are also higher for ships with wider beams and shorter lengths, which agrees with the 

geometry of the two fleets. 

 

Both SPAWAVE and SNNM methods estimate higher added resistance due to waves for higher sailing 

speed. The operational speed of the containerships is higher than the speed of the bulkers. However, it 

seems that the ships’ shape had higher impact compared to their operational speed profile in the matter 

of wave added resistance. Averages of the particulars of the two fleets are summarized in Table I. 

 

Finally, the total added resistance was estimated at 41.1% for bulkers and 33.7% for containerships. 

These values are significantly higher than both the widely used 15% sea margin and the proposed sea 

margins by Harvald (1983) for specific routes, ranging from 12% to 30%. 

 

7. Conclusions 

 

In the present study, autolog data combined with hindcast weather data from two fleets, one of bulkers 

and one of containerships, were inputted into the performance prediction system VESPER to estimate 

the resistance of ships due to wind, waves and fouling.  

 

Firstly, a comparison of wind data originated from anemometers and hindcast models was carried out. 

The relative wind from the anemometers readings was converted firstly to true wind, then the wind 

speed was corrected for the anemometer height and finally was compared with the corresponding 

hindcast wind speed. For the correction, two different pairs of anemometer heights and wind shear 

exponents were used and the MBPE between the anemometer and hindcast values for each pair was 

presented. Between, the two corrections the major one led to lower MBPE, which points out the widely 

known overestimation of wind speed from the anemometers due to flow distortion. The acceleration of 

the wind due to the presence of the superstructure and the ship itself, was higher for the containerships 

compared to the bulkers. The presence of the containers may accelerate further the wind. The acceler-

ation of the true wind speed was plotted against its angle relative to the ship’s heading to illustrate 

dependencies. It was shown for both bulkers and containerships, that the acceleration was higher for 

side winds, less intense for head winds and even lower for tail winds. A similar MAPE analysis was 

repeated between the measured wind angle and the hindcast wind angle, where the same dependency 

of the error with the relative wind angle was found. This originated from the coupling of the true wind 

speed and direction during the conversion from relative wind. This dependency was also present at the 

distribution of the population of the stable wind measurements. A potential reason for the error depend-

ency with the relative wind angle could be the location of the anemometer either at the right or left side 
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of the mast, with the mast provoking further distortion to the wind.  

The added resistance of the two fleets was also estimated using VESPER’s performance module. The 

estimation was combined with a reliability analysis to show the impact to the scatter, firstly by correct-

ing for the effects of the wind, waves and currents and then without corrections. Correcting for these 

effects reduces the scatter significantly. In the case of containerships, the hindcast wind data were found 

to be slightly more reliable compared to anemometers’ readings. This was not the case for the bulkers, 

which indicates the fact that the anemometers’ readings from the bulkers are more reliable compared to 

the containerships’ readings and also addresses that the need for improved hindcast wind data for further 

analysis.   

 

In addition, the magnitudes of the resistances due to wind, waves and fouling were also compared. It 

was found that the fouling effect was significantly higher than the wind and waves effect in the ship’s 

performance. Additionally, the wave resistance was around 50% higher compared to the wind resistance 

for containerships and tripled for bulkers, which is a result of these ships shape. Finally, the resistance 

due to fouling was predicted more than double compared to the resistance due to weather, which could 

partially originate from a potential underestimation of the ship’s efficiency during sea trials. However, 

these sea margins were calculated significantly higher compared to the widely used sea margin of 15%, 

which points out the need for frequent monitoring of the hull and propeller degradation and for measures 

against them. 

 

8. Future Work 

 

The focus of the current study was to increase the accuracy of performance prediction to such a degree, 

so that drop in performance can be identified immediately after it occurs. Potential improvements in the 

modelling, such as the method of Fujiwara (2005) for providing vessel and size specific wind coeffi-

cients, should be investigated. Recently developed robust wave resistance methods, alternative to the 

SPAWAVE method, should also be assessed scatter-wise with Vesper. Alternative hindcast weather 

providers for wind, wave and currents should also be tested. Finally, the quantified bias of the anemom-

eters’ readings with the relative wind angle seems to be consistent for containerships and bulkers, which 

makes these measurements correctable, Thornhill (2020). 
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Appendix 

 

 
Fig.A-1: Distribution of hindcast true wind speed, introduced at the bulkers’ autolog positions (after the 

filtration of the anemometers’ unstable periods) 
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Fig.A-2: Distribution of hindcast wave height, introduced at the bulkers’ autolog positions (after the 

filtration of the anemometers’ unstable periods) 

 

 
Fig.A-3: Wind coefficients of containerships and general cargo ships 

 

 
Fig.A-4: Wind coefficients of bulkers and general cargo ships 
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Abstract 

 

The shipping industry is facing a great challenge in the task of curbing down CO2 emissions in order 

to achieve carbon neutrality. In the last few years, a lot of mitigations measures were proposed and 

implemented, but the determination of their overall mitigation potential has still remained 

complicated. The complexity of this determination lies in the fact that the operational performance of 

ships is affected by various influential parameters. A model that can reliably predict fuel consumption 

and CO2 emissions based on real operational profiles is required for the evaluation of various 

mitigations measures. In this paper, a comprenhensive model that can be used in a bottom-up 

approach for predicting annual CO2 emissions based on Automatic Identification System (AIS) data is 

proposed. The proposed model accounts for ship performance in real service conditions and models 

the fuel consumption and CO2 emissions of both main and auxiliary engines. The modelled annual 

CO2 emissions are validated by comparison with the actual annual CO2 emissions obtained with Data 

Collection System (DCS) for several ships with different out of dry-dock timings. Thereafter, a case 

study is prepared in which developed model is used to estimate CO2 emissions in 2024 for ships which 

will be dry-docked in the begining of 2024 with the hypothesis that they will have the same 

operational profile as they had in 2023. Two scenarios are analysed including antifouling protection 

using mid-tier self-polishing copolymer and low friction coatings. 

 

1. Introduction 

 

The shipping industry is facing a great challenge in the task of curbing down CO2 emissions in order 

to achieve carbon neutrality. The International Maritime Organization (IMO) has proposed several 

required technical regulative which require from both design and operational point of view important 

modifications in order to successfully achieve its fulfilment. In addition, EU has implemented several 

policies and measures, including the Emissions Trading System (ETS) and the EU Monitoring, 

Reporting, and Verification (MRV) system, Kim et al. (2023). Starting from 2023, reporting carbon 

intensity indicator (CII) is mandatory, while EU ETS came into force in January 2024. Both these 

measures directly evaluate real sailing conditions of ships and in that way operational performance of 

ship can be monitored, in comparison to design-based indicators, which evaluate ship energy 

efficiency only from design or nominal point of view, Kalajdžić et al. (2023). 

 

In the last few years, a lot of mitigations measures were proposed and implemented, but the 

determination of their overall mitigation potential has still remained complicated. 

 

There are many studies in the literature which evaluate the mitigation potential of various measures, 

Ahn et al. (2017), Gatin and Kalajdžić (2022), Werner et al. (2022). However, the most of studies in 

the literature evaluate measures potential in design condition, rather than for real operational 

conditions. This can be explained with the existence of only design-based indicators, which has led to 

the fact that shipowners have put more emphasis in minimizing their ship index levels rather than 

reducing fuel and energy consumption, Barreiro et al. (2022). With the introduction of measures 

which directly monitor operational performance of a ship, it is logical to assume that more effort will 

now be placed to evaluate actual energy savings from certain mitigation measure, rather than only 

evaluate its potential for design conditions. This will add the complexity in the determination of 

mitigation potential for certain measures, since operational performance of ship is affected by various 

mailto:afar@hempel.com
mailto:digu@hempel.com
mailto:madb@hempel.com
mailto:gkyp@hempel.com
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influential parameters. For this, a model that can reliably predict fuel consumption and CO2 emissions 

based on real operational profiles is required. 

 

The bottom-up approach for the prediction of CO2 emissions in shipping industry represents an 

approach of calculating annual CO2 emissions based on ships activity, while the top down approach is 

fuel-based, You and Lee, (2022). In the last few years, bottom-up approach is considered to be more 

accurate than top-down approach for the prediction of annual CO2 emissions of ship fleet, especially 

in combination with Automatic Identification System (AIS) data, Johansson et al., (2017). 

 

A detail review of bottom-up approaches for the prediction of fuel consumption and CO2 emissions is 

presented in Kim et al. (2023). The authors listed the most important models proposed in the literature 

for this prediction and summarized the methods used for the prediction of ship resistance in calm 

water, fouling effects, weather effects and propulsive efficiency. The most of models in the literature 

use Holtrop-Mennen method for the prediction of ship resistance in calm water, Holtrop and Mennen 

(1982), while for the prediction of propulsive efficiency several methods are used including Holtrop 

and Mennen (1982), Bernitsas et al. (1981), Emerson’s formula, Kristensen and Lützen (2012), 

OpenProp, combining values from sea trial reports and from similar ships. Fouling effects are often 

either neglected, or in some cases are applied as constant factor of 9%, Smith et al. (2014) and Faber 

et al. (2020), or 10% Tvete et al. (2020), Guo et al. (2022). In more sophisticated model referred as 

MariTEAM, fouling effects are related to ship age, Olmer et al. (2017), Bouman et al. (2016), Muri et 

al. (2019a,b), Dale (2020), Kramel et al. (2021). The explanation of accounting for fouling effects is 

given in Kim et al. (2023), with the application of average hull roughness (AHR) which changes due 

to ship age and time since dry-dock (DD). The relationship between AHR, ship age and time since 

DD is modelled with equation proposed by Stenson (2015) is used for the prediction of AHR, while 

Steen and Aarsnes, (2014) equation is used for prediction of increase in frictional resistance 

coefficient. However, due to missing information about coating specification as well as biofouling 

management plan, authors have applied yearly average increase in AHR. This basically simplified 

fouling, mechanical and aging effects into yearly increase of AHR, with the inclusion of AHR 

reduction in DD. This means that fouling and aging effects are depending only on ship age and not on 

time since DD. Weather effects are mostly accounted either using sea margin, or separated in wind 

effects which are then accounted using Blendermann (1996) or Fujiwara (2006) approach and in 

wave effects which are accounted using ITTC recommendations, ITTC (2017), method proposed by 

Liu and Papanikolaou (2020) or Kim et al. (2022). After brake power is obtained, fuel oil 

consumption (FOC) of main engine (ME) is calculated using specific fuel oil consumption (SFOC) 

which can depend on the engine load or be constant, depending on the model. Finally, auxiliary 

engine (AE) consumption is estimated mostly using IMO (2014), since information about installed AE 

power is usually missing. 

 

In this paper, a comprehensive model that can be used in a bottom-up approach for predicting annual 

CO2 emissions of containerships based on AIS data is proposed. The proposed model accounts for 

ship performance in real service conditions and can be used for the prediction of the fuel consumption 

and CO2 emissions of both main and auxiliary engines. To the best of the authors knowledge, this 

model represents the first model which accounts for fouling and aging effects separately. Namely, 

fouling effects are modelled depending on speed loss/power increase values for different coatings and 

time since DD. In addition, for low friction coatings an out of dock power saving is also included. The 

modelled annual CO2 emissions are validated by comparison with the actual annual CO2 emissions 

obtained with Data Collection System (DCS) for several ships with different out of dry-dock timings. 

What is more, predicted power for propulsion is compared on timestamp level, as well as within speed 

power plots in order to further demonstrate its prediction capabilities. After an extensive validation 

study, a case study which demonstrates the application of model to identify total benefit of low 

friction coating is presented. 
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2. Materials and Methods 

 

This section briefly presents the material and methods used for the prediction of annual CO2 

emissions. Firstly, input data is specified and then methods used in the prediction of calm water 

resistance, weather effects, fouling and aging effects, propulsion efficiency, FOC/CO2 emission for 

propulsion and remaining FOC/CO2 emission are presented. 

 

2.1. Materials 

 

The prediction of annual FOC and CO2 emission of ship using bottom-up approach generally requires 

three types of data: ship dynamic data, technical information and environmental data, Kim et al. 

(2023). Within this study ship dynamic data is obtained from AIS data provided by https://

www.vesseltracker.com/, a leading provider of global AIS ship movements and maritime information 

services, having around 250,000 users all over the globe from multiple sectors, and tracking more 

than 170,000 ships every day. Technical information consists of ship’s main particulars and 

specifications of ME. During the development of model, specifications of AE are used as well, in 

order to more accurately predict the emissions during time in port basin and berthing. The data used 

for technical information is obtained from https://maritime.ihs.com and https://www.clarksons.com/. 

Environmental data including wave conditions and sea temperatures at the time and location the ship 

is sailing is obtained from https://data.marine.copernicus.eu/products. The voyage trajectory 

completion is made by AIS data provider, while missing data handling in terms of technical info is 

mostly solved by using info from both data providers. However, if some technical data is still missing 

it can be estimated using relationships amongst ship’s main particulars. 

 

2.2. Methods 

 

In order to predict CO2 emission from the described input data several predictions should be made. In 

general, total resistance of a ship when sailing is consisted of: 

 

𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑅𝑇 + 𝑅𝐴𝐴 + 𝑅𝐴𝑊 + 𝛥𝑅 

 

 𝑅𝑇 is the total resistance of a ship in calm water condition, 𝑅𝐴𝐴 is the added resistance due to wind, 

𝑅𝐴𝑊 is the added resistance in waves and 𝛥𝑅 is the added resistance due to fouling and aging. 

 

𝑅𝑇 is predicted using Holtrop and Mennen (1982), however wetted surface area is obtained from 

equation presented in Kristensen and Bingham (2017a) and correlation allowance coefficient is used 

either from Holtrop and Mennen (1982) or Kristensen and Bingham (2017a), whichever is smaller. 

Also resistance of appendages and additional pressure resistance of immersed transom stern are 

neglected. The validity of this slightly modified Holtrop and Mennen (1982) approach is demon-

strated in the prediction of sea trial results, after propulsive efficiency is also modelled. This com-

parison is made for various ship types, loading conditions including ballast, design and scantling 

draught and at various speeds. The results of comparison demonstrated the validity of the approach. In 

Fig.1. the comparison of sea trial results and the obtained results are presented for both design and 

scantling draught of two containerships. 

 

In this study, added resistance due to wind is accounted for using margin 2.5% of 𝑅𝑇 instead of 

modelling the added resistance due to wind, which would depend on several input variables. This 

value is taken from Kim et al. (2023), where the authors demonstrated the average portions of ship 

resistance components within ship total resistance. This was decided due to two important considera-

tions: first one being the fact that added resistance in wind is not that important component of total 

resistance, and second one being that several input variables cannot be precisely determined using 

input data. Therefore, it is not certain whether the modelling of added resistance due to wind would 

improve the overall prediction of FOC/CO2 emission that much. Within future work this prediction 

could be improved using environmental data and one of the methods proposed in the literature, such 

as Blendermann (1996) or Fujiwara (2006) approach. 

https://www.vesseltracker.com/
https://www.vesseltracker.com/
https://maritime.ihs.com/
https://www.clarksons.com/
https://data.marine.copernicus.eu/products
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Fig.1: Comparison of the obtained results with sea trial results 

 

The added resistance in waves is predicted using STAwave-1 presented in ITTC (2017). Although this 

method is limited to only head waves, it can still provide relatively good results with only few inputs. 

However, it is obvious that the ship during its voyage will encounter waves from various directions 

which will then lead to wrong prediction of added resistance in waves. STAwave-1 was developed for 

short head waves which have high encounter frequency. For such waves, the impact of motions 

caused by the waves can be disregarded, and the primary factor influencing added resistance is the 

wave reflection of the hull at the waterline. Therefore, this method is only suitable for lower 

significant wave heights and for small heave and pitch during the sail. What is more, added resistance 

in waves within this method is not affected by ship speed. 

 

Due to all simplifications, it was clear that prediction of added resistance in waves for tankers and 

bulk carriers is not accurate as it usually provided too high values of 𝑅𝐴𝑊 in comparison with 𝑅𝑇. 

Therefore, it was decided to limit the applicability of Hempel model for the prediction of annual CO2 

emission to only containerships for which more reliable results of 𝑅𝐴𝑊 are obtained which are within 

limits presented by Kim et al. (2023). 

 

Taking into account that the added resistance in waves is much more important resistance component 

within ship total resistance than added resistance due to wind, in future development of Hempel 

model for the prediction of annual CO2 emission, the prediction of 𝑅𝐴𝑊 will be improved. From the 

literature review there are several models which could be implemented for such prediction, for 

example Kim et al. (2022) which combines Liu and Papanikolaou (2020) and Lang and Mao (2021) 

methods. This will allow the application of developed model to various ship types and the improve-

ment in the prediction of the annual CO2 emission. Currently, within Hempel model for other ship 

types than containerships, sea margin approach is used for the prediction of weather effects, but those 

results are not presented in this paper. 

 

The added resistance due to aging and fouling effects are separately accounted. Aging effects are 

determined according to Gundermann and Dirksen (2016) and they depend on ship age, while fouling 

effects are accounted using speed loss/power increase values for every given coating and aside from 

coating they are dependent on time since DD. If there is no information about which coating is 

applied on a certain ship, then it is assumed that low tier self-polishing copolymer (SPC) coating is 

applied. What is more, for low friction coatings, an out of dock power saving is added, Sfiris et al. 

(2023). An out of dock power saving accounts for smoothness of low friction coatings which causes 

lower initial required power after its application, Bertelsen and Meseguer Yebra (n.d). In the literature 

there are several studies which demonstrates the potential benefits of low friction coatings over SPC 

coatings as presented in Schultz (2004), Demirel (2015), Farkas et al. (2021). 
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In order to predict required power for propulsion i.e., brake power at given speed, propulsive 

efficiency has to be determined: 

 

𝜂𝑃 = 𝜂𝐻𝜂𝑂𝜂𝑅𝜂𝑀 

 

 𝜂𝐻 is the hull efficiency, 𝜂𝑂 is the propeller open water efficiency, 𝜂𝑅 is the relative rotative 

efficiency and 𝜂𝑀 is the mechanical efficiency. 

 

Constant values 𝜂𝑅=1 and 𝜂𝑀 = 0.98 are taken, as done in Kristensen and Lutzen (2012) and Kim et 

al. (2023). For the prediction of hull efficiency, wake fraction and thrust deduction fraction are 

calculated using both Holtrop and Mennen (1982) and Kristensen and Bingham (2017a). Namely, 

Holtrop and Mennen (1982) approach is prioritized, however if unreasonable values for wake fraction 

or thrust deduction fraction are obtained, then those values are determined using Kristensen and 

Bingham (2017a). During the determination of propulsive efficiency, important input variable is 

propeller diameter which is modelled using either 70% of draught value, or equations presented in 

Kristensen and Lutzen (2012), which are different for various ship types. An additional check is 

adopted in this step using the relationship between MCR, propeller nominal rotation rate and propeller 

diameter. Propeller open water efficiency is determined using the equations presented in Kristensen 

and Lutzen (2012), which approximate Wageningen B series. Within the calculation of 𝜂𝑂 the most 

important parameter is propeller load which is determined for 𝑅𝑇𝑜𝑡𝑎𝑙 within this study. After the brake 

power is determined it is checked whether it is above limit of specified engine load, as done in Kim et 

al. (2023). 

 

In order to predict FOC per hour for a given speed, brake power has to be multiplied with SFOC, 

which is within this study modelled using equation presented in Kristensen and Binghman (2017b), 

and it depends on engine load. Since this equation is developed for marine diesel/gas oil 

(MDO/MGO), it is assumed that ship is using this fuel and therefore CO2 emission is estimated using: 

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐹𝑂𝐶 · 𝐶𝐹 

 

𝐶𝐹 is the carbon conversion factor equal to 3.206 t CO2 / t fuel. 

 

To complete prediction of annual FOC/CO2 emission, AE consumption has to be modelled. During 

ship sail, AE consumption is estimated using IMO (2014). For consumption during anchorage in port 

basin and berthing ME and AE loads presented in Budiyanto et al. (2022) are used. This has enabled 

the estimation of annual FOC and CO2 emission for a given ship. The code is developed in Python 

and as an input it only requires the list of IMO numbers for which results are required. For a given 

IMO number and one year, FOC and CO2 emissions are estimated on both yearly level and for every 

four hour throughout whole year. This estimation takes on average around 0.1 CPU hours per ship. 

 

3. Results and discussion 

 

Within this section the developed model is validated by comparison of the modelled required power 

used for propulsion, FOC used for propulsion, and annual CO2 emissions with the ones from in-

service data and with the actual annual CO2 emissions obtained with DCS for several containerships 

with different out of DD timings. After the validity of developed model is demonstrated, a case study 

is prepared in which Hempel model is used to estimate CO2 emissions in 2024 for ships which will be 

dry-docked in the beginning of 2024 with the hypothesis that they will have the same operational 

profile as they had in 2023. Two scenarios are analyzed including antifouling protection using mid-

tier SPC and low friction coatings. 

 

3.1. Validation of Hempel model for annual CO2 emission 

 

Validation of Hempel model is carried out using three different comparisons: 
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a) Required power used for propulsion is compared within speed-power plots and on timeseries 

level 

b) FOC/CO2 emission used for propulsion on annual level 

c) Total annual CO2 emission 

In total data from 40 different containerships is compared for 2022: data from 23 containerships is 

used for a), data from 10 containerships is used for b) and data from 17 containerships is used for c).  

 

3.1.1. Required power used for propulsion 

 

To demonstrate the validity of power prediction method within Hempel model, modelled values are 

compared with the ones from in-service data on timeseries level as well as in speed-power plots. In 

total, data from 23 containerships are compared, which have different time since DD, coatings as well 

as different sizes. Due to extensiveness of the obtained results, within Fig.2. speed-power plot is 

presented for four ships, while in Fig.3. required power for propulsion on timeseries level is provided 

for those ships as well. Table I presents the characteristics of compared ships in Figs.2. and 3. To 

demonstrate results of validation for all ships, a power function is fitted to in-service data and 

modelled data. Thereafter, these equations are used for the calculation of required power for propul-

sion for average speed in 2022 and relative deviations are obtained and presented in Table I. 

 

 

 
 
Fig.2: Speed-Power plots for Ship A (upper left), Ship B (upper right), Ship C (lower left) and Ship D 

(lower right) 

10000

20000

30000

40000

50000

0 5 10 15 20 25

P
, 
k
W

SOG, knots

Noon data

Model

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25

P
, 
k
W

SOG, knots

Noon data

Model

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

P
, 
k
W

SOG, knots

Noon data

Model

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

P
, 
k
W

SOG, knots

Noon data

Model



 

84 

 

 

 

 
Fig.3: Required power for propulsion timeseries for Ship A (first), Ship B (second), Ship C (third) and 

Ship D (fourth) 
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As can be seen from Table I, containerships of different sizes are compared with varying age, time 

since DD and different antifouling coating applied. The results of comparison show that there is no 

clear tendency in the predictions, in the sense that there is no correlation between relative deviation 

and any of the input variables, like age of vessel, type of coating, time since DD, etc. Based on the 

comparison, it can be concluded that Hempel model can yield minor deviations at some moments in 

time. However, it seems that the model is capable of adequately capturing required power used for 

propulsion both on timeseries level, but as a speed-power relationship, as well. 

 

Table I: The characteristics of compared ships and obtained relative deviations (RD) 
Ship Coating Months since DD in 

mid 2022 

Age in 2022 Ship size RD,% 

A Low friction coating 39 8 8000-11999 TEU -1.23 

B Mid-tier SPC 18 7 8000-11999 TEU -0.95 

C Low friction coating 13 16 3000-7999 TEU -0.73 

D Low friction coating 13 16 3000-7999 TEU 1.38 

E Low friction coating 38 13 8000-11999 TEU 2.92 

F Mid-tier SPC 8 16 8000-11999 TEU 4.15 

G Low friction coating 13 11 8000-11999 TEU 10.76 

H Mid-tier SPC 15 12 8000-11999 TEU 17.1 

I Low friction coating 33 13 8000-11999 TEU -8.17 

J Mid-tier SPC 22 7 17000+ TEU -9.39 

K Null => Low-tier SPC 9 1 12000-16999 TEU 3.11 

L Null => Low-tier SPC 7 1 12000-16999 TEU 3.15 

M Mid-tier SPC 6 0 12000-16999 TEU -6.14 

N Low friction coating 10 21 3000-7999 TEU 1.61 

O Low friction coating 8 16 3000-7999 TEU 1.39 

P Low friction coating 9 16 3000-7999 TEU -0.60 

Q Low friction coating 13 14 2000-2999 TEU 9.38 

R Mid-tier SPC 51 14 2000-2999 TEU -10.25 

S Mid-tier SPC 21 11 8000-11999 TEU -19.17 

T Low friction coating 24 7 8000-11999 TEU -1.63 

U Low friction coating 10 6 12000-16999 TEU -13.21 

V Low friction coating 8 6 8000-11999 TEU -13.34 

W Null => Low-tier SPC 41 10 8000-11999 TEU -11.85 

 

3.1.2. FOC/CO2 emission used for propulsion on annual level 

 

After the validity of Hempel model in the power prediction is demonstrated, a comparison of 

FOC/CO2 emission used for propulsion on annual level, distance sailed, as well as the transport work 

obtained using Hempel model and in-service data is made for 10 containerships, Table II. Transport 

work is calculated in the same way as attained CII, however annual CO2 emission for propulsion is 

used instead of annual total CO2 emission. 

 

Table II: The obtained RD for annual distance, FOC/CO2 and transport work 
Ship RD in annual distance,% RD in annual FOC/CO2,% RD in transport work,% 

W -0.82 -7.59 -6.83 

U 4.66 5.29 0.60 

V 6.39 3.15 -3.04 

T 4.14 15.10 10.53 

O 3.12 -10.78 -13.48 

N 0.64 -1.73 -2.35 

C 2.29 5.20 2.84 

D 3.24 1.53 -1.65 

P 8.04 1.34 -6.21 

S 3.90 -4.92 -8.49 

 

Discrepancies in the prediction of annual distances can be attributed to AIS data. It is obvious that due 

to possible discrepancies in operational conditions within in-service and AIS data, annual FOC/CO2 
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emission will also be affected. Other cause of discrepancy is for sure caused by all assumptions 

applied in Hempel model. Considering this, it can be concluded that reasonable agreement between 

obtained results using Hempel model and in-service data is achieved, Table II. The prediction of 

annual FOC/CO2 emission of containership enables the possibility of evaluating the mitigation 

potential of various measures, as well as the analysis of possible fuel savings and payback period 

(PP). Thus, in this study the mitigation potential of low friction coating is demonstrated and possible 

financial gains are provided in subsection 3.2. 

 

3.1.3. Total annual CO2 emission 

 

After the validity of power prediction and annual FOC/CO2 emission used for propulsion is 

successfully presented, the comparison between total annual CO2 emission obtained using Hempel 

model and in-service data is made for 17 containerships. The comparison is made for annual distance, 

annual CO2 emissions and attained CII in terms of RD between result obtained using Hempel model 

and in-service data, Table III.  

 

Table III: Characteristics of compared ships and obtained RD for annual distance, annual CO2 

emissions and attained CII 

Ship Coating 

Months since 

DD in mid 

2022 

Age in 

2022 
Ship size 

RD in 

annual 

distance,% 

RD in 

annual 

FOC/CO2,% 

RD in 

attained 

CII,% 

1 
Null => Low-

tier SPC 
19 26 2000-2999 TEU -6.47 7.4 14.8 

2 Low-tier SPC 36 23 1000-1999 TEU -1.17 8.7 10.0 

3 
Low friction 

coating 
10 21 3000-7999 TEU -2.07 -6.1 -4.1 

4 
Null => Low-

tier SPC 
15 16 3000-7999 TEU -1.38 5.0 6.5 

5 
Low friction 

coating 
13 16 3000-7999 TEU 0.95 -2.2 -3.1 

6 
Low friction 

coating 
8 16 3000-7999 TEU 0.48 -3.8 -4.2 

7 Mid-tier SPC 16 15 2000-2999 TEU -4.77 4.2 9.4 

8 
Null => Low-

tier SPC 
9 16 1000-1999 TEU -6.48 -14.3 -8.4 

9 
Null => Low-

tier SPC 
45 14 3000-7999 TEU -6.61 -0.7 6.3 

10 
Low friction 

coating 
37 13 3000-7999 TEU -0.56 -1.4 -0.8 

11 
Null => Low-

tier SPC 
14 11 8000-11999 TEU -0.18 -4.9 -4.8 

12 
Null => Low-

tier SPC 
14 11 2000-2999 TEU -2.95 -11.8 -9.1 

13 
Null => Low-

tier SPC 
15 11 12000-16,999 TEU -8.45 -2.6 6.4 

14 
Low friction 

coating 
9 10 12000-16,999 TEU -3.48 3.8 7.5 

15 
Null => Low-

tier SPC 
5 10 12000-16,999 TEU -6.01 -2.2 4.0 

16 
Null => Low-

tier SPC 
6 10 12000-16,999 TEU 4.45 14.3 9.4 

17 Mid-tier SPC 35 8 3000-7999 TEU -3.80 3.1 7.2 

 

From the obtained results of comparison, it can be concluded that Hempel model can reliably predict 

total annual CO2 emission of containership using the available input data. Current models in the 

literature are mostly validated only for power used for propulsion on ship level, and not for total CO2 

emissions, or they are validated for total CO2 emission but not on ship level. The validation on ship 

level is usually made for only limited amount of in-service data and number of ships, which highlights 

the importance of this study, where quite extensive validation study is presented. Therefore, it can be 

concluded that the proposed model for power prediction and energy consumption of containership 
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fleet can contribute to valuable insights related to potential savings of mitigation measures, but also in 

the bottom-up analysis of the global containership fleet. 

 

3.2. Case study – benefits of low friction coatings 

 

After an extensive validation of Hempel model, which can be used for the prediction of annual 

FOC/CO2 emission, the developed model is used to demonstrate the benefits of low friction coating 

over the mid-tier SPC coating. In total, 88 containerships are analyzed representing ships which will 

be dry-docked in the beginning of 2024. We assumed that the analyzed ships will have the same 

operational profile as in 2023. To demonstrate benefits in terms of saved fuel/CO2 emissions, 

containerships of various sizes, age, average operational speed, and activity levels are investigated, 

Table IV. In addition, PP is determined for every containership by considering obtained financial 

savings due to saved fuel costs, purchasing and DD costs, Sfiris et al. (2023). An average MDO price 

of 760 $/t is used within the calculations, which is MDO price in the mid-January 2024 in Rotterdam, 

https://shipandbunker.com/prices#MGO. In order to calculate PP, annual FOC savings should be 

evaluated, because the possible savings will increase with time since DD is increasing, due to speed 

loss/power increase values for different coatings. Namely, power increase will be higher for the mid-

tier SPC coatings than for the top-tier silicone coating, and this relative difference amongst coatings 

will be more pronounced for longer time since DD. Also, an out-of-dock power reduction is also 

important, but this benefit is constant during entire DD period and does not depend on time since DD. 

Aside from the fuel savings which are present due to the application of low friction coating, new 

regulative – EU ETS will also affect PP. Namely, if one of the analyzed ship will have certain port 

call within EU through entire DD period, it will have to pay carbon tax and in that sense ship which 

has low friction coating will emit less CO2 and pay less tax, which will again reduce PP. This is not 

taken into the consideration within current case study. 

 

Table IV: The characteristics of containerships in case study 

Average operational speed 

(Vaverage) in 2023, knots 
Activity in 2023 Age in 2024 Ship size, TEU 

7.7 – 20.8 0.284 – 0.839 5, 10, 15, 20 368 - 23756 

 

On average annual fuel/CO2 emission savings for analyzed containership fleet is slightly above 7%, 

with higher savings reaching to 8.9% for ships with higher operational speeds and activity levels. 

Since higher operational speeds and activity levels are mostly related to larger vessels, it can be 

concluded that benefits of low friction coatings are more pronounced for them. In terms of PP, 77 of 

88 analyzed ships have PP of 12 months or lower, which demonstrates high financial savings which 

are obtained by application of low friction coating. Remaining ships have PP within second year of 

DD period, while there is only one ship with PP equal to 25 months. The higher PP are related to 

lower operational speeds, mostly below 10 knots and lower activity levels. 

 

To further analyze the impact of input variables on PP, statistical analysis is carried out. Correlations 

between the dependent (PP) and the independent variables (Vaverage, activity, design speed (V), wetted 

surface area (S), DWT, block coefficient (CB), length between perpendiculars (LPP), width (B) and 

draught (T)) are expressed through the Pearson’s correlation coefficient. Partial correlations between 

the dependent and each of the independent variables controlling for the other independent variables 

are presented in Table V. 

 

Within Table V the Pearson’s correlation coefficients between all the variables are presented. All 

correlations are found to be statistically significant at p<0.01. The high correlation obtained between 

S, ship’s main particulars and DWT demonstrate that those variables practically convey the same 

information. Namely, wetted surface area is estimated using these variables, so these results are 

expected and obvious. Interestingly, the correlation between average operational speed with design 

speed is not that high, which indicates that they may convey different information. This can be 

explained with the fact that some vessels apply slow steaming, which then causes that average 

operational speed is significantly lower than design speed. 

https://shipandbunker.com/prices#MGO
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Table V: Correlation matrix and partial correlations of the dependent and independent variables 

 Vaverage Activity S Age DWT CB LPP B T V PP 

Vaverage 1 0.554 0.571 -0.029 0.517 -0.272 0.625 0.576 0.663 0.680 -0.873 

Activity  1 0.449 -0.089 0.409 -0.041 0.501 0.429 0.451 0.391 -0.678 

S   1 -0.220 0.991 0.084 0.985 0.988 0.939 0.630 -0.557 

Age    1 -0.268 -0.053 -0.163 -0.265 -0.112 0.183 -0.027 

DWT     1 0.133 0.957 0.979 0.899 0.552 -0.507 

CB      1 0.006 0.013 -0.060 -0.100 0.184 

LPP       1 0.973 0.954 0.702 -0.603 

B        1 0.940 0.623 -0.556 

T         1 0.770 -0.661 

V          1 -0.675 

PP* -0.812 -0.477 -0.147 -0.107 -0.134 -0.113 -0.150 -0.133 -0.227 -0.228 1 

* - Partial correlations (controlling for the effect of Vaverage or Activity). 

 

In order to understand better the nature of the interdependencies of the variables, partial correlations 

are also calculated. The partial correlation of the variables with PP controlling for the effect of the 

other variables are presented in the last row of Table V. The partial correlation of average operational 

speed with PP remains significantly high, evidencing that the correlation of these two variables does 

not depend on the effect of other variables. The same applies to the correlation between activity and 

PP, while other partial correlations are not significant, meaning that partial correlation of these 

variables with PP depends on the effect of other variables. 

 

Fig.4.shows the dependency of PP on each input variable. For almost all input variables clear trend 

can be seen, Fig.4., the higher values of input variables are causing reduction in PP, which can be also 

seen from Table V. For input variables block coefficient and age no clear trend can be noticed, and for 

the rest of input variables power function seems to adequately describe the trend. For ship’s main 

particulars, wetted surface area and DWT it seems that there is a certain threshold, after PP is always 

lower than certain limit. This can be of particular importance, because for such containerships the 

application of low friction coatings seems more profitable than for other containerships which have 

lower input variables than this threshold. As already written, the input variables average operational 

speed and activity have the highest partial correlation with PP, Table V. With the analysis of the 

obtained results it has been found that PP will be within first year of DD period, if average operational 

speed is above 11.6 knots and activity level is above 60%, regardless of all other input variables. 

 

This case study demonstrates that for larger containerships, or for containerships which sail on 

average above 11.6 knots and have activity level above 60%, PP will be within the first year after DD, 

which presents high financial benefits of applying the low friction coatings in DD in comparison to 

the application of mid-tier SPC. 

 

The obtained fuel savings due to the application of low friction coating are not only important in 

terms of financial savings, but also from regulative perspective as well. Currently, if a vessel would 

get a D-rating 3 years in a row or E rating for one year, shipowner is obliged to submit a SEEMP Part 

III Corrective Actions Plan before DCS Statement of Compliance can be issued. This requirement can 

be even stricter after revision of the regulations from IMO in 2025. Amongst the analyzed 88 ships, 

47 ships will be obliged to submit a SEEMP Part III Corrective Actions Plan during DD period, if 

mid-tier SPC coating is applied in DD and no additional mitigation measure is considered. However, 

if low friction coating is applied in DD, only 22 ships will be obliged to submit a SEEMP Part III 

Corrective Actions Plan during DD period, meaning that for 25 ships application of low friction 

coating is sufficient mitigation measure for the entire DD period. This highlights the importance of 

considering low friction coatings as a very valuable measure for mitigation GHG emissions. 
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Fig.4: Dependency of PP and input variables 
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4. Conclusions 

 

This study presents a comprehensive model for predicting annual CO2 emissions of containerships 

based on AIS data. It accounts for ship performance in real service conditions and can be used for the 

prediction of the fuel consumption and CO2 emissions of both main and auxiliary engines. The 

proposed model is validated by comparison with the actual annual CO2 emissions obtained with Data 

Collection System (DCS) for several containerships. What is more, predicted power for propulsion is 

compared on timestamp level, as well as within speed power plots in order to further demonstrate its 

prediction capabilities. The developed model can be applied for the evaluation of mitigation potential 

of various measures. Since this evaluation is based on real service conditions it can provide more 

accurate actual savings than the evaluations obtained for certain conditions, most often design 

conditions. 

 

A case study which demonstrates the benefits of low friction coatings is prepared, and 88 

containerships which will be dry-docked in the beginning of 2024 are analyzed. To demonstrate 

benefits of low friction coatings in terms of saved fuel/CO2 emissions over the mid-tier SPC, 

containerships of various sizes, age, average operational speed and activity levels are investigated. In 

addition to, PP is calculated for every analyzed ship to further emphasize the financial benefits of the 

low friction coatings. It has been shown that on average annual fuel/CO2 emission savings for 

analyzed containership fleet is slightly above 7% of total consumption, with higher savings reaching 

to 8.9% for ships with higher operational speeds and activity levels. The obtained savings represent 

very valuable performance gain as well as the reduction of CO2 emissions. This is even more 

important because of the three main reasons: 

 

1) The application of low friction coatings does not have any additional side effects, such as 

slow steaming which causes slowing down of the transport process. 

2) The obtained savings are calculated for real service conditions and not for design conditions, 

for which mitigation potential is usually higher. Furthermore, the obtained reductions in CO2 

emissions are presented as savings of total ship emissions, which include both ME and AE 

emissions. This is of particular importance, because in the literature other mitigation measures 

are often investigated by evaluation of their possible gains only in terms of reduction of CO2 

emission used only for propulsion. 

3) In terms of PP, it is demonstrated that the most of the analyzed ships have PP within the first 

year of DD period, which demonstrates high financial savings due to the application of low 

friction coating. 

 

With statistical analysis it has been demonstrated that the most influential variable on PP is an average 

operational speed followed by activity level. The impact of other input variables on PP is also 

investigated and it has been demonstrated that for ship’s main particulars, wetted surface area and 

DWT there is an certain threshold after PP will be lower than certain limit. It has been demonstrated 

that larger containerships, or for containerships which sail on average above 11.6 knots and have 

activity level above 60%, will have PP within the first year of DD period. This highlights financial 

benefits of applying the low friction coatings in DD in comparison to the application of mid-tier SPC. 

Aside from the financial benefits related to the application of low friction coatings, the benefits from 

regulative perspective are also demonstrated. Thus, it has been estimated that 47 out of 88 

investigated ships will be obliged to submit a SEEMP Part III Corrective Actions Plan during DD 

period, if mid-tier SPC coating is applied in DD and no additional mitigation measure is considered. 

However, if low friction coating is applied in DD this will be sufficient mitigation measure for 25 out 

of 47 ships for the entire DD period. This highlights the importance of considering low friction 

coatings as a very valuable measure for mitigation GHG emissions. 
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Abstract 

 

Vessel hydrodynamic performance is a critical factor influencing operational costs and environ-

mental impact, making accurate prediction of power demand a crucial aspect for all stakeholders 

involved. Conventional approaches often employ more complex machine learning models, but this 

paper challenges the notion that linear models cannot achieve comparable performance. Their 

simplicity, robustness, and well-understood theoretical foundations make them a valuable tool for 

predictive applications that require extrapolation capabilities. By leveraging careful feature engi-

neering based on Marine domain knowledge and data pre-processing, we demonstrate that linear 

models can effectively predict required power and associated fuel consumption, under varying 

operational and external weather conditions. The problem formulation intentionally refrains from 

treating the task as a time-series problem, aligning with specific applications where the inclusion of 

the time factor as an input feature is not feasible by design. Extensive testing across a diverse range 

of vessel types validates the effectiveness of this approach, achieving comparable accuracy to more 

sophisticated models like Gradient Boosting Trees and Neural Networks. These findings highlight the 

potential of linear models in maritime predictive analytics, enabling a wide range of applications. 

This research underscores the importance of careful feature engineering and data pre-processing in 

enhancing predictive performance. Future research should explore broader applications and 

mitigation of identified limitations.  

 

1. Introduction 

 

The maritime industry has been undergoing a significant transformation over the past two decades. In 

view of stricter regulations concerning environmental preservation, maritime stakeholders are focused 

on efficient vessel monitoring. The hydrodynamic performance of ships plays a critical role, influ-

encing both operational costs and greenhouse gas emissions. With the rise of Internet of Things (IoT) 

solutions and high-frequency data collection, ship operators have access to vast amounts of data, 

enabling more effective vessel monitoring and performance prediction, Gupta (2011), N.N. (2022). 

 

Traditionally, ship performance prediction has relied on methods ranging from analytical approaches 

based on design draft and computational fluid dynamics (CFD) to machine learning (ML). While 

complex ML models (e.g., neural networks) have gained popularity for their ability to handle non-

linear relationships in data, there is growing evidence that simpler, interpretable models can be 

comparably effective with proper feature engineering, Gupta (2022), Kriezis (2022).  

 

This study shall demonstrate that linear models, when properly engineered with domain-specific 

features based on cleaned data, can predict effectively vessel performance under varying operational 

and external weather conditions with comparable accuracy to more sophisticated models. The 

analysis was based on 2 years’ data from 100 vessels, predominantly bulk carriers, and tankers. This 

extensive data collection allows comprehensive validation and testing across a diverse range of vessel 

types and operating conditions, ensuring the generalizability and robustness of the findings. 

 

In summary, this study aims to bridge the gap in maritime predictive analytics by leveraging the 

strengths of linear models in conjunction with sophisticated feature engineering and data pre-
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processing techniques. The results have the potential to offer ship operators a more accessible, 

efficient, and environmentally friendly approach to vessel performance monitoring and prediction. 

 

1.1. Pre-processing framework 

 

In the context of in-service ship performance, the current industry standard has been ISO 19030, ISO 

(2019). It provides an initial framework for collecting, storing, cleaning and validating measurements, 

that is essential to ensure the quality and reliability of available data, Chen et al. (2023). These 

processes are not free of criticism as employed methods regarding data filtering have been 

characterized as strict, Valchev et al. (2022), and may lead to a misrepresenting dataset, Farkas et al. 

(2020). In the context of this paper, data pre-processing will mainly focus on the methods used to rule 

out erroneous measurements, mainly distortions, disturbances, spikes, drop-outs, and null values, 

Dalheim and Steen (2020a), which are potentially present to the acquired data. This process is an 

invaluable part of any meaningful analysis.  

 

Data preparation includes extracting, compiling, screening, and validating the data to give it a 

structure, format, and quality suitable for further processing, ISO (2015). For the present study, all 

examined vessels were equipped with a continuous data acquisition system, with a sampling rate of 

15 seconds. All acquired measurements are retrieved, synchronized, and compiled in a tabular format 

and sorted sequentially based on the timestamp, using a 1-minute average.  

 

High-frequency data introduces additional considerations due to the inherent unreliability of certain 

sensors, Skamagkas (2022). For instance, even with regular cleaning and calibration speed logs and 

draft transducers remain sensitive to changes in speed and external conditions due to their operating 

principles, i.e., Doppler and Venturi effects respectively, Gupta (2022), Dalheim and Steen (2021), 

requiring extensive validation before analysis. Another challenge arises from the use of weather 

hindcast data, which are retrieved with a 1-hour resolution and are linearly interpolated in space and 

time over the vessel’s course. This process can be further affected by drifting or missing GPS latitude 

values, Karagiannidis (2019), potentially compromising the accuracy and completeness of the 

weather data obtained from third-party providers. To address these issues, validation and imputation 

mechanisms are employed by the monitoring system to fill out missing or nonsensical values, which 

are beyond the scope of this paper. A method to correct acquired draft values inspired by the work of 

Gupta (2021) is used in our pre-processing framework. 

 

Another consideration is the physical systems properties that are being analyzed, and the context in 

which the data will be used, Karagiannidis (2019). This study aims to accurately predict the power 

requirements of the analyzed vessels under the diverse external influences they encounter during 

operation. A ship is a slow-moving system and can be assumed to be in a state of equilibrium, but is 

not free from transitional states or external phenomena i.e., accelerations/decelerations, ballasting 

operations, maneuvering, wind gusts, etc., Gupta et al. (2021). Therefore, it is necessary to identify 

non-stationary behavior for an unbiased interpretation of the data, Dalheim and Steen (2020a). 

 

The final pre-processing framework employed in the present study includes the setting of domain, 

asset, and operational lower and upper limits, filtering, weather criteria, and a stationary check to fur-

ther rule out acceleration related measurements. Upper and lower domain wise limits were set for 

each parameter, to rule out outliers depending on their natural significance. Asset specific limits were 

set based on vessels’ characteristics and equipment (e.g., Main engines MCR). A layer of operational 

limits was also implemented to avoid numerical errors, or operations not associated (i.e., non-sailing 

conditions, rudder angle, shallow waters) with intended predicted operation, Coraddu et al. (2019). 

 

The next layer, which includes established criteria of ISO 19030 was then applied by splitting the da-

taset into 10-minute non-overlapping consecutive blocks and implementing Chauvenet’s criterions in 

and with use of stipulated validation criteria as per ISO 19030. When the data of one parameter was 

null or invalid according to Chauvenet’s criterion, the complete data point was marked as invalid (i.e., 

all measurements with the same timestamp). If a data point was marked as invalid according to the 
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validation criteria, then the entire data block was marked as invalid. Unsteady samples remaining 

were filtered out by the use of a sliding-window quasi-steady filter based on the work of Dalheim and 

Steen (2020a), with appropriate window length and sensitivity parameters for each quantity, Dalheim 

and Steen (2020b). 

 

  
Fig.1: Pre-processing framework data flagging examples for timeseries data from different signal 

perspective, Rotational Speed (left plot) and Rudder Angle (right plot). 

 

 
Fig.2: Pre-processing framework data flagging areas from Speed-Power perspective. Black markers 

represent the remaining datapoints (not flagged). The colored markers are the excluded 

(flagged) datapoints; colored according to the flagged method.  

 

Environmental conditions based filtering in ISO 19030 has been criticized as strict, Valchev et al. 

(2022), imposing an upper limit to wind speed of 4BF independent of ship characteristics, Sogihara 

(2019); on the other hand, greater wind speeds have been associated with inconsistent and unreliable 

measurements, Coraddu et al. (2019). This limitation is established since wind waves directly corre-

late with wind speed. Given the absence of a correction method for added wave resistance in the cur-

rent standard, setting this limit is a logical precaution against exaggerated sea states. Of course, the 

absence of wind generated waves does not necessarily mean the absence of swell which can be a sig-

nificant part of the added wave resistance, Tsarsitalidis and Rossopoulos (2018). Data from studied 

vessels revealed that a notable part of their operation lies outside the above limit and the intended 

prediction capabilities of the developed features. To this end, ISO (2015) proposed limits were em-

ployed, which are applied in relation to the ship’s length and include effects of both wind generated 

waves and swell, in line with Park et al. (2018). In addition, a directional filter was applied for waves 

as proposed by Carchen et al. (2019), where a strictness parameter is employed so that head seas have 

a more relaxed filtering, since effects on wake from following seas can be misleading. 

 

  



 

97 

1.2. Draft Correction 

 

Draft measuring sensors are not calibrated, nor designed to accurately measure the draft of a moving 

ship. Moreover, the response of a ship to external waves further distorts the pressure sensor measure-

ments, inferring noise in following calculations. In the context of employing sensor data for our re-

search correcting the rather noisy and unreliable during operation, draft measurements are significant, 

as along with speed, are the most prominent contributors in the calm-water resistance of slow-

steaming ships. To counteract those effects, present in the acquired data, a method to identify the non-

sailing periods was employed and draft measurements coinciding with those periods were interpolat-

ed, resulting in a smooth signal during sailing periods, with satisfactory results. The resulting draft 

was further validated against the measured by limiting the mean absolute percentage error (MAPE) 

according to a well-defined threshold, but further validation against other sources (e.g., Noon Re-

ports), and refinement is needed to identify plausible inaccuracies.  

 

The results are illustrated in Fig.3, where the corrected daft during sailing is represented by continu-

ous green sections, against the raw measurements of the sensors in orange. The corrected draft and 

trim were used for the estimation of draft dependent quantities, based on regression equations of their 

hydrostatic data or well-known methods used in preliminary design process. 

 

 
Fig.3: Preprocessing: Draft smoothing 

 

2. Modeling Methodology 

 

A shaft power prediction model based on external conditions is a common regression modeling task 

in the maritime industry. This type of modeling involves identifying the statistical relationship 

between a dependent variable (shaft power) and a set of independent variables (e.g., ship speed, draft, 

weather conditions). While machine learning (ML) incorporates a vast and diverse range of models 

and implementations, this study selects one model from each main family: linear, tree-based, and 

neural networks.  

 

Table I: Machine Learning model families with Python implementations used in this paper 

Estimator Family Algorithm Implementation (library) 

Linear Linear Regression (lr) sklearn 

Tree based Gradient Boosting Trees (gbt) LightGBM 

Neural Network Multi-layer Perceptron (mlp) sklearn 

 

2.1. Linear Model Assumptions 

 

In statistical modeling, there is an unknown mapping function from input (e.g. the set of the 

independent variables) to the output (i.e. the target variable Y) as the following: 

 

𝑌 = 𝑓(𝑋) + 𝜀 

 

where 𝑓 is the mapping function and 𝜀 is the residuals error. 
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To estimate the unknown function, a statistical model needs to be fitted over the training data. In 

linear models, some assumptions are typically made for the underlying relationship between the X 

and Y. Generally, when the function 𝑓 characterized by assumptions regarding its form, then it 

pertains to a parametric model. These underlying assumptions are linearity, homoscedasticity, 

residuals normality and absence of multicollinearity. 

 

Linearity means that the model forces the prediction to be a linear combination of features. In other 

words, a change in the response 𝑌 associated with one-unit change in predictors 𝑋𝑗 is constant, 

regardless of the value of 𝑋𝑗, James et al. (2023). The study examines sets of predictors ranging from 

simpler to more complex, developed through feature engineering detailed in Section 4, building on 

existing research, Gupta (2022), Kriezis (2022), and introducing novel physics-based features 

(Section 4.4). The linearity assumption between all the study features and the target (shaft power) is 

given by Pearson correlation coefficient Fig.4. 

 

 
Fig.4: Pearson correlation coefficient (PCC) between Main Engine Power and features. The plot is 

calculated for cleaned data over 100 vessels for 2-year period. Bars are sorted based on the 

Pearson Correlation value 

 

Homoscedasticity means that the error terms exhibit constant variance. To evaluate this assumption, 

comparing diagrams of actual versus fitted values which is a common practice to assess alignment. In 

Fig.4, from the leftmost to the rightmost plots, the models present decreasing homoscedasticity. 

Specifically, in the right-hand plot the depicted model demonstrates a lack of constant variance 

evidenced by the divergence between the actual and predicted values. 

 

   
Fig.4: Actual vs Predicted Power plot (Homoscedasticity detection) across three different ships 

 

Additionally, Fig.5. (right) depicts a common scenario observed in vessels operating at constant main 

engine power. This behavior while potentially achieving low error metric (e.g. MAPE) signifies a 

non-generalizable model. No homoscedastic residuals (heteroscedastic) are a strong indicator of 

linear models’ lack of generalization across the range of the target variable (Shaft Power in our case). 

However, achieving homoscedasticity is challenging in non-linear problems characterized by 

complex patterns.  
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Residuals normality is another assumption for linear models. In Fig.6, the plots depict the assumption 

of normal distribution of the residuals. In the left plot the assumption of the normal distribution is 

validated compared to models from different ships. 

 

  
 

Fig.6: Residuals Normality across three different ships. The left plot has a close to normal distribution 

compared to other ships. 

 

Finally, the multicollinearity assumption refers to the situation in which the variables in a regression 

might be correlated with each other. The primary techniques for multicollinearity detections are 

Pearson Correlation Coefficient, Variance inflation factor and eigenvalue method, Noora (2020). In 

this study Pearson Correlation is used, Fig.7. 

 

 
Fig.5: Pearson Correlation Coefficient for Highly Engineered Features 

 

3. Feature Engineering 

 

This section outlines an incremental feature engineering approach. Prior studies have demonstrated 

that models employed only raw signals, such as Vessel Through Water Speed, Draft Trim etc. have 

poor goodness of fit, Kriezis (2022). This phenomenon is particularly pronounced in linear estimators 

due to the inherent non-linear relationship between features and the target variable. To demonstrate 

the effectiveness of feature engineering in transforming non-linear effects into linear relationships and 

enhancing model performance, this study places a particular emphasis on linear models. 

 

3.1. Scenario - No Engineered 

 

This scenario contains only raw features, without any transformation. (Raw features are signals 

without any transformations. However, they are not pure high frequency signals. As they have pass 

through our pre-processing framework. Moreover, sources such Draft or Trim have an extra 
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processing level for corrections and smoothing.) This model will be used as a baseline model. The 

feature-set is based on other research, Kriezis (2022), and is inspired from generalized formulas for 

vessel performance, Gupta (2022). No grid search or statistical feature selection techniques are 

applied, rather domain expertise and insights from past studies. Table II gives the selected features. 

 

Table II: No engineered feature-set 

Scenarios Feature Formula 

No Engineered [baseline] Draft Mean 

Draft Trim 

Through Water Speed 

True Wind Speed 

Combined Wave Sign. Height 

Combined Wave Period 

𝐷𝑚𝑒𝑎𝑛 

𝐷𝑡𝑟𝑖𝑚 

𝑉𝑤 

𝑉𝑤𝑖𝑛𝑑 

𝐻𝑝 

𝑇𝑝 

 

The features represent a combination of operational-related features, and measures of weather 

external conditions for wind and sea. For sea state, we either treat waves as separate components, 

divided into wind waves and swell, or use the combined wave characteristics, Lakshmynarayanana 

(2017). All relevant measurements are directly obtained from the weather provider. The model 

intentionally excludes directional features, such as wind or wave angle (0˚- 360˚), due to their non-

linear relationship with the target variable. Employing these features directly can lead to model 

degradation and suboptimal performance. 

 

3.2. Scenario - Light Engineered 

 

The starting point of feature engineering in maritime industry, is based on the widely accepted speed-

power law. This law assumes a relation 𝑃 ≈ Vc where 𝑐 ≈ 3 when the speed is around the design 

draft, MAN ES (2023). However, it’s important to mention that other studies have proven that the 

previous law tends to underestimate the power in lower speeds, Berthelsen (2021). Features from 

other studies, Kriezis (2022), were selected, Table III. 

 

Table III: Light engineered feature-set 

Scenarios Feature Formula 

Light Engineered 

 

 

Draft Mean 

Through Water Speed Cube Power 

True Wind Speed Cube Power 

Combined Wave Sig. Height 

Combined Wave Period 

𝐷𝑚𝑒𝑎𝑛 

𝑉𝑤
3 

𝑉𝑤𝑖𝑛𝑑
3  

𝐻𝑠 

𝑇𝑝 

 

3.3. Scenario - Middle Engineered 

 

Middle engineered models introduce more advanced features by encapsulating the ship’s form 

characteristics providing insights about the hydrodynamic behavior of the ship. The Admiralty 

coefficient summarizes the relationship between speed, power and displacement, Gupta et al. (2021), 

in near calm weather conditions. The generalized form of admiralty coefficient is: 

 

𝑃 = ∇m𝑉𝑤
𝑛 (1) 

 

with the most common values be 𝑚 =
2

3
 and 𝑛 = 3.  

 

However, the speed-power relationship of ships with modern hulls cannot be described well by this 

formula, Gupta et al. (2021), and various studies have attempted estimate the m, n factors, with one 

data-driven method proposed by Berthelsen (2021). The approach is based on high frequency data, 

achieved by sorting speed data and finding the change points in the signal where the slope of speed-
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power alters. In this scenario, complexity of the model is minimized by employing only a few essen-

tial features and utilizing the original admiralty factors. The features are inspired by theoretical for-

mulas for wave and wind resistance as described in Dekeyser (2022). Table IV gives the selected 

features. 

 

Table IV: Middle engineered feature-set 

Scenarios Feature Formula 

Middle Engineered 

 

 

 

Admiralty Coefficient 
∇𝑚𝑒𝑎𝑛

2
3 𝑉𝑤

3 

Wind Product (long.) 𝑉𝑤𝑖𝑛𝑑𝑟𝑒𝑙cos (𝜃𝑟𝑒𝑙) 
Wind Product (trans.) 𝑉𝑤𝑖𝑛𝑑𝑟𝑒𝑙sin (𝜃𝑟𝑒𝑙) 
Wave Power (long.) 𝐻𝑝

2𝑇𝑝cos (𝑎𝑟𝑒𝑙) 

Wave Power (trans.) 𝐻𝑝
2𝑇𝑝sin (𝑎𝑟𝑒𝑙) 

 

3.4. Scenario - Highly Engineered 

 

Highly engineered features are based on ship resistance theory. This approach integrates empirical 

formulas which can transform nonlinear effects to linear. This type of modeling is targeted for a 

parametrical model e.g. a linear estimator, driven to follow linear model assumptions (section 2.1). 

The generated set will be a collection of features based on calm conditions and weather added 

resistances. The ship power resistances can be modeled according to ISO 19030: 

 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝐶𝑎𝑙𝑚 + 𝑅𝐴𝐴 + 𝑅𝐴𝑊 + 𝑅𝐴𝐻 + 𝑅𝑂𝑡ℎ𝑒𝑟𝑠 (2) 

 

𝑅𝐶𝑎𝑙𝑚 is the ship resistance in calm water conditions, 𝑅𝐴𝐴, 𝑅𝐴𝑊 are the added resistances due to wind 

and waves and 𝑅𝐴𝐻 is the added resistance due to increase in hull friction and 𝑅𝑂𝑡ℎ𝑒𝑟𝑠 includes other 

losses due to other effects e.g. steering. The calm resistance can be split into: 

 
𝑅𝑐𝑎𝑙𝑚 = 𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠 + 𝑅𝑤𝑚𝑎𝑘𝑖𝑛𝑔 + 𝑅𝑎𝑐𝑎𝑙𝑚 (3) 

with, 

 𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 𝐶𝑣𝑖𝑠𝑐𝑜𝑢𝑠

1

2
𝜌𝑤𝑆𝑉𝑤

2 (4) 

and 

 𝑅𝑤𝑎𝑣𝑒𝑚𝑎𝑘𝑖𝑛𝑔 = 𝐶𝑤𝑚𝑎𝑘𝑖𝑛𝑔
1

2
𝜌𝑤𝑆𝑉𝑤

2 (5) 

and  

𝑅𝑎𝑐𝑎𝑙𝑚 =  
1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(0∘)𝑉𝐺

2 (6) 

 

𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠 is the hull viscous (friction) resistance, 𝑅𝑤𝑚𝑎𝑘𝑖𝑛𝑔 is the wave making resistance and 𝑅𝑎𝑐𝑎𝑙𝑚 

is the air resistance caused by ship moving through calm air. To overcome this fundamental difficulty 

to satisfy the similarity laws, a major (first) assumption was made by Froude that the frictional and 

the wave-making resistances are independent, and the frictional-resistance coefficient depends only 

on the Reynolds number. The wave-making or residual resistance coefficient depends only on the 

Froude number. 

𝐶𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =  𝑓1 (
𝑉𝑤𝐿

𝑣
) (7) 

  

and

𝐶𝑤𝑚𝑎𝑘𝑖𝑛𝑔 =  𝑓2 (
𝑉𝑤

√𝑔𝐿
) (8) 

 

𝑉 is the vessel through water speed, 𝐿 is the length between perpendiculars, 𝑔 is the gravity 

acceleration, 𝑣 is the kinematic viscosity. For wave-making we generalize the term by creating a 
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polynomial function (3rd power) of Froude number: 

𝑓2 (
𝑉

√𝑔𝐿
) = 𝐴0𝐶𝑓𝐹𝑛

3 + 𝐴1𝐶𝑓𝐹𝑛
2 + 𝐴2𝐶𝑓𝐹𝑛

1 + 𝐴3𝐶𝑓 (9) 

 
For added wind resistances, 𝑅𝐴𝐴 following ISO 19030 is:  

 

𝑅𝐴𝐴 =
1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(𝜃𝑟𝑒𝑙)𝑉𝑤𝑖𝑛𝑑𝑟𝑒𝑙

2 −
1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(0∘)𝑉𝐺

2 (10) 

 

In ship modeling the wave resistance is the most challenging factor to model. But due to high 

complexity, non-linear factors and stochastic effects, we need to simplify the problem and create a 

generic formula with the most important factors. In bibliography there are plenty of methods for 

modeling this term. For this study we choose to use the formula, Hansen (2011): 

 

𝑅𝐴𝑊 = 0.64𝑔𝐻𝑆
2𝐶𝐵𝜌𝑤

𝐵2

3𝐿𝑂𝐴

(2 + cos(𝛼𝑟𝑒𝑙)) (11) 

 

The shaft power needed for moving the ship with a certain speed through water is based on a 

simplified formula which includes propeller efficiency and mechanical efficiencies (shaft, gearbox): 

 
𝑃𝑠ℎ𝑎𝑓𝑡 = 𝑓(𝑅𝑡𝑜𝑡𝑎𝑙𝑉𝑤) (12) 

 

𝑃𝑐𝑎𝑙𝑚 represents the needed power to overcome the calm-water resistances. 𝑅𝐴𝐴, 𝑅𝐴𝑊 are the added 

resistances due to wind and waves, 𝑃𝐴𝐻. To simplify our study, we did not formulate the 𝑃𝐴𝐻, 𝑃𝑂𝑡ℎ𝑒𝑟𝑠 

with extra features, because these terms have high complexity due to ship-specific factors, DeKeyser 

and Mittendorf (2022). Table V gives the selected features are. 

 

Table V: Highly engineered features mathematical formulas summary 

Features Analytical Formula 

𝑃𝑤𝑐𝑎𝑙𝑚 

 
((𝑓1 (

𝑉𝐿

𝑣
) + 𝑓2 (

𝑉

√𝑔𝐿
))

1

2
𝜌𝑤𝑆𝑉𝑤

2) 𝑉𝑤 

𝑃𝑎𝑐𝑎𝑙𝑚 

 
(
1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(0∘)𝑉𝐺

2)𝑉𝑤 

𝑃𝐴𝐴 
(

1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(𝜃𝑟𝑒𝑙)𝑉𝑤𝑖𝑛𝑑𝑟𝑒𝑙

2 −
1

2
𝜌𝑎𝐴𝑋𝑉𝐶𝐴𝐴(0∘)𝑉𝐺

2) 𝑉𝑤   

𝑃𝐴𝑊 
(0.64𝑔𝐻𝑆

2𝐶𝐵𝜌𝑤

𝐵2

3𝐿𝑂𝐴
(2 + cos (𝛼𝑟𝑒𝑙)))𝑉𝑤 

 

4. Evaluation Framework 

 

The evaluation phase includes models’ accuracy and access the predictive and generalization ability 

as the overall quality of the results. A suboptimal evaluation, in terms of test dataset selection, can 

include biases and false results. In this study, an extensive evaluation framework is selected in terms 

of number of ships, types, and testing periods. An arbitrary sample of 100 ships of a diverse range of 

vessel types with bulk carriers and tankers representing the majority, followed by other categories 

such as vehicle carriers and container ships. A period of two years was selected for giving various 

patterns in our models for training and testing phase  

 

In the framework setup, the target was to define how to generalize our models and simulate a near 

real world training-test setup. This is achieved by a “sliding window” format by using a re- smaller 

re-train period than train period, Fig.8. This setup is more computationally intensive compared to a 

“tumbling window” but it’s unbiased to start-end of the training-test periods; every data point has 

been included either as training or test. In time-related problems models are re-trained frequently by 
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keeping the balance between data drift effect (i.e. Hull Fouling in our problem) and re-training cost. 

We intentionally avoided traditional cross-validation techniques with random folds or data shuffling 

due to the risk of data leakage. This leakage can lead to overfitting and subsequently, poor perfor-

mance in real-world deployment. 

 

To comprehensively assess model fit we employed several error metrics which are not biased from 

target scale. The study primary metric is the MAPE, used to evaluate the accuracy of a prediction of a 

model by measuring the average percentage difference of the predicted value from the actual values: 

 

MAPE =
1

𝑁
∑  

𝑁

𝑖=1

|
𝑃𝑖 − �̂�𝑖

�̂�𝑖

| (13) 

 

As secondary metric we used the Root Mean Squared Percentage Error (RMSPE). The RMSPE 

measures the accuracy of the model through comparison of the predicted with the actual values by 

calculating the average of the squared percentage differences between them: 

  

RMSPE = √
1

𝑛
∑  

𝑛

𝑖=1

(
𝑃𝑖 − �̂�𝑖

𝑃𝑖
)

2

(14) 

 
MAPE and RMSPE are complement metrics. MAPE is more sensitive to smaller values and 
RMSPE is more sensitive to larger values.  
 
Another metric for linear models’ goodness of fit is the R-squared (R2). R-squared is very 

valuable for linear models but it’s not suitable for non-linear models. In this study we want to 

compare the goodness of fit not only of linear models but also for nonlinear, Spiess (2010). In 

conclusion, the performance of our models can be evaluated by calculating a single statistic, such as 

the 95th percentile of the error distribution of MAPE, or by visualizing the distribution of MAPE 

values across multiple evaluation windows for different ships. 

 
Evaluation framework configuration was determined as much closer to a real-time implementation. 

The training period was selected for having a balance between data variability and time-related 

factors such as fouling effect. Since the number of rows in the test data varies across windows and 

ships, it is more representative to use a weighted metric for evaluation. Our weights are integers, 

giving us the ability to obtain a natural weighted metric by simply repeating elements.  

 

 
Fig.8: Evaluation framework scoring across test windows and ships. Evaluation framework 

configuration is total period of 730 days, train period 180 days, test period 15 days and re-train 

period 15 days. 

 

4.1. Evaluation Results 

 

Evaluation results can be highly correlated with the test dataset specifics and could be biased from 
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extreme rare conditions. To address this issue, bad weather conditions were excluded, as described in 

Section 2.1. This decision not only removes conditions that are difficult or impossible to model but 

also reduces the potential for evaluation process biases. MAPE was chosen as the primary metric for 

evaluation due to its ease of interpretation compared to RMSPE. Additionally, two percentiles (50th 

and 95th) were used to provide more comprehensive and informative conclusions. 

 

Gradient Boosting Trees (GBT) model is tested only for a subset of feature engineering scenarios, 

only middle, highly engineered features. This estimator is a computationally intensive algorithm and 

comparable slower. For future study a more extensive set of runs can be done also in GBT models. 

The following table summarizes the MAPE score for test, train: 

 

Table VI: Gradient Boosting Trees run results. The results were sorted based on test 95th MAPE 

percentile. In all gbt tests used the same configuration, learning rate: 0.1, estimators: 200, 

alpha: 2 lambda: 2 

 

Features 

Train 

MAPE 95% 

Test 

MAPE 95% 

Test 

MAPE 50% 

Train Time 

(secs) 

Highly Eng. 0.075 0.223 0.080 120-140 

Middle Eng. 0.042 0.247 0.083 120-140 
 

Multi-layer Perceptron (MLP) is the selected model for Neural networks (NN). This type of model 

consists of an input layer, hidden layers, and an output layer. The input layer has the size of the 

number of input features, while the hidden layer depends on the specific complexity of the problem. 

The output layer is comprised of a single node responsible for generating the final prediction value. In 

numerous applications, the optimal number of hidden layers and nodes is determined through a grid 

search of various configurations. However, in this study, we opted to utilize a structure established 

from prior research, DeKeyser (2022). Neural networks (NN) are highly sensitive to hyperparameters 

values. While a comprehensive and computationally demanding evaluation framework was employed 

for this study, grid search with cross-validation for NN hyperparameter tuning was excluded due to 

time constraints and computational limitations. Instead, the model configuration was chosen through 

a combination of prior research, DeKeyser (2022). The cases in Table VII were taken place. 

 

Table VII: Multi-layer Perceptron run results. The results were sorted based on test 95th MAPE 

percentile. In all mlp tests used the same configuration hidden layers (64, 32, 16, 8), Max 

Iterations: 1000, Activation: Relu, Solver Adam, Alpha: 0.001. 

Features Train 

MAPE 95% 

Test 

MAPE 95% 

Test 

MAPE 50% 

Train Time 

(secs) 

Highly Eng.  0.081 0.219 0.079 60-70 

Middle Eng. 0.238 0.331 0.126 1-2 

 

For solver, the Adam method is selected as it is a fast and low memory solver; this decision signifi-

cantly accelerated the testing procedure. Middle Eng. Runs trained was stopping after few epochs 

with no improving, as a result the training time be extremely fast for middle engineer features. On the 

other hand, by using the highly engineering features there was significant improvement in model 

performance and training time. 

 

Table VIII: Linear models run results. Runs are sorted based on test 95th MAPE percentile. 50th 

MAPE was also presented only for test dataset 

 

Features 

Train 

MAPE 95% 

Test 

MAPE 95% 

Test 

MAPE 50% 

Train Time 

(secs) 

Highly Eng. 0.110 0.218 0.071 0.05-0.010 

Middle Eng. 0.128 0.242 0.085 0.05-0.010 

Light Eng. 0.133 0.259 0.089 0.010-0.015 

Raw Features [baseline] 0.140 0.265 0.095 0.05-0.010 
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To implement the linear regression model, a standard linear regression estimator was employed. 

Additionally, a standard scaler was utilized alongside the estimator. As linear regression was 

significantly faster estimator than MLP and GBT, we conducted various runs. The cases examined are 

presented in Table VIII. Table IX summarizes the best models for each estimator family.  

 

Table IX: Best estimator results. Runs are sorted based on test 95th MAPE percentile. 50th, 95th 

RMSPE is also provided 

 

Runs 

Train 

MAPE 95% 
Test 

MAPE 95% 
Train 

RMSPE 95% 

Test 

RMSPE 95% 

lr (Highly Eng.) 0.110 0.217 15.48 24.81 

mlp (Highly Eng.) 0.081 0.219 12.24 25.71 

gbt (Highly Eng.) 0.075 0.223 10.38 25.85 

 

Applying feature engineering led significant improvement to model fitting; highly engineered model 

significantly outperforms the other feature engineering techniques. Linear models have slightly lower 

test scores (MAPE & RMSPE) and better ratio between train-test dataset. Conversely, Gradient 

Boosting Trees show a sign of overfitting, with lower train scores and larger test score gaps. 

 

Given the significant disparity between the 50th and 95th percentiles, we decided to visualize its 

distribution to gain a more comprehensive understanding of model performance. The following plot 

visualizes the distribution of MAPE scores for each model's test data. A lower area under the curve 

and a more left-skewed distribution indicates superior model fit. This visualization provides addi-

tional insights beyond percentile-based metrics, offering a broader perspective on model performance 

consistency. 

 

 
Fig.6: MAPE Score distribution across best feature engineered model for Linear Regression, Multi-

layer Perceptron and Gradient Boosting Trees 

 

While MAPE and RMSPE are valuable performance metrics, they mark potential prediction 

underestimation and overestimation patterns. To identify these patterns, additional plots are 

necessary. Plotting actual vs. predicted power and non-absolute residuals can offer clearer insights. 

Analyzing data from multiple vessels, with varying power scales, necessitates normalization for 

meaningful comparison. In Fig.10 we have the actual vs predicted and residuals ratio 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑅𝑎𝑡𝑖𝑜 =  
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐴𝑐𝑡𝑢𝑎𝑙
(17) 

  

for the highly engineered model for each family. Notably, a consistent underperformance pattern is 

present in low powers and an overestimate at high powers. 

 

This pattern was possibly caused from the operational profile of the ships. Captains often reduce 

speed during unfavorable weather conditions and tend to operate at high speeds with lower drafts, 
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such as in ballast condition. Fehler! Verweisquelle konnte nicht gefunden werden. further supports 

this established behavior. 
Linear Regression 

 

 

Grad. Boosting Trees 

 

 
Multi-layer Perceptron  

 
Fig.7: Different model families evaluation plots for all Vessels. For each family, the left plot presents 

actual-prediction and the right the residual ratio (Actual-Predicted)/Actual across Actual Main 

Engine Power 

 

 
Fig.11: Vessel Through Water Spearman Correlation with Weather signals and draft 

 

The correlation values presented here are derived from diverse vessel types over a long period after 

applying the data cleaning procedures detailed in (section 1). This cleaning process excluded high 
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impactful weather conditions, which consequently lowered the correlation between weather 

conditions and speed. 

4.2.  Identified limitations 

 

The previous analysis encompassed an extensive evaluation on multiple training-test datasets for a 

significant number of vessels, utilizing a sliding window approach. Within this overview, we high-

light several vessel behavioral patterns that notably influence the outcomes. These examples are in-

tended solely to demonstrate the comparative performance of various modeling approaches namely 

Gradient Boosting Trees, Multilayer Perceptron Regressor, and Linear Regressions underscoring their 

identified limitations in the context of this study. These observations are offered for the reader's con-

sideration, without delving into a detailed analysis, and will inform future research directions and 

analyses. 

 

Our analysis provides insights into the challenges of modeling vessel behavior, especially when 

extrapolating speeds beyond the typical operational range and addressing constant power patterns. 

When training data is limited to a narrower speed range, models struggle to accurately predict condi-

tions outside of this range. Gradient Boosted Trees, for example, demonstrate difficulties in 

extrapolating to unseen speeds, leading to static predictions that fail to account for increased power 

demands at higher speeds. In contrast, linear regression models show better extrapolation capabilities 

under the assumption of a linear speed-power relationship, yet they can overestimate power require-

ments in certain scenarios. 

 

Furthermore, the study highlights the issue of modeling constant main engine power across diverse 

operational patterns. A model trained on a very narrow range of power values. This pattern affects 

model generalization and prediction accuracy in cases with main engine power out of seen range. 

This limitation is observed across various modeling approaches, indicating a common challenge in 

accurately capturing the nuanced relationship between speed and power across different vessel behav-

iors. The analysis underscores the importance of considering a wide array of operational conditions 

and the inherent limitations of current modeling techniques in predicting vessel performance under 

unrepresented or extreme conditions. 

 

This study's predictive model encounters a significant limitation by not incorporating hull fouling, a 

factor critical for understanding variations in a ship's fuel efficiency and power requirements. The 

model's training over a two-year period without accounting for hull condition changes or cleaning 

events introduces substantial inaccuracies, given the complex, multi-variate nature of hull fouling 

influenced by factors such as idle time and sea temperature, Uzun et al. (2019). This complexity 

necessitates a sophisticated analytical approach that goes beyond time-related deterioration estimates.  

 

Additionally, the model's predictive accuracy is further compromised by aleatoric and epistemic 

uncertainties, including the variability in operational conditions and a lack of comprehensive 

knowledge on maintenance schedules and load variations, Kiachopoulos (2020), Ventikos and 

Psaraftis (2013). Future improvements should focus on integrating data on hull condition, mainte-

nance activities, and environmental factors to refine the accuracy of power demand and fuel 

consumption predictions, underscoring the need for collaborative data collection efforts within the 

maritime industry. 

 

5. Conclusion  

 

The motivation of this study stems from the lack of extensive analysis of linear estimators in the 

maritime domain. While linear models are often employed as benchmark models in other studies, 

they are generally used without the benefit of extensive feature engineering. This study aims to bridge 

this gap by exploring the potential of linear models in maritime applications, leveraging their 

strengths in interpretability, low computational demands, and predictable extrapolation.  

 

Evaluation framework strategy was computationally intensive limiting our scope of testing 
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parameters train-test ratio, hyperparameter tuning etc. Our study scope does not focus on the 

estimator side leaving out hyper-parameters fine-tuning. Instead, extra focus is given on data 

processing and features engineering, especially for linear models. The lack of fine-tuning could 

significantly affect high configurable estimators (Gradient Boosting Trees, Multi-layer Perceptron) 

compared to a few hyper-parameters (or none) linear model. 

 

This study underscores the importance of meticulous data cleaning, while striving to prevent over-

cleaning and preserving essential noise patterns that influence model performance. Incremental 

feature engineering with various features built upon other studies and mathematical formulas helped 

to understand the nature of the problem. Highly engineered, physics-based features, not only im-

proved performance across model families but made the linear models outperform non-linear 

estimators.  

 

While recognizing the nonlinearity nature of our problem, we acknowledge that neural networks have 

the potential to overperform linear models' performance given certain considerations. These include 

extensive hyperparameter tuning, access to a large dataset, and potentially an expanded feature set, 

particularly if linear assumptions do not constrain feasible feature engineering. However, when 

dealing with limited, noisy, or poorly engineered datasets, linear models can exhibit enhanced 

prediction capabilities, especially in extrapolation regions. 

 

Several comparative studies, including work by N.N. (2022), Gkerekos (2019), Ferreira (2022), have 

evaluated the performance of similar model families, demonstrating that high-variance models like 

neural networks outperform linear models. However, it's crucial to recognize that different studies, 

due to variations in evaluation processes, dataset size and composition, can yield contrasting results. 

This study emphasizes the importance of considering the specific context of each study when 

interpreting its findings. Notably, when we account these inherent differences, the evaluation results 

across these studies show a level of proximity, suggesting the possibility of comparable performance 

under relevant conditions. 
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Abstract

 

NAPA, Norsepower, and Sumitomo Heavy Industries Marine & Engineering collaborated in a project 

to validate emissions reduction potential of wind propulsion and voyage optimization. In the initial 

stage of ship design phase, individual vessel performance and voyage conditions are meticulously con-

sidered using NAPA's voyage simulation technology which is a unique blend of hydrodynamic modeling 

technology and big data analytics for which data generated by Norsepower and Sumitomo are given. 

The results of this project include evaluations for reduction of CO2 emissions compliance with Carbon 

Intensity Indicator (CII) and EU-ETS regulations, along with a cost impact analysis. In this project, the 

simulation model is refined to incorporate nuanced changes in vessel performance in real sea condi-

tions equipped with wind propulsion systems. This leads to the development of an enhanced voyage 

simulation and optimization tool that contributes to the improved performance of wind-assisted ships. 

Looking forward, the three companies aim for commercialization post-2024, and their collaboration 

extends towards designing and developing carbon-neutral ships, optimizing operations, and fostering 

partnerships with maritime companies to promote a sustainable future.  

 

1. Introduction 

 

The maritime industry's journey towards decarbonization is sharply accentuated by the International 

Maritime Organization's (IMO) ambitious targets. In an environment where new technologies and so-

lutions such as alternative fuels are shrouded in uncertainty, wind-assisted ship technology emerges as 

a practical and immediate approach to decarbonization. In addition, the EU Emissions Trading System 

(EU-ETS) influences the economics of shipping by increasing operational costs while also promoting 

the acceleration of decarbonization efforts.  

 

This project aims to meticulously evaluate the role of wind-assisted ships in enhancing both the envi-

ronmental sustainability and economic efficiency of maritime operations, capitalizing on advanced voy-

age simulation and optimization technologies. 

 

The project entails a comprehensive assessment of the viability of wind-assisted ships in actual mari-

time operations, with a focus on both economic and environmental impacts. It refines our virtual voyage 

simulation and optimization technologies, tailoring them specifically for wind-assisted ships to augment 

their operational effectiveness. 

 

The objective of this study is to explore the feasibility and practicality of wind-assisted ships in pro-

moting decarbonization within the maritime sector. We investigate how voyage simulation is instru-

mental in evaluating operational performance and economic viability at the design stage, and how voy-

age optimization can further contribute to reducing CO2 emissions and fuel consumption in wind-as-

sisted ship operations. This exploration sets the stage for a future where sustainable maritime practices 

are not just envisioned but realized. 
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2. Methodology 

 

2.1. Simulation platform  

 

In this project, NAPA Fleet Intelligence and its related technologies are used. NAPA Fleet Intelligence 

is a ship performance monitoring and voyage optimization platform that utilizes a ship-specific 

performance model and various data such as Automatic Identification System (AIS), weather, current, 

nautical charts, and performance-related data from ships, including automation signals and/or noon 

reports, as shown in Figs.1 and 2. NAPA Fleet Intelligence’s voyage optimization feature, also known 

as weather routing, has the potential to reduce ship emissions by optimizing voyages for any sea 

passage. 

 

 
Fig.1: NAPA Fleet Intelligence for voyage simulation and voyage optimization 

  

 
Fig.2: NAPA Fleet Intelligence concept 

 

In NAPA Fleet Intelligence, the subject ship’s fuel consumption and CO2 production are simulated 

based on the ship-specific model and the given operational conditions: route, speed, loading condition, 

water depth, current, wave and wind conditions. 
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All the forces acting on the ship are calculated with hydrodynamics models as shown in Fig.3. 

Quartering waves and wind cause a drifting angle to ship’s propagation, which needs to be balanced by 

the rudder. The rudder forces are also included in the model together with the hydrodynamic coefficients 

accounting for the additional resistance due to the drift angle. 

 

Factoring in all the above-mentioned forces, the required thrust to propel the ship at a given speed is 

calculated by solving the force balance. The thrust is calculated considering the propulsion arrangement, 

including propeller diameter, pitch ratio, thrust deduction, and wake factor. Then the required propeller 

revolutions per minute (rpm) and the corresponding required power from the main engine are 

calculated. Finally, based on these calculations, the fuel consumption and CO2 production are 

determined.  

 

 
Fig.3: Calculation of required propulsion power for each timestamp 

 

2.2. Rotor sail model 

 

Rotor sails are large cylindrical sails that use Magnus effect to create thrust for the ship utilizing the 

prevailing wind. The sails are rotated with an electrical motor, and the rotation of the sail surface, 

together with the wind, results in a pressure differential which pushes the ship forward. This enables 

the reduction of power required by the propeller propulsion system while maintaining the same 

operational speed, thus reducing the fuel consumption and the related emissions of the ship. 

Alternatively, the propeller propulsion power can be kept constant, and the ship speed can be increased. 

The benefit of using rotor sails is their very high lift production capability compared to the conventional 

sails making the rotor sails very compact in size while still providing sufficient thrust forces at sufficient 

scale for ship propulsion. 

 

 
Fig.4: VLOC Sea Zhoushan equipped with five Norsepower Rotor Sails™ 
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The Norsepower Rotor Sails (NPRS) utilize the working principle described above. As of writing (Q1 

2024), there are seven large cargo ships sailing with Norsepower Rotor Sails and the current production 

backlog is expected to more than double the number in coming 12 months. The performance of the sails 

has been extensively validated by third parties, including NAPA, over the years through using both sea-

trial type tests and long-term data collection and analysis, Norsepower (2023).  

 

As mentioned, the rotor sails exhibit very high lift production capability, making them a particularly 

interesting technology for weather routing. By making relatively small deviations in the course over 

ground, the benefits of wind propulsion can be significantly improved. Previous research has shown 

that the weather routing can potentially double the savings from wind propulsion, Mason et al. (2023), 

and that this effect is more pronounced for high lift devices compared to passive devices, Dupuy et al. 

(2023). 

 

For reliable fuel saving estimation and optimization, understanding the performance of the sails on a 

given ship is crucial. While the sea-trial procedures and the long-term measurement campaigns 

mentioned earlier have been crucial for validating the overall performance, a need for high-frequency 

performance data has emerged to further improve and optimize not only the technical performance of 

the sails but also the operational performance of the ship. Thus, providing accurate, real-time and full-

scale measurements of the rotor sail performance is highly important. For this purpose, Norsepower 

Sentient Control™ (NPSC) was developed. This tool combines real-time performance measurement 

with smart control features and enables individual control of the sails to optimize both the aerodynamics 

of the sail system and their impact on the hydrodynamic behavior of the vessel. In this study, only 

aerodynamics data collected from NPSC were considered, as the hydrodynamic optimization was 

conducted using the method described chapter 2.3. 

 

The ship can significantly influence the flow field around it, especially in the vicinity of the ship where 

the anemometers are typically located. In their review of three sea trials of wind assisted ships, Werner 

et. al. (2022) assessed the uncertainty of the wind measurement as among the largest error sources in 

measuring the thrust produced by wind propulsion. Therefore, relying solely on ship anemometer data 

may not provide a sufficient basis for analysis. The solution deployed for the purpose of this paper is to 

use non-intrusive measurements of the freestream wind conditions using LIDAR technology, and to 

couple that with high-frequency measurements on the sails. With this approach, assessing the 

effectiveness of the sails in “undisturbed wind conditions” becomes possible. This enables reliable 

mapping of the sail performance onto the weather statistics. An example of such measurements is 

detailed in Dupuy et al. (2023). 

 

For the purpose of this paper, the standard performance model of rotor sails was tuned using the 

aerodynamic data collected from the NPSC and LIDAR measurements as described above. 

 

2.3. Rotor control system  

 

The force generated by sails contributes not only to propulsive force enhancing thrust performance but 

also introduces a lateral force acting as drag, which deteriorates propulsive power. This lateral force, 

dependent on sail configuration, can induce a yaw moment (weather helm), necessitating rudder 

steering for course keeping, yet this action heightens propulsive drag due to the rudder adjustment.  

 

To address this issue, Sumitomo Heavy Industries, Ltd. has devised a system capable of managing the 

yaw moment through the independent manipulation of rotor sails, facilitating course keeping with 

minimal counter-steering required. Consequently, the independent control of each rotor sail is effective 

to reduce CO2 emissions, Fig.5. 

 

In an effort to validate this concept, a model test was conducted as shown in Fig.6, verifying that rotor 

sails can effectively control the yaw moment, Fig.7. 
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Fig.5: Concept of Rotor control system 

 

 
Fig.6: Model test for Rotor control system 

 

 
Fig.7: Model test result of Rotor control system 

 

2.4. Integrated ship performance model and voyage simulation  

 

NAPA Fleet Intelligence develops a ship performance model based on actual design information such 

as hull resistance, wind resistance, self-propulsion factors, propeller characteristics, specific fuel 

consumption of main engine, wave added resistance, among others, for a subject ship. This model is 

further enhanced by integrating the previously mentioned rotor sail model and control system for 

comprehensive voyage simulations. The generated propulsive and lateral forces by the rotors are 
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calculated based on the apparent wind angle and speed encountered by the ship. The project's ship 

performance model logic diagram is illustrated in Fig.8.  

 

In this project, voyage simulations are conducted utilizing the NAPA Fleet Intelligence platform, 

incorporating an integrated ship performance model along with global weather, current data, and 

nautical charts. This approach enables the creation of realistic "virtual" voyage simulations for a specific 

ship. 

 

 
Fig.8: NAPA ship performance model logic diagram 

 

2.5. Case study scenarios and evaluation method  

 

The project encompasses three distinct studies, the themes of which are outlined in Table I. 

 

Table I: Study themes 

 Theme  Used Model  

Study 1 

 

Evaluates the decarbonization effectiveness and 

economic viability of rotor sails [Annual] 

1, 2  

Study 2 

 

Evaluates the decarbonization effectiveness and 

economic viability of rotor sails [Seasonal] 

1, 2 

Study 3 

 

Investigates the impact of rotor sails' lateral forces 

and the control of yaw moments 

2, 3, 4  

 

In the studies, a Panamax tanker equipped with four rotor sails undergoes voyage simulations across 

various scenarios. The ship and rotor sail specifications are detailed, with four distinct ship performance 

models (Model 1 through 4) utilized to evaluate rotor effects, lateral forces, and yaw moment control, 

as depicted in Fig.9. Model 1 represents a ship without any rotor sails. Model 2 showcases the ship with 

four rotor sails (rotor A, B, C and D) operating at uniform rotational speeds, omitting lateral force 

considerations. Model 3, similar to Model 2, includes lateral force considerations, inducing a yaw 

moment necessitating rudder action for balance. Model 4, while similar, differentiates by adjusting the 

rotational speed of the rear rotor (D) to counteract the yaw moment, potentially reducing rudder usage. 

 

 



117 

Ship model configuration 

Ship type  : Panamax Tanker 

Length over all   : 229 m 

Breadth   : 32.3 m 

Design Draft  : 11.3 m 

Deadweight  : 77,000 t 

Main engine power : 7,170 kW 

Service speed  : 14.1 kn 

 

Wind assisted device configuration 

Device type  : Flettner rotor 

Specification  : 30 m(H) x 5 m(D) x 4 pcs 

 

 
Fig.9: Performance models for simulation 

 

The operational profile of the ship, including routes, loading conditions, and departure/arrival time, is 

clearly outlined in the studies. This encompasses routes between Europe and North America (Route 1 

and 2), Japan and Australia (Route 3 and 4), and Singapore and Africa (Route 5 and 6), with departures 

on the 1st and 15th of each month to lessen the impact of daily weather variations. Annually, this results 

in 24 voyages per route for one year. Route specifics, like duration and draft, are detailed in Fig.10. 

Notably, some voyages encountered errors due to adverse weather and those voyages are excluded from 

the studies. For each voyage, the following four cases are studied: 

 

(a) without rotor sails and without route optimization (short route) 

(b) without rotor sails but with route optimization 

(c) with rotor sails but no route optimization (short route) 

(d) with rotor sails and route optimization 

 

Studies 1 and 2 focus on assessing the decarbonization effectiveness and economic impact of wind-

assisted ships with rotor sails over one year and each season, respectively, through voyage simulations 
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departing on the 1st and 15th of every month in 2022, using actual weather data. Study 3 aims to refine 

the simulation model by incorporating Sumitomo’s newly developed rotor control method, which 

addresses the rotors’ lateral forces and neutralizes the yaw moment induced by the rotors. This 

enhancement also leverages Norsepower’s rotor sail characteristics, refined through measured data. In 

the Study 3, a selected route is re-evaluated using this advanced simulation model.  

 

 
Fig.10: Studied routes and operational conditions 

 

Evaluations in this project are conducted by comparing various metrics such as fuel oil consumption 

(FOC), CO2 emissions, distance traveled, fuel cost, and Carbon Intensity Indicator (CII) across cases 

(a) through (d).  

 

The project employs specific assumptions and methodologies for simulations and evaluation as 

described below: 

 

1) The energy requirements and CO2 emissions associated with operating rotor sails are not in-

cluded in the simulations.  

2) CII is calculated not as an annual metric but on a per-voyage basis, excluding fuel consumptions 

related to auxiliary engines and port operations. Therefore, in this study, the CII is determined 

by dividing the CO2 emissions produced by the main engine during the voyage by the voyage's 

distance and the ship's deadweight. 

3) In Studies 1 and 2, lateral forces and yaw moments induced by rotor sails are not considered. 

However, in Study 3, these factors are taken into account.  

4) For fuel cost saving calculations, the following pricing and allowance are used: 

a. LSFO (Low Sulfur Fuel Oil) price = 710.5 USD/ton  

b. MGO (Marine Gas Oil) price = 1002 USD/ton  

c. EU-ETS allowance = 100 USD/ton  

5) In the Emission Control Area (ECA), MGO is selected as fuel for the main engine.  

6) Nowcast weather and current forecasts are utilized for weather routing optimization. 

7) The optimization target is to minimize the fuel cost for the planned voyage without altering the 

departure and arrival time.  

 

3. Results 

 

3.1. Study 1 Effectiveness of decarbonization and economics of rotor sails (Annual) 

 

Study 1 conducts voyage simulations for six predefined routes and operational conditions as described 

in Fig.10, spanning a one-year period in 2022. A summary of these routes—comparing simulation re-

sults for a year between a conventional ship (case (b), without rotor sails, incorporating weather routing) 

and a wind-assisted ship (case (d), with rotor sails and weather routing)—is presented in Fig.11. 

 

From the results of Study 1, it is anticipated that average Fuel Oil Consumption (FOC) savings and CO2 

reductions will range from approximately 10 to 30%, with average fuel cost savings of about 16k to 
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37k USD per voyage and CO2 emission reductions between 72 to 165 tons per voyage, depending on 

the route. 

 

For Route 1 and Route 2, which include a European port (Amsterdam), the expected reduction in EU-

ETS allowance costs is estimated to be about 6.1k to 7.8k USD per voyage, assuming an allowance cost 

of 100 USD per ton of CO2 and 100% adoption from 2027 onwards. 

 

 
Fig.11: Summary of simulations for Study 1 (conventional ship (b) vs wind-assisted ship (d))  

 

Figs.12 and 13 present examples of one-year simulation results. The comparison across cases (a), (b), 

(c), and (d) reveals that rotor sails significantly reduce CO2 emissions, and weather routing can further 

enhance this effect, enabling greater CO2 reductions and FOC savings as routes are optimized for better 

rotor sail performance, particularly with "good wind" conditions, characterized by strong wind blowing 

from the side of the ship. 

 

This study reveals that the average CO2 reduction across six routes over one year is 17.5% when 

comparing ships equipped with rotor sails and weather routing (case (d)) against those without rotor 

sails but with weather routing (case (b)). Furthermore, the average impact of weather routing on CO2 

reduction for these routes and simulation cases over one year is 10.8% for ships with rotor sails 

(comparing case (d) to (c)) and 6.3% for ships without rotor sails (comparing case (b) to (a)). 

 

 
Fig.12: Example case result (Route 1: Amsterdam to New York)  



120 

b  

Fig.13: Example case result (Route 6: Signapore to Luanda) 

 
3.2. Study 2 Effectiveness of decarbonization and economics of rotor sails (Seasons)  

 

Study 2 conducts voyage simulations for six predefined routes and operational conditions as outlined 

in Fig.10, covering each season (Spring, Summer, Autumn, and Winter) of 2022. A summary of these 

routes—seasonal simulation results comparing a conventional ship (case (b), without rotor sails, with 

weather routing) with a wind-assisted ship (case (d), with rotor sails, with weather routing)—is pre-

sented in Table II. 

 

The effectiveness of wind-assisted ships varies, with FOC savings and CO2 reductions ranging from 

5% to 42% in this study, depending on the routes, and seasonal variations within the same route are 

evident, Fig.14. This study finds that the benefits of wind-assisted devices, such as rotor sails, are more 

pronounced in winter than in summer, owing to stronger winds and routes optimized for such conditions. 

The definition of seasons varies between the northern and southern hemispheres, Fig.14. 

 

Table II: Anticipated seasonal and route-specific CO2 reductions and FOC savings achieved through 

rotor sails and voyage optimization (Comparison between case (b) and case (d)) 

  Spring Summer Autumn Winter 

Route 1: Amsterdam – New 

York 

CO2 

LSFO 

MGO 

-24% 

-37mt 

-13mt 

-12% 

-27mt 

+3mt 

-17% 

-18mt 

-15mt 

-22% 

-32mt 

-13mt 

Route 2: New York – Am-

sterdam 

CO2 

LSFO 

MGO 

-30% 

-46mt 

-1mt 

-21% 

-40mt 

+10mt 

-32% 

-57mt 

+7mt 

-42% 

-62mt 

-7mt 

Route 3: CHIBA – Port 

Botany 

CO2 

LSFO 

-21% 

-46mt 

-14% 

-30mt 

-11% 

-23mt 

-22% 

-48mt 

Route 4: Wandoo – Yoko-

hama 

CO2 

LSFO 

-15% 

-25mt 

-14% 

-22mt 

-12% 

-21mt 

-14% 

-24mt 

Route 5: Escravos – Singa-

pore 

CO2 

LSFO 

-12% 

-61mt 

-5% 

-24mt 

-9% 

-46mt 

-16% 

-79mt 

Route 6: Singapore – Lu-

anda 

CO2 

LSFO 

-15% 

-53mt 

-11% 

-40mt 

-11% 

-41mt 

-15% 

-57mt 
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Fig.14: Comparison of CO2 reduction between summer and winter in different routes 

 

Fig.15 illustrates the cost savings and Carbon Intensity Indicator (CII) ratings for Route 1 (Amsterdam 

to New York) across each season, serving as a representative example. Following the methodology of 

Study 1, a one-year simulation demonstrates anticipated significant cost savings due to fuel efficiency 

and CO2 reduction. Furthermore, the CII rating is expected to improve correspondingly. 

 

  
Fig.15: Cost savings and CII ratings of Route 1 (Amsterdam to NewYork) for each seasons 

(conventional ship (b) vs wind-assisted ship (d))  

 

Detailed results for Route 1 across each season are illustrated in Figs.16 to 19. These findings indicate 

that wind-assisted ships utilizing weather routing encounter more favorable winds, enhancing the 

efficiency of wind-assisted devices, such as rotor sails. Consequently, CO2 reductions of 12% to 24% 

are anticipated on this route, varying by season. 
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Fig.16: Example results [Spring] for Route 1 (Amsterdam to NewYork)  

 

 
Fig.17: Example results [Summer] for Route 1 (Amsterdam to NewYork)  

 

 
Fig.18: Example results [Autumn] for Route 1 (Amsterdam to NewYork)  
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Fig.19: Example results [Winter] for Route 1 (Amsterdam to NewYork)  

 

3.3. Study 3 Effect of rotors’ lateral force consideration and yaw moment control 

 

Study 3 incorporates rotor-induced lateral forces to simulate more realistic conditions. Furthermore, 

this study assesses the efficacy of Sumitomo's technique for neutralizing yaw moments by adjusting the 

speed of the fourth rotor (D). The investigation unfolds in two phases. Initially, the basic behavior of 

each simulation model depicted in Fig.9 is analyzed under ideal conditions. Subsequently, mirroring 

the approach of Studies 1 and 2, voyage simulations for Route 3 are undertaken, with a particular 

emphasis. 

 

Calculation conditions for basic behavior analysis 

Draft     : 11.28 m  

Ship Speed Over Ground  : 11.7 kn (6.0 m/s) 

Course Over Ground   : 0° 

True Wind Speed  : 6.0 m/s 

True Wind Direction  : 90° (from aside of the ship)  

Wave     : No wave  

 

 
Fig.20: Effect of rotor sails with lateral force component 
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3.3.1 Effect of rotor sails with lateral force component 

 

Simulations for Models 2 and 3 are conducted under ideal conditions (no waves) for comparison. Both 

models equip four identical rotors; however, Model 3 accounts for the lateral force induced by the 

rotors, whereas Model 2 does not. 

 

Fig.20 illustrates that considering the lateral force of rotors leads to 7 percentage points increase in Fuel 

Oil Consumption (FOC) compared to the original ship without rotor sails (Model 1). This phenomenon 

can be elucidated as follows: Incorporating the rotor's lateral force into the model generates lateral 

forces and yaw moments. Subsequently, rudder action is required to neutralize these moments, 

necessitating additional propulsion power. Furthermore, the drift angle increases to counteract the 

lateral forces, causing a change in the ship's heading. This adjustment modifies the ship's angle relative 

to the wind, allowing it to balance the wind pressure against the rotor-induced lateral forces, effectively 

reducing them to zero. 

 

3.3.2 Effect of rotor sails with yaw moment control  

 

Simulations for Models 3 and 4 are conducted under ideal conditions (no waves) for comparison. Model 

3 is equipped with four identical rotors, while Model 4 has three identical rotors and one controlled 

rotor designed to neutralize the yaw moment induced by the rotors. 

 

Fig.21 illustrates that accounting for the lateral force of rotors leads to 2 percentage points decrease in 

Fuel Oil Consumption (FOC) compared to the original ship without rotor sails (Model 1). This reduction 

can be attributed to the controlled operation of the fourth rotor (D), which neutralizes the yaw moment, 

thereby reducing the need for rudder action and, consequently, the overall power requirement. 

 

 
Fig.21: Effect of rotor sails with yaw moment control 

 

3.3.3 Effect of lateral force & yaw moment control  

 

A comparison is made between Model 1 (the original ship without rotor sails) and Model 4 (equipped 

with rotor sails, incorporating lateral force and yaw moment control).  

 

The findings suggest that rotor sails, when considering lateral force and implementing yaw moment 

control, can achieve a 26% reduction in Fuel Oil Consumption (FOC) under the specified ideal 

conditions, as depicted in Fig.22. 
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Fig.22: Effect of rotor sails with lateral force component and yaw moment control 

 

3.3.4 Evaluation in actual sea condition by voyage simulation 

 

Upon analyzing the basic behavior of each simulation model under ideal conditions (no wave), voyage 

simulations for an example route (Route 3: Chiba to Port Botany) using Spring 2022 weather conditions 

are conducted. The outcomes are depicted in Figs.23 and 24, summarized as follows. While this section 

focuses on the reduction of CO2 emissions, it is important to note that the strategies and findings 

discussed herein also contribute to FOC savings. 

 

1) Effects of considering lateral force from rotors 

 

When comparing CO2 emissions from ships equipped with rotor sails under two scenarios - one 

disregarding the lateral force (Model 2, a simplified condition) and the other taking it into account 

(Model 3, an actual condition) - it emerges that CO2 emissions in the actual condition exceed those in 

the simplified by an average of 11%. This discrepancy arises because the rotor's yaw moment 

necessitates additional rudder actions, which in turn increases the ship's drift angle. As a result, the ship 

requires more propulsion power, leading to higher CO2 emissions. 

 

2) Effects of yaw-moment control on rotors 

 

In an analysis comparing CO2 emissions between ships equipped with rotor sails, including those with 

lateral force alone (Model 3) and those with both lateral force and controlled yaw-moment rotor sails 

(Model 4), it is observed that CO2 emissions for ships employing yaw-moment control exhibit an 

average decrease of 4%. The implementation of yaw-moment control significantly reduces the necessity 

for rudder actions, thereby lowering the required power and, consequently, diminishing CO2 emissions. 

 

3) Benefits of installing yaw-moment controlled rotors 

 

When comparing conventional ships (Model 1) to those outfitted with yaw-moment controlled rotor 

sails (Model 4), an average reduction in CO2 emissions of 18% is observed. This underscores the 

substantial environmental advantages of integrating yaw-moment controlled rotor sails into ship design. 
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Fig.23: Comparison of effectiveness of CO2 emission and fuel cost between the models by voyage 

simulations for Route 3 (Chiba to Port Botany)  

 

 
Fig.24: Comparison of optimized route and encountered wind between the models by voyage 

simulations for Route 3 (Chiba to Port Botany)  

 

3.4. Discussion 

 

3.4.1. Effects of lateral force and yaw-moment control in Study 1 and 2 

 

In Study 1 and 2, ship equipped with rotor sails without considering the lateral force (Model 2, a 

simplified condition) is used. As more realistic conditions are analyzed in Study 3 by considering lateral 

force and with yaw-moment control, this allows for an estimation of its effects. 

 

As depicted in Table II, the utilization of Model 2 yields a CO2 emissions reduction of 21% for Route 

3 in Spring. Evaluating voyages under more realistic conditions (incorporating lateral force from rotors) 

and with yaw moment control (Model 4) indicates a modification in CO2 emissions reduction by 3 

percentage points (from 21% to 18%). Similar variations in CO2 emissions reduction are anticipated for 

other routes as well. 
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3.4.2. Effect of CO2 emissions by energy required to operate rotor sails 

 

The energy requirements and CO2 emissions associated with operating rotor sails are not explicitly 

included in the simulations for this project. However, the energy required for operating the four rotor 

sails is approximately estimated to average 107 kW. With an example Specific Fuel Oil Consumption 

(SFOC) of 200 g/kWh for the auxiliary engine, the fuel consumption is projected to be about 0.5 ton/day 

(MGO), leading to CO2 emissions of approximately 1.6 tons/day. 

 

With the voyage on, for example, Route 3 in Spring lasting 16 days, the total CO2 emissions are 

calculated at 25.6 tons. Given this, the average Fuel Oil Consumption (FOC) savings and CO2 

reductions are anticipated to be impacted by about 3 percentage points (comparison between case (b) 

and case (d)). Estimating in the same manner, similar variations in FOC savings and CO2 emissions 

reduction are anticipated on the other routes. 

 

3.4.3. Provisional estimations of FOC savings and CO2 reductions 

 

Upon considering the discussions regarding the impacts of lateral force and yaw-moment control as 

investigated above, and factoring in the CO2 emissions attributable to the energy required for operating 

rotor sails, it is conjectured that the anticipated average FOC savings and CO2 reductions observed in 

Studies 1 and 2 might see a slight adjustment, within the range of a few percentage points. Considering 

these figures represent preliminary estimates, further detailed discussions are warranted for a more 

definitive evaluation. 

 

4. Conclusions 

 

To assess the effectiveness of wind-assisted ships and optimize their performance in terms of decarbon-

ization and economic efficiency, we present a simulation system that leverages NAPA Fleet Intelli-

gence’s voyage simulator, Norsepower’s refined rotor sail model, and Sumitomo’s rotor control logic.  

 

In this project, a Panamax tanker equipped with and without four rotor sails is analyzed under various 

operational conditions, such as routes, loading conditions, and seasons. The case studies are conducted 

through simulations that utilize actual historical weather data and certain assumptions. The key findings, 

implications, and future directions of the studies are summarized as follows. 

 

1) Key findings  

• Rotor sails combined with voyage optimization (weather routing) can yield CO2 reductions and 

fuel savings ranging from 10% to 30%, contributing significantly to compliance with CII and 

EU-ETS regulations and facilitating EU-ETS allowance cost savings.  

• Voyage optimization (weather routing) enhances the performance of ships with rotor sails, with 

expected FOC savings and CO2 reduction in the range of 5% to 10%. 

• Implementing a yaw moment control system can decrease CO2 emissions by an additional about 

4 percentage points compared to ships operating all four rotors at the same speed without this 

control system. 

 

2) Implications of the study  

• Voyage simulations play an indispensable role in assessing the variability of savings from 

wind-assisted devices across different ships (type and size), device configuration, their trading 

areas, loading conditions, voyage schedules, and seasons (weather). By incorporating a tuned 

performance model and realistic operational conditions, these simulations offer comprehensive 

insights into decarbonization and economic benefits, including environmental performance and 

Return on Investment (ROI) analysis, thereby aiding stakeholders in making informed decisions 

about adoption and in designing optimal wind-assisted ships.  
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3) Future directions  

• Further enhancements and development of the system are crucial, including validating and re-

fining the performance model and rotor control system, alongside developing simulation-based 

ship design tools. 

• It is imperative to conduct experiments and trials to ascertain the system's efficacy in enhancing 

economic viability, reducing emissions, and improving safety in shipping operations. 

• Advancing actual implementations and contributing to the maritime industry's efforts towards 

decarbonized shipping are key priorities. 
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Abstract 

 

This paper discusses the role of the user interfaces in hull condition monitoring. Data needs to be 

transformed into information and made available to people. Algorithms and automatic data processing 

have come a long way already, but in the end it’s still humans who take decisions. These decisions 

influence both the quality of hull condition monitoring and its monetary success. The practical 

experiences with designing the user interfaces and using various information channels are presented 

and compared. 

 

1. Introduction 

 

The value of vessel performance management lies in the decisions that are based on the displayed data. 

Many applications of hull condition monitoring and other assisting software tools eventually get 

dismissed because the information provided is not implemented in the decision-making processes and 

thereby fails to make profit. Three routines contributing to a working solution are discussed in the 

following chapters. 

 

• User interfaces for data input, 

• User interfaces for data output, 

• User interfaces for sensor calibration and maintenance. 

 

The customers of performance management solutions will only use the systems as intended if all three 

interfaces are designed to ensure the reliability of the data and information. However, this paper cannot 

even scratch the surface of methods to create high quality user interfaces in general. Delving deeper 

into the entire topic, e.g. regarding visual design, usability and user guidance would be far beyond its 

scope. Therefore, it will only highlight selected aspects where the interpretation of information is 

crucial, and which are particularly relevant for vessel performance monitoring. 

 

2. Manual Data Entries on Board 

 

Most performance monitoring solutions take data into account that are not automatically recorded by 

sensors and cannot be gathered from third party sources like e.g. weather data. Some ship owners even 

rely completely on Noon Report based systems, where manually entered forms are the predominant 

source of information. In other cases, only e.g. the draft information, the fuel consumption, M/E load 

or shaft power could be data that are entered by the crews. 

 

Noon reports contain a mix of different types of information. General voyage information, miscellane-

ous remarks, etc., plus two types of values that can be used for performance evaluations, either as 

additional information to sensor data or exclusively if no high frequency measurements are available. 

 

• Values that describe the specific point in time, typically noon local time, like e.g., vessel position, 

weather conditions, momentary engine load, fuel remaining on board, distance to next destina-

tion, etc. 

• Values that describe the period since last report, like e.g., distance run, steaming time, fuel con-

sumption, etc.  

 

These two value types do not create a common dataset. If the vessel did not operate in similar conditions 

over the complete reporting period, which usually is not the case, the M/E power at noon and the fuel 

consumption rate over the last 24 h cannot be used to assess the M/E efficiency. Likewise, the weather 

mailto:falko.fritz@albis-mp.com
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conditions at noon might say very little about the influences of swell and waves on the fuel consump-

tion. 

 

Furthermore, at least in the experience of Albis, many ship owners and operators still use their own 

noon reporting procedures that do not even specify exactly what should be entered in some of the avail-

able fields. This concerns the above distinction between momentary data and averages since last report, 

but also the units in some cases. For instance, wind, swell and waves directions can be given in reference 

to true north in degrees, or as an angle relative to ship heading, or even as a 45° sector noted with the 

digits 1-8. There have been examples where different crews on the same vessel used the same entry 

fields to fill in either a sector 1-8 or an angle 0-359° since no unit was clearly defined in the field 

description. Of course, this may easily lead to the misinterpretation of data in the following evaluation. 

 

Thankfully, this issue has been addressed in recent years. Initiatives to standardize noon report entries 

and align them with ISO 19848, ISO (2018), are on their way, e.g. conducted by the Smart Maritime 

Network, SMN (2023). However, it must be expected that it will take many years before a standardized 

format will be established in a larger share of the shipping industry. 

 

3. Information Screens and Reports 

 

3.1 Data Screens on Board 

 

Of all the interfaces discussed in this paper, the screens displaying measurement data on board the 

vessels are the easiest ones to interpret, at least in the experience of Albis. As long as the information 

“only” concerns vessel performance and is not crucial information for the ship’s safety, the readings 

are either used for good purpose or simply ignored if they seem implausible. Consequently, poorly 

calibrated sensors or errors are mostly discovered by the evaluation routines on shore, rather than 

reported by the vessels’ crews. An example of that kind is shown in chapter 4. 

 

3.2 Online Tools and Reports for Office Use 

 

Reports and information dashboards accessed by the office staff are probably the most important ones 

in the decision-making processes. It is therefore essential that the information shown is interpreted 

correctly. 

 

For the purpose of hull condition monitoring, data must be normalized to account for different ship 

speeds, drafts, etc., as also described in ISO 19030, ISO (2016). Consequently, the propulsion power, 

ship speed or M/E fuel consumption rate used as a parameter to track the development may not be the 

actual power, speed or consumption of the most recent ship operation. It is an extrapolated value which 

may be close to the latest recordings if the vessel operates near reference conditions, but it might just 

as well not be. Fig.1 shows an exemplary hull condition monitoring report where the overconsumption 

is stated in percent and as an absolute value in metric tons per day, assuming the vessel is operating at 

the reference conditions listed at the bottom of the report page. 

 

In the discussions Albis had with customers, there have been numerous occasions where this necessity 

was not understood at first. The reliability of the data was questioned or even straight out denied 

because the reported normalized values for some vessel did not agree with the real power, speed or 

consumption that were known to the person reading the report. The difference between raw data and 

normalized results is evident to those who frequently work with analysing measurements or who did so 

during an education in applied science or engineering. But many decision makers in shipping may not 

have that kind of background. Presented results may be misinterpreted if they are not explained. But 

detailed, written explanations are often not read, at least in the experience of Albis. Therefore, a close 

contact between the evaluation service provider and the customer is essential. 

 

There are some factors that improved this communication in recent years, though. First, more and more 

ship owners and operators created dedicated positions to assess the efficiency of their fleet in their 
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organizations. Second, the widespread introduction of video conferencing with MS Teams and similar 

tools made it a lot easier to arrange short, productive meetings with the involved people all across the 

globe. Creating a common understanding, discussing how to interpret results and which conclusions to 

draw from them is a lot easier now than it was a decade ago. 

 

 
Fig.1: Exemplary hull condition monitoring report 

 

4. Data Interpretation for Sensor Calibration and Maintenance 

 

In a company that also manages the quality of sensor outputs, a noticeable share of data interpretation 

is done for the purpose of device calibrations and maintenance. While the calibration is a standardized 

process, the fault finding when sensors show implausible results can be more time consuming. Fig.2 

illustrates such an example. 

 

In this case, the fuel temperature and mass flow rates are shown in the booster circulation, before the 

main engine (M/E Inlet) and after it (M/E Outlet). This setup allows for the evaluation of fuel meter 

accuracy every time the main engine is off, when it consumes no fuel and the shaft revolutions counter 

shows zero. The inlet and outlet fuel meters should read the same circulation flow rates in that condition, 

Fritz (2023). However, in the example in Fig.3, the inlet has a lower reading than the outlet, meaning 

that more fuel flowed out of the pipe than into it, which of course cannot be true. 

 

This error is easy to detect in the data. Understanding the problem and resolving the issue are separate 

matters, though, and the latter cannot be achieved without getting technicians and the crew on board 

involved. In this particular case the fuel meters themselves did not show any signs of malfunction. 

Instead, it proved that a bypass valve started leaking and fuel evaded the inlet flowmeter, causing its 

readings to differ from the outlet mass flow. In maintenance cases like this, the correct interpretation 

of data often relies on detailed information regarding the sensor installation and reliable communication 

with the crews. 

 

5. Conclusion 

 

The benefit of vessel performance management systems may get lost in interpretation. The potential to 

misinterpret information hides in numerous places. The manual data entries on board only deliver high 

quality input when the exact intended content of the entry field is clear. To ensure that the decision-

makers can confidently and appropriately respond to the evaluation results in their offices, it is essential 

to facilitate their ability to accurately identify the best solutions for their organization. This in turn 

requires robust procedures to calibrate and maintain sensors properly, so that the feed of raw data into 

all subsequent evaluation steps is not corrupted from the very start. Thankfully, the ability to reach 

these goals increased significantly over the recent years, and it continues to do so. In response to new 
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IMO and EU regulations that require a heightened emphasis on energy efficiency, the maritime industry 

is adapting by integrating new skills into their teams. Ship owners and operators seize the opportunity 

to utilize new technologies effectively and efficiently. The breakthrough of video conferencing offers 

the tool required to tap into this new potential and draw the right conclusions, between people. 

 

 
Fig.2: Exemplary fuel meter data, showing implausible inlet fuel meter results 
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Abstract 

 

The study analyzes the importance of data quality in the maritime industry and its impact on the 

efficiency of ship operations. Based on critical criteria such as communication, data entry, and voyage 

setup, 15 vessels with low error rates were selected and evaluated using the Analytic Hierarchy Process 

(AHP) methodology. According to the analysis results, the performance of each of these vessels 

according to the criteria is expressed as a percentage. These scores show how effective each vessel is 

regarding data quality and operational efficiency. In particular, the accuracy of data entry processes 

has a decisive impact on the overall quality of voyage reporting. The study's findings emphasize the 

importance of data quality management and continuous improvement activities in the maritime industry 

and show that improvements in this area contribute to the effectiveness of operational decision-making 

processes. This study provides important insights for developing data quality strategies in the maritime 

industry and provides a basis for adopting sustainability-oriented approaches in the industry. 

 

1. Introduction 

 

The maritime industry is a critical component of global trade and requires decision-making processes 

based on high quality data. Ship operations and management require decisions based on accurate and 

reliable data. This data is used in many areas from route planning to fuel consumption optimisation, 

maintenance, and repair to cargo management. Therefore, data quality directly affects the effectiveness 

of these decisions and contributes greatly to the overall performance of the maritime industry. Ship 

management has a complex and dynamic structure, especially at the international level. This structure 

is shaped by various factors such as laws, environmental regulations, and safety standards of different 

countries. All these factors require ship operators to maintain high quality standards in data management 

and analysis processes. This paper aims to comprehensively address the data quality practices for a 

maritime fleet and the existing data entry errors. 

 

The assessment and improvement of data quality in the maritime industry is one of the most critical 

elements of this field. At the centre of this study is the user evaluation of data entry practices using the 

Analytic Hierarchy Process (AHP). AHP is an effective tool for managing complexity in decision-

making processes and has been used in this research to objectively assess data quality in the maritime 

industry. The method is designed to determine the relative importance of different criteria and to 

establish a hierarchy among them. This systematic approach allows for an in-depth analysis of the data 

quality issues faced in the maritime industry and a clear understanding of the impact of each of these 

issues on overall data quality. This application of AHP provides valuable insights into the development 

of data management strategies and emphasises the critical role of methodological approaches at the 

heart of strategic decision-making. 

 

Consistent and accurate data obtained in the maritime sector enables healthy and proper reporting in 

regulatory processes such as IMO (International Maritime Organisation) DCS (Data Collection System) 

and EU (European Union) MRV (Monitoring, Reporting, and Verification). These processes impose an 

obligation on ship operators to carefully monitor and report environmental impacts. This is especially 

vital for tracking critical environmental factors such as carbon emissions. Effective reporting plays a 

key role in achieving sustainability targets and reducing environmental impact in the industry. Thus, 

the implementation of regulations such as IMO DCS and EU MRV makes a significant contribution to 

improving data management and reporting practices in the maritime sector. These regulations 
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encourage continuous improvement of data quality in the industry, while at the same time raising 

standards of environmental compliance and transparency. This process contributes significantly to the 

adoption of a more sustainable and environmentally sensitive business approach in the maritime sector. 

 

Technological developments and industry innovations contribute greatly to the improvement of data 

quality in the maritime industry. This study specifically investigates how technology affects data quality 

and how this quality can be further improved in the future. Emerging technologies are enabling data 

collection and processing in ship management to become more effective and efficient, Le et al. (2020). 

For example, advanced sensor technologies and satellite communications enable more accurate and 

reliable data collection processes in the maritime industry, La Ferlita et al. (2013). These advances 

contribute to the continuous improvement of data quality, making decision-making processes more 

reliable and effective. These technological innovations open new horizons for strategic decision-making 

and operational efficiency in the maritime sector. 

 

In this research, 15 vessels with the lowest error rate based on the number of voyages have been 

carefully selected to gain in-depth insights into data quality in the maritime industry. The main criterion 

for the selection of these vessels is to focus on the importance of providing accurate and reliable data 

in the industry. This accurate and reliable data plays a critical role in improving operational efficiency. 

Furthermore, the collection of this data points to the potential for a wide range of usability, such as 

operational optimizations, training modules. In the maritime industry, such data management has been 

observed to facilitate and improve regulatory compliance and reporting processes. In the light of 

technological advances and sectoral innovations, these processes are expected to contribute to the 

sustainable and safe development of the sector. The research aims to provide comprehensive guidance 

on how to develop data management strategies in the maritime sector and sheds light on the steps to be 

taken in this field. 

 

2. Materials and Methodology 

 

2.1. Methodology of the study 

 

The methodology of this study requires a detailed and comprehensive approach to the assessment of 

data quality in the maritime industry. The framework of study is presented in Fig.1. Research process 

includes vessels selected from the different Business Units (BUs) in DFDS. It focussed on identifying 

the vessels with the lowest number of errors compared to the number of voyages. This selection process 

is designed to provide an objective assessment of the data quality performance of the vessels. 

 

A scoring system ranging from 1 to 9 was used in the vessel comparison and evaluation process. This 

scoring system aims to comprehensively assess the data quality performance of each vessel. This 

evaluation process assesses the data quality performance of the vessels based on several criteria.  

 

 
Fig.1: The framework of study 
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2.2. Analytic Hierarchy Process 

 

Analytic Hierarchy Process (AHP) is a multi-criteria decision analysis method developed by Dr Thomas 

L. Saaty in the late 1970s to solve decision-making problems. AHP allows decision makers to evaluate 

a set of alternatives according to predetermined criteria and make the most appropriate choice, Wang et 

al. (2022). The basic principles of this method are to establish a three-level hierarchy of objectives, 

criteria, and alternatives; to determine their importance by making pairwise comparisons between 

criteria and alternatives; to calculate priorities for criteria and alternatives using the values obtained 

from pairwise comparisons; and to check the consistency of decision makers' evaluations and to revise 

these evaluations if necessary. 

 

A detailed examination of the causality of each index was subjected to multiple rankings using the AHP 

approach. To determine the ranking of the importance of the indicators, expert judgement was used. 

The judgement matrix based on 1 to 9 scale is presented in Table I. In the analysis of the hierarchical 

analysis, the stages vary: each higher-level criterion is subjected to pairwise comparisons with its sub-

criteria, and the scale used in these comparisons serves as comparison statements, Bike and Ruichang 

(2023). 

Table I: Explanation of the 1 to 9 Scale in AHP Methodology 

Significance Level Definition of given values 

1 Equally significant 

3 Moderately significant 

5 Significantly strong 

7 Very significantly strong 

9 Utterly significant 

2, 4, 6, 8 Values intermediate to the principal ones 

 

The AHP results express the performance of each ship according to the main criteria in a measurable 

and comparable way. These percentage scores clearly show the level of achievement in the criteria and 

the level of data quality and operational efficiency of the different vessels. The evaluation of the AHP 

analysis provides an objective and quantitative basis for decision-making processes, thus enabling more 

informed and data-driven decisions to be made in data quality management and improvement efforts. 

The AHP methodology provides a scientific and objective assessment to ship evaluation in terms of 

data quality and this approach contributes significantly to improving the efficiency of data quality 

strategies and operational decisions within the industry. The main criteria and sub-criteria are: 

 

• Voyage Setup: Date & Time Inconsistency, Port & Route Inconsistency, Voyage Report Type, 

Missing Voyage, and Distance-Timeline Accuracy Match. 

• Data Entry: Fuel Consumption Errors, MVS & Manual Cargo entry, Energy Consumption and 

Ballast Entry. 

• Communication: Forum Responses, Explanation Section and Speed of Action. 

 

These criteria and sub-criteria are important factors to consider when evaluating the performance of our 

vessels and the quality of voyage reporting. Through the AHP method, it is possible to select the best 

ship by systematically addressing these criteria and sub-criteria. 

 

• Voyage Setup: Voyage setup involves the correct creation of voyages on voyage creating 

systems. This assesses whether the vessel is in line with the previous voyage, whether the port 

of arrival and departure are correctly selected and the effectiveness of the voyage planning in 

general. 

• Data Entrance: Accurate and complete data entry prevents incorrect analysis and decisions, 
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which improves operational efficiency and decision-making processes. In addition, accurate 

data entry enables critical operational factors such as energy and fuel consumption to be 

accurately monitored and evaluated. 

• Communication: Communication evaluates the effectiveness of communication between the 

ship's crew and Vessel Performance Management. Effective communication facilitates fast and 

accurate decision making, as well as timely response and coordination. 

 

3. Case Study 

 

During the research, detailed data analysis was carried out for a 40-week period between 1 January and 

20 October 2023. During this period, the voyage reporting software was updated, and proactive 

measures were developed to minimise error rates. During the analysed time, 23,225 voyages belonging 

to a total of 60 vessels were analysed and a total of 2,691 errors were detected in these voyage reports. 

The detailed distribution of the detected errors is presented in Fig.3. This analysis plays a critical role 

in determining the type and frequency of errors encountered in ship operations and planning strategic 

interventions to reduce these errors. 

 

 
Fig.3: The total number of errors for each type 

 

 
Fig.4: 15 vessels with the lowest error ratio 
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In order to emphasise the importance of data quality and to make an in-depth assessment by error types, 

the top 15 vessels with the lowest number of errors compared to the number of voyages in terms of data 

quality parameters among the different Business Units (BUs) in DFDS were identified for the base case 

and shown in Fig.4. 

 

The number of faults and their distribution according to faults for the 15 vessels analysed are presented 

in Fig.5. The fault distribution of the vessels serves as a key reference point for analysing the intensity 

and types of faults. 

 

 
Fig.5: 15 vessels distributions with the lowest error number 

 

4. Results and Discussions 

 

Fig.6 highlights the three main criteria on which the vessel data quality assessment process is based and 

illustrates the importance of identifying the main factors through judgement from the DFDS vessel 

performance team in the selection of these criteria; the decision-making software based on the Analytic 

Hierarchy Process (AHP) was used to build the model and determine the weighting of each factor. The 

Vessel Performance Superintendents in DFDS decided which parameters were more important than 

others and calculated the relative importance of each factor using a comparison matrix. 

 

 
Fig.6: Main criteria weights 

 



 

138 

Fig.6 demonstrates that the factor 'Voyage Setup' has the highest degree of importance in the AHP 

model regarding ship errors, with a score of 0.6370. This high importance of voyage setup is due to its 

capacity to assess whether the voyages are set up correctly, whether the ship is compatible with the 

previous voyage, whether the ports of arrival and departure are chosen correctly, and the effectiveness 

of voyage planning in general. The 'Data Entry' factor is ranked second in the overall priority ranking 

with a score of 0.2583. This importance of data entry stems from the fact that accurate and complete 

data entry improves operational efficiency and decision-making processes by preventing incorrect 

analyses and decisions. It also enables critical operational factors such as energy and fuel consumption 

to be accurately monitored and evaluated. The 'Communication' factor has the lowest importance rating, 

with a score of 0.1047. This communication facilitates timely intervention and coordination of 

operational processes, enabling fast and accurate correction of erroneous data. The Consistency Ratio 

(CR) of the table is 0.0332 and it's quite acceptable for AHP studies. CR is a validation parameter for 

AHP studies. If the ratio is higher than ‘0.1’ there is a mistake in terms of experts' answers in comparison 

matrixes. The decision matrix of the study was ensured with the help of the DFDS vessel performance 

team. Following the determination of rankings, the scores for each scheme are presented. Finally, the 

rankings are established and the outcomes for each system are presented in Table II. 

 

Table II: The weighted normalized matrix of each vessel 

 Error Ratio Voyage 

Setup 
Data Entrance Communication Overall 

VESSEL 1 0.018 0.97564 0.45913 0.00916 0.741036 

VESSEL 2 0.029 0.73534 0.17221 0.28336 0.542563 

VESSEL 3 0.04 0.94117 0.45912 0.11343 0.729992 

VESSEL 4 0.049 0.58820 0.45912 0.40161 0.535325 

VESSEL 5 0.062 0.85291 0.68877 0.93197 0.818790 

VESSEL 6 0.065 0.70591 0.45911 0.04882 0.573366 

VESSEL 7 0.067 0.67647 0.51657 0.13765 0.578694 

VESSEL 8 0.074 0.44121 0.00010 0.28067 0.310463 

VESSEL 9 0.081 0.08829 0.68873 0.35303 0.271103 

VESSEL 10 0.095 0.23542 0.00010 0.13075 0.163678 

VESSEL 11 0.098 0.70593 0.68875 0.98541 0.730754 

VESSEL 12 0.099 0.94117 0.97564 0.9952 0.955733 

VESSEL 13 0.103 0.23539 0.45912 0.01861 0.270486 

VESSEL 14 0.115 0.23540 0.17224 0.33047 0.229040 

VESSEL 15 0.123 0.02436 0.45911 0.17607 0.152542 

 

The examination of Table II provides a detailed analysis of the vessels' data quality efficiency and error 

management. Based on the error rates, the base case provides an overall assessment of their operational 

efficiency. At the same time, the results of the Analytic Hierarchy Process (AHP) reveal variations in 

data quality as the specific weights of faults are considered. 

 

The base case analysis provides an important indicator of efficiency, particularly for Vessel 1, where a 

low error rate (0.018) and a high number of voyages indicate that this vessel is highly operationally 

efficient. In contrast, the overall performance of Vessel 1 in the AHP evaluation stands out with a 

relatively high score (0.741036), indicating that it still performs at a high level when considering the 

weighted criteria of the AHP. It reveals that Vessel 1 manages its voyages effectively and minimises 

critical errors in operational processes. 

 

On the other hand, Vessel 12 ranks highest in the AHP analysis with an overall performance of 

(0.955733) and exceeds the fleet standards, especially in the categories of Data Entrance (0.97564) and 

Communication (0.9952). It shows that Vessel 12 performs much more effectively than the number of 

errors and manages the weighted errors better. 

 

Vessel 5 has shown a significant increase in its overall performance (0.818790) with its outstanding 
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performance in the AHP analysis, especially in Communication (0.93197), indicating the impact of 

communication and reporting skills on error management and that these competencies play a decisive 

role in overall operational performance. 

 

This benchmarking analysis shows that it is possible to achieve lower error rates by creating competition 

between vessels. Detailed benchmarking has been identified as a critical method to understand the error 

management capabilities of ships and to use this information to improve the system. Identifying ships' 

susceptibility to errors and developing training programmes to target these weak points can minimise 

operational risks and significantly improve maritime safety. Furthermore, the data obtained can guide 

the identification of specific areas that need to be prioritised in crew training and enrich the content of 

the training received by the ship's crew before joining. Thus, this study provides a basis for developing 

strategies to reduce error rates in the maritime industry and provides a reference point for future 

research. 

 

5. Conclusion  

 

The study focuses on data quality in the maritime industry and analysing errors in this area. Based on 

criteria such as Communication, Data Entry and Voyage Setup, a detailed analysis of 15 vessels with 

low error rates has been conducted. This analysis aims to identify errors in data entry processes and 

their potential impact on voyage reporting. Updates to voyage reporting software address the errors 

identified in this analysis and aim to improve the accuracy of data entry processes. The addition of time 

zone options, a more detailed definition of voyage legs and adjustments to reporting types are designed 

to make the data entry process more precise and accurate. In addition, revisions to validation processes 

and flexibilities in user rights support the integrity of the reporting process by allowing the correction 

of data entry errors. This study highlights the impact of accuracy in data entry processes on the quality 

of voyage reporting, and the updates to voyage reporting system represent steps to improve this 

accuracy. These improvements improve the overall quality of voyage reporting and contribute to the 

efficiency of operational processes. This analysis contributes to developing data management strategies 

in the maritime industry by providing essential insights into areas of focus for improving data entry 

processes. 
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Abstract 

 

This study conducts a cost-benefit analysis of various hull maintenance scenarios using the support tool 

HullMASTER. The analyses provide examples of a ship operating in the Kattegat-Danish Strait. This 

study indicates that increased hull roughness due to biofouling and hull maintenance, compared to 

hydraulically smooth hulls, can escalate operational and socio-environmental costs by 6 and 7.2 times. 

Among the evaluated coatings, non-biocidal foul-release coatings are identified as the most sustainable 

option by reducing climate change and health damage, and biocide release into the ocean. It also 

highlights the importance of proper maintenance and the need for sustainable long-term planning. 

 

1. Introduction 

 

The accumulation of marine organisms on a ship's hull, known as ship biofouling, decreases the 

operational efficiency of vessels, increases fuel consumption, and consequently elevates costs for 

shipping companies, Schultz (2007). Furthermore, it has severe implications for human health and 

marine ecosystems due to the increased exhaust emissions and the release of toxic substances from anti-

fouling paints applied to hulls, Ytreberg et al. (2021). As a result, the appropriate management of ship 

biofouling has emerged as a critical task in ship operations. 

 

The determination of an optimal hull management strategy is a complex process influenced by several 

factors, including the ship's size, operational profile, and sailing area, Kim et al. (2022). Moreover, 

shipowners must consider not only the increased operational costs resulting from hull management 

strategies but also their implications for climate change, human health, and the marine environment. To 

address these concerns, it is essential to apply life cycle cost analysis to assess the economic perfor-

mance and social impact of various technologies, enabling shipowners to select the most sustainable 

hull maintenance strategy. 

 

In response to this challenge, Oliveira et al. (2022) developed HullMASTER (Hull MAint-nance 

STrategies for Emission Reduction), a tool designed to assist shipowners, operators, and other 

stakeholders in evaluating the economic and environmental costs of various ship hull maintenance 

strategies. Expanding on this work, in this paper, we employ HullMASTER to simulate various hull 

management scenarios for a ship navigating the Kattegat and Danish Strait and conduct an economic, 

social, and environmental cost-benefit analysis accordingly. Through this, we aim to understand how 

variations in hull management strategies affect costs in these water areas and propose sustainable hull 

management strategies that minimize the operational costs for shipowners while contributing to social 

and environmental protection. 

 

2. HullMASTER: Decision Support Tool for Hull Maintenance Strategies 

 

HullMASTER is a tool designed to calculate and compare the operational, societal, and environmental 

costs of various hull maintenance strategies, such as the type of coating, docking frequency, in-water 

cleaning frequency, and hull treatment procedures applied to a specific ship. The operational costs 

include additional fuel costs due to biofouling, hull treatment during dry docking, and hull cleaning 

costs. Societal and environmental costs encompass the health and climate impacts of increased exhaust 

gases and the release of toxic substances due to biocidal coatings, as well as the costs associated with 
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marine eutrophication and marine ecotoxicity. All costs resulting from hull roughness due to coating 

and biofouling are calculated in comparison to a hydraulically smooth hull. It is important to note that 

these costs modeled in HullMASTER do not reflect the absolute costs of ship operation. The tool was 

validated using approximately 40 years of cumulative operational data measured from nine ships 

operating in the Baltic Sea. The estimated propulsive penalties for the entire fleet indicated an average 

deviation of -3.2 ± 3.8%, which underscores the tool's substantial accuracy.  

 

Fig.1 illustrates the overall composition of HullMASTER. The subsequent parts, 2.1 and 2.2, will delve 

into the main models that constitute this tool, specifically the hull fouling growth and biocide release. 

For a more detailed explanation of the principles and sources supporting HullMASTER, please refer to 

Oliveira et al. (2022). 

 

 
Fig.1: Configuration of HullMASTER 

2.1. Hull fouling growth & Propulsive power penalty 

 

The formation and growth rate of biofouling on a hull surface are influenced by several parameters. The 

most significant variables for predicting fouling growth rates in the Baltic Sea region are the 

accumulated idle time, Oliveira and Granhag (2020), and salinity, Wrange et al. (2020). The fouling 

growth model used in HullMASTER is based on data obtained from field experiments conducted in the 

Swedish coastal region, including the Baltic transition and the Baltic proper, Lagerström et al. (2022). 

As shown in Fig.2, the degree of hull fouling is defined in reference to the frNSTM fouling rating, US 

Navy (2006), and the cumulative fouling degree over time is fitted using a Gaussian curve, Uzun et al. 

(2019). HullMASTER uses the seawater salinity and berthing time at the port of call as input parameters 

to calculate the cumulative fouling growth during the operation. 

 

 

 

 
Fig.2: NSTM fouling rating over idle time based on the field test data 
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The condition of hull roughness is expressed as an equivalent sand grain roughness, and the roughness 

resulting from coating and biofouling is added to the hydraulically smooth surface. The increase in 

frictional resistance due to hull roughness is calculated using Granville's method, Granville (1987), 

which utilizes the flat-plate similarity law scaling method. This allows the estimation of the ship's power 

penalties relative to the condition of a smooth hull. 

2.2. Biocide release from anti-fouling coatings  

 

Most anti-fouling paints used on ships contain biocides like copper oxide to control marine fouling, 

which release biocides upon contact with seawater, Ytreberg et al. (2022). Additionally, these coatings 

contain zinc oxide to prevent corrosion, Lagerström et al. (2018). The release of these harmful 

substances is modeled in HullMASTER based on the average release rates in the Baltic Sea region. 

 

The passive release rate of these hazardous substances into the water is determined based on data from 

Lagerström et al. (2020), and a consistent decay ratio is applied to the release rate presented by Valkirs 

et al. (2003) to account for long-term emissions. Besides, additional anti-fouling compounds can be 

released during or after the hull cleaning event. This is estimated based on the weight content of biocides 

in the removed coating thickness, Tribou and Swain (2017). The release of copper and zinc due to gentle 

cleaning methods causing negligible to moderate paint wear is referenced from Soon et al. (2021) and 

Granhag et al. (2023). In contrast, aggressive cleaning methods that cause a higher level of wear are 

calculated using the paint removal values mentioned in Morrisey et al. (2013). The increased passive 

release rate following cleaning events is modeled based on the study by Earley et al. (2014). 

 

3. Methodology 

3.1. Selection of a ship case in the Kattegat-Danish Strait 

 

This study performs a cost-benefit analysis of various hull maintenance scenarios for a ship sailing 

through the Kattegat and Danish Strait using HullMASTER. The case study utilizes a 190 m-class ro-

ro ship that regularly operates the Kiel-Gothenburg route based on the ship's operational profile, Fig.3.  

The high-salinity seawater influx through the Baltic transition zone, such as Skagerrak and Kattegat, 

creates a gradient of decreasing surface salinity across the entire Baltic Sea. The Kattegat-Danish Strait 

route used in the case study is characterized by relatively high fouling pressure throughout the operating 

area. Meanwhile, the annual average temperature in the target area is around 11°-12°, but in some Baltic 

transition areas, it can rise to 30° in the summer and fall below freezing in the winter. 

 

 
Fig.3: Overview of ship operations in the Kattegat/Danish Strait used in case study 
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3.2. Hull maintenance scenarios 

 

This study assumes that the ship selected in Section 3.1 operates the corresponding route for 10 years 

and employs HullMASTER to examine the variations in costs that arise from different hull maintenance 

scenarios. As shown in Table I, a total of 93 hull maintenance scenarios were considered, encompassing 

several factors such as coating type, dry docking period, and in-water hull cleaning method and 

frequency. 

 

The scenarios cover three distinct categories of coatings that are frequently used on commercial ships: 

copper-based anti-fouling coatings, non-biocide foul-release coatings, and inert abrasion-resistant 

coatings. In all scenarios, it is assumed that the initial state of the hull is completely sandblasted and a 

new coating is applied. Then, during the 10-year ship operation period, it is assumed that the ship's hull 

surface will undergo spot-blasting and touch-up coating at the dry dock, as per the provided scenario. 

 

The frequency of in-water hull cleaning is classified into three situations: no cleaning applied, 1-3 

cleanings occurring per year, and cleaning triggered whenever the hull condition reaches certain 

conditions. The criteria for the cleaning trigger are when the upper limit of the confidence interval of 

the fouling rating grade reaches the NSTM 40 (the minimum level of hard fouling) or when it reaches 

the user-defined propulsion power penalty. Cleaning methods are divided into two categories according 

to intensity: gentle cleaning for soft-moderate fouling and more aggressive cleaning mainly for 

removing calcareous fouling. It is accompanied by negligible paint wear, moderate wear, and high-level 

wear, depending on the cleaning methods. These in-water hull cleaning scenarios are limited to copper-

based anti-fouling coatings and inert coatings, and silicone foul-release coatings are not included 

because of their distinctive self-cleaning properties and smooth surfaces that resist fouling. 

 

Table I: Hull maintenance scenarios used in the study (total 93 scenarios) 

 
 

4. Discussion 

 
4.1. Cost-benefit analysis of hull maintenance scenarios 

 

Fig.4 illustrates the results of simulating a 10-year operating scenario of a ship with 93 different hull 

maintenance strategies using HullMASTER. The x- and y-axes in the figure represent increased 

operational and socio-environmental costs due to biofouling and hull maintenance compared to 

hydraulically smooth hull surfaces, respectively. The arrows marked on the histogram show the best 

and worst cases in terms of cost for each type of coating. These graphs show the overall trend through 

the cost distribution between scenarios, and it should be noted that the absolute costs can vary depending 

on various factors constituting the cost and their definitions. 

As can be seen from the distribution of scatters in the figure, there is a substantial cost difference 
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depending on the hull maintenance scenario for the same route and vessel. For instance, within the set 

of 93 scenarios, the operator's expenses and socio-environmental damage costs can differ by up to 6 

and 7.2 times, respectively, depending on the specific coating employed and hull maintenance method 

applied. Out of the coating types examined, foul-release coatings typically show lower increments in 

both operational costs and socio-environmental costs. Although copper coatings have a significant 

environmental impact compared to other non-biocidal coatings, they can be considered a cost-effective 

choice due to their substantial ability to reduce ship biofouling. Conversely, inert coatings show the 

largest deviation in operator and socio-environmental costs among the three coatings, depending on the 

hull management scenario.  

 

 
Fig.4: Distribution of increased operational and socio-environmental costs due to biofouling and hull 

maintenance in comparison to a hydraulically smooth hull surface of all scenarios 

 

Fig.5 presents a comprehensive analysis of the highest (worst case) and lowest (best case) cost 

increments for each coating category, based on the 93 distinct scenarios depicted in Fig.4. The table 

below the picture displays the selected hull maintenance scenarios. Based on the findings of the cost-

benefit analysis conducted in the Kattegat and Danish Strait, the additional expenses incurred from fuel 

penalties far exceed those from hull maintenance, including treatment and cleaning, in all types of 

coatings. The largest portion of socio-environmental cost increase is due to damage costs to human 

health, followed by climate change. However, when it comes to copper coatings, unlike other coatings 

that do not have biocidal properties, the expense of marine ecotoxicity damage caused by the release of 

biocides from the paint into the sea is taking a substantial part. 

 

The most significant increase in operational and socio-environmental costs, when compared to a 

hydrodynamically smooth hull, arises from the neglect of underwater hull cleaning and infrequent dry 

dock maintenance. Looking at the most cost-effective scenarios analyzed, inert and copper coatings 

have the same dry dock interval of 3.3 years, during which in-water hull cleaning is performed 27 and 

19 times during the simulated period, respectively. This demonstrates that keeping the hull roughness 

below a certain level leads to substantial reductions in fuel expenses for the operator, as well as damage 

cost reductions in terms of climate change and human health damage from a socio-environmental 

standpoint, when compared to the expense of hull maintenance. Nevertheless, when it comes to biocidal 

coatings, the release of higher amounts of anti-fouling substances during and after cleaning the hull can 

escalate the expenses associated with the damage caused to marine organisms. Therefore, it is preferable 

to conduct hull cleaning at suitable intervals, taking into account different socio-environmental 

consequences. Conversely, in the case of foul-release coatings, it is shown that reducing the dry dock 
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interval is a more economically efficient option, assuming that in-water hull cleaning is not carried out. 

 

 
Fig.5: Comparison of cost increase between best and worst scenarios by coating type and corresponding 

hull maintenance scenarios 

 

In our case study, despite its high paint application cost, the non-biocide foul-release coating emerged 

as the most sustainable option among the evaluated coating types. This is due to its effective anti-fouling 

properties, resulting in reduced emissions and minimized impact on human health while preventing the 

release of biocides, hence minimizing damage to the marine environment. Nevertheless, in regions that 

are covered by ice during the winter, including some regions adjacent to the Kattegat and Danish Strait, 

the silicone-based foul-release coating may not be appropriate because of its susceptibility to 

mechanical damage. In such cases, an abrasion-resistant coating may serve as an appropriate alternative. 

Copper coatings are widely utilized in both commercial ships and leisure boats globally, as they offer 

significant benefits in efficiently preventing the accumulation of organisms on the hull and are relatively 

easy to manage. However, they pose environmental risks due to the discharge of toxic substances and 

can potentially damage marine life and ecosystems. Hence, it is imperative to implement measures to 

curb the excessive utilization of biocides in anti-fouling coatings and to regulate the discharge concen-

tration and rate of biocides to ensure sustainable operation. These efforts can enhance the responsibility 

of ship owners and make a substantial contribution to the protection of the marine environment. 

 

4.2 Difference in operator's costs: Short vs Long-term hull maintenance strategies  

 

Fig.6 presents a comparison of the cumulative operator's costs over time in the worst and best scenarios 

for the three different types of coatings. For inert coatings, the operational expenses in the best scenario, 

which includes cleaning, and the worst scenario, which excludes cleaning, are nearly identical for 

approximately one year following the initial coating application. This implies that the cost-effectiveness 

of hull cleaning in terms of fuel consumption reduction is not considerable during this period. However, 

beyond this timeframe, the cost savings achieved through hull cleaning become increasingly apparent 

in comparison to the expenses associated with hull management. In the case of copper-based anti-

fouling coatings, the cost trends remain the same in both the worst and best scenarios for up to 2 years 

after the initial coating application. This is due to the fact that the NSTM fouling grade of the hull 

remains consistently below 20 throughout this time period, thus no in-water cleaning procedure is 

carried out. For silicone-based foul-release coatings, the cost difference becomes apparent as hull 

treatments progress and more dry dock events accumulate. 
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Fig.6: Cumulative operator's costs over time for best and worst scenarios 

 

These findings indicate that the evaluation of the expenses associated with a hull maintenance strategy 

can vary depending on whether it is considered a short-term or long-term plan. Although there are slight 

differences depending on the type of coating, in the initial stages, it is difficult for the operator to clearly 

perceive the effects of hull maintenance. However, as time passes, the cost difference due to 

maintenance becomes increasingly apparent. In particular, it is important for ship owners to consider 

this point and establish sustainable long-term plans. 

 

5. Uncertainty factors in cost-benefit analysis 

 

The utilization of HullMASTER and scenario studies in this research involves several limitations and 

assumptions, which may introduce uncertainties into the cost-benefit analysis outcomes. The efficacy 

of the coatings used in this study is based on field experiments conducted under idle conditions for 

approximately one year, considering seawater salinity as a crucial factor affecting biofouling growth 

and biocide release. It was assumed that periods and seawater conditions other than measured values 

could be estimated through interpolation and extrapolation. However, the model's sensitivity to the 

effects and interactions of other factors such as seawater temperature, pH, and lighting conditions at the 

berthing port may induce additional uncertainty. Not only that, silicone-based foul-release coatings, 

which remove marine organisms attached to the hull when the ship moves at a certain speed, may have 

been somewhat conservatively evaluated in this study. 

 

This study did not consider the costs associated with the risk of introducing non-indigenous species due 

to hull maintenance. However, the operation of ships in the examined region and the transition of ships 

from outside waters can make it easier for these species to be introduced and spread. Implementing 

effective hull management measures may reduce the likelihood of non-native species introductions. 

Furthermore, it was assumed that no distinct wastewater treatment was conducted following in-water 

hull cleaning in our case studies, leaving room for further review of the potential to reduce toxic 

substance release from paint particles through a capture system. 

 

The fluctuation in fuel prices, which varies based on the kind of fuel, might introduce uncertainty in the 

cost analysis results during the life cycle analysis. This study conducted a cost-benefit analysis using 

the mean LSMGO price from 2020 to 2023, but the range of fuel costs over this period varied by up to 

five times. Considering that bunker penalties incurred due to hull roughness contribute the most to 

operational costs, any fluctuations in fuel prices might have a substantial impact on the chosen hull 

maintenance strategy for the ship. 
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6. Conclusion 

 

This study employed HullMASTER, a decision-support tool for ship maintenance strategies, to perform 

a comprehensive cost-benefit analysis of various hull scenarios on the Kattegat and Danish Strait routes. 

The analysis shows significant differences in increased operating and socio-environmental costs due to 

biofouling and hull maintenance compared to hydraulically smooth hulls, even on the same ship and 

route (up to 6 times for operational costs and 7.2 times for socio-environmental costs). It was found that 

preventing hull roughness increases through hull treatment and in-water hull cleaning at appropriate 

intervals can reduce bunker penalties and socio-environmental damages such as climate change, human 

impacts, and ecotoxicity. Out of the three coating types examined, non-biocide foul-release coatings 

were determined to be the best sustainable choice for the Kattegat and Danish Strait routes. These 

coatings achieve sustainability by decreasing exhaust gas emissions and limiting the discharge of 

biocidal pollutants into the ocean. 

  

Moreover, there was a substantial disparity in expenses between the short-term and long-term periods 

as a result of hull maintenance. Although the cost-effectiveness of hull maintenance may not be 

immediately apparent, the disparities have become increasingly evident with time. These findings 

highlight the significance of hull maintenance for ship operators and indicate the necessity of 

developing sustainable, long-term strategies. Nevertheless, this study is a case study conducted only in 

the Kattegat-Danish Strait route. The outcomes of the cost-benefit analysis may differ based on factors 

such as ship characteristics, operational profiles, and operating locations. Future studies will necessitate 

extensive cost-benefit analysis that considers more diverse factors and a wider range of ship operating 

conditions and areas. 
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Abstract 

 

CFD (Computational Fluid Dynamics) made its way into the maritime community a few decades ago 

and has since become an integral part of it. Nowadays, thousands of calculations are conducted 

globally to design new hulls, optimise propellers, and estimate ships' energy efficiency. Obviously, 

numerical methods should be validated before one fully relies on them. Nevertheless, validation 

against well-known cases has a negative side as a code user can tune parameters to achieve the 

desired results. Within the global JoRes research project, a series of blind ship scale validation cases 

were introduced: the participants were provided with the geometry files and sea trials conditions but 

not the results. The main findings of this exercise for a tanker case are summarised and discussed 

within the paper. 

 

1. Introduction 

 

In July 2023 the International Maritime Organization adopted a new strategy aiming to reduce 

Greenhouse Gas emissions from the global shipping to zero by or around 2050, IMO (2023). In 

September 2023 DNV released the 2050 forecast (DNV, 2023) showing that the initial and important 

stage of the zero-emission challenge relies on the ship's energy efficiency. The digitalisation of the 

global maritime industry should help to address this objective. Computational Fluid Dynamics (CFD) 

has been actively used for ship design for a few decades, however, in the past, the main focus was 

model scale simulations. There were two main reasons for that: 1. The computational power did not 

allow practitioners to build and run a ship-scale case within an acceptable time for practical 

engineering tasks. 2. The validation cases were mainly available in model scale (KCS, KVLCC2 etc). 

 

The development in computational power has successfully addressed the first challenge, and 

pioneering ship-scale validated calculations appeared in the industry about 10 years ago, Ponkratov 

and Zegos (2014,2015). Nevertheless, these works had a few challenges. For the MR tanker case used 

for the validation, the hull roughness measurements were not performed. Moreover, the sea trials 

were not post-processed according to the ISO15016 standard and only integral characteristics (rpm, 

torque and thrust) were measured and compared. In addition to that the authors knew the sea trials 

results when they performed CFD calculations, so it was not a blind validation exercise. 

 

The second challenge of the publicly available ship-scale validation case was not addressed for a long 

time until Lloyd’s Register (LR) organised the first workshop on ship-scale computer simulations, 

Ponkratov (2017). However, the MV “Regal”, introduced at the LR CFD workshop, also did not have 

hull and propeller roughness measurements. The participants of that workshop were asked to simulate 

the roughness according to their internal working procedures and make necessary assumptions. As a 

result, it introduces some uncertainties. Fig.1 shows the main results of that workshop. As always sea 

trials have an uncertainty band (orange) due to sea state measurements, G-modulus etc. A significant 

scatter of submitted CFD results (green dots) can also be noted which resulted in a thick band of CFD 

results. The general trend showed that CFD mainly underpredicted the sea trials values. 

 

In the impressive master theses by Mikkelsen and Steffensen (2016) the validation was performed 

against four sets of sisterships’ sea trials. Nevertheless, the authors outlined the uncertainties related 

to the fact that the simulations have been performed with the stock propeller instead of the actual 

propeller (the designer did not permit to use of the actual propeller geometry) and the fact that air 

resistance, bilge keel resistance and hull roughness resistance were calculated using the ITTC 

procedure instead of being modelled in CFD. 
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Niklas and Pruszko (2019) performed CFD validations for the “Nawigator XXI” research and training 

vessel. It is a very detailed and deep work, however, the authors did not discuss the uncertainty 

related to the propeller pitch angles as it is usually quite difficult to ensure the correct pitch angle 

position at the trials. Moreover, it is understood the hull roughness was also not measured before the 

trials, so the authors assumed the equivalent sand grain roughness, Ks, to be equal to 150 μm. 

 

Sun et al. (2020) performed CFD ship scale validation based on sea trials results for 9 bulk carriers 

with the same hull form, propeller, and rudder. As the roughness effect was not the focus of their 

article, they used the Bowden–Davison empirical formula to avoid introducing more complicated 

uncertainty sources to CFD simulation. It is understood they used a Ks value of 90 μm. 

 

 
Fig.1: Results of the Lloyds Register CFD workshop, 2016 (orange band – sea trials including 

uncertainty, blue band – mean CFD results including uncertainty, Green dots – individual CFD 

results submitted by participants). 

 

Orych et al (2021) considered for their validation study a set of sea trials for 12 single screw vessels. 

They assumed the Average Hull Roughness (AHR) to be 100 μm. With the employed Aupoix-

Colebrook roughness model (AHR/Ks = 5) it gives the equivalent sand grain roughness Ks value of 

20 μm. The propeller roughness was assumed to be 30 μm. 

 

Mikulec and Piehl (2023) performed ship-scale CFD validation on a 34m Research Vessel 

“Gunnerus”. The assumed equivalent sand-grain roughness Ks value was 30 μm. Unfortunately, this 

vessel is equipped with two azimuth thrusters, so there was a challenge with measurements of 

propeller power as strain gauges could not be installed inside the housing. 

 

As it can be seen, various assumptions can be made about the hull roughness and other parameters 

and these assumptions can significantly affect the CFD results. The main challenge is associated with 

the fact that sea trials procedures (like ISO15016) were not developed for CFD validation. The main 

objective of these procedures is to confirm contractual speed. As a result, these procedures do not 

require hull and propeller roughness measurements (which are important for CFD) and still rely on 

simplified methods (sea state assessment by the naked eye, visual observations of vessel draughts 

etc). Clearly to develop an accurate case for CFD validation stricter requirements for the ship scale 

measurements should be implemented. 

 

These expectations led to organising and executing a JoRes joint research project aiming to develop 

an industry-recognised benchmark for ship-scale CFD validation. As discussed in Ponkratov (2023), 

6 vessels were considered within the project. For all of them, comprehensive ship scale measurements 

were performed including actual hull and propeller roughness investigations. For one of the vessels 

(JoRes1 tanker) ship scale PIV measurements of the propeller flow were also performed.  



 

151 

The tanker case was the main one for CFD validation and a few internal blind workshops were 

performed with the project. 

 

2. JoRes1 tanker ship scale measurements 

 

The following activities took place before the actual sea trials: the hull and propeller roughness 

measurements were performed in the dry dock, strain gauges were installed on the propeller shaft to 

measure propeller torque, the optical sensor was installed next to the shaft to measure the propeller 

shaft speed, anemometers were installed on the antenna mast to get wind characteristics, etc. Most 

importantly the FlowPike - a specially developed unit for ship scale PIV (Particle Image Velocimetry) 

measurements was installed, Ponkratov et al. (2022). The Average Hull Roughness (AHR) of the hull 

was measured in the dry dock and the value was 218 µm.  

 

The sea trials were conducted according to the ISO15016:2015 standard. Before the trials, the vessel 

was stopped at sea to deploy the wave buoy, record vessel draughts and measure water properties. 

After the trials, the vessel was stopped again to record vessel draughts and repeat water properties 

measurements. The trials were performed at four shaft speeds (60, 75, 90 and 96 RPM). Normally, the 

ISO standard requires conducting 2 runs for each RPM setting (minimum of 10 min each), however, 

as it was expected that 10 min would not be enough for sufficient PIV measurements, the decision 

was made to make the duration of each run 40 min. Moreover, for 75 and 90 RPM settings, 4 runs 

were performed, resulting in a total of 12 performed runs. 

 

The main part of the PIV measurements was done at two speeds (75 and 90 RPM). Additionally, PIV 

measurements were done at a third speed (96 RPM), where a limited program could be executed. All 

the details of the PIV setup are reported in Birvalski et al. (2023). 

 

Despite all the effort to perform sea trials as accurately as possible it is practically impossible to 

achieve zero uncertainty. As discussed in Ponkratov and Strujik (2023), the sea trials uncertainty 

level for this case was 4-6%. 

 

3. Blind workshop organisation 

 

After the sea trials completion, the project moved to the next phase – blind workshop organisation. 

For the execution of this phase, the two main parts had to be prepared – geometry files and simulation 

conditions.  

 

As the key idea of the project is to numerically simulate exactly the same condition as during the 

actual sea trials, it was critically important to make sure the CFD geometry accurately replicates the 

vessel geometry.  

 

As the shipyard and hull designer supported the JoRes project they provided the organisers with the 

“as-designed” hull. Nevertheless, consideration should be given whether the actual hull is exactly the 

same as the designed one, as during the construction phase some minor alterations could be 

introduced. Moreover, the vessel was in service for 5 years and hull deformations or minor damages 

could have happened. To address this uncertainty a decision was made to perform 3D laser scanning 

while the vessel was in the dry-dock before the trials. This work would also be important to 

accurately capture the exact location of the PIV unit installed at the dry dock. As the unit installation 

was done on the very last day of dry-docking (after the final layer of paint was applied) the 3D laser 

scan of the stern area had to be performed the night before undocking. The bow and middle section 

area was successfully scanned before that.  

 

As a result, a comprehensive 3D scan data of the hull and all appendages was obtained. The next 

phase was to develop the 3D geometry for CFD simulations. The experts from Teignbridge Propellers 

put together the “as designed” and scan geometry and concluded that the deviation between the two 

files is minor so it was safe to proceed with the “as designed” hull, Fig.2. The only changes were 
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performed in the stern area where a skeg and casting were added based on the drawings, photographs 

and 3D scan data. 

 

 

 
Fig.2: Overlaying the “as-designed” hull geometry and 3D laser scan (373,448 points, mean deviation 

20.9 mm, median deviation 14.99 mm, standard deviation 19.48 mm) 

 

 
Fig.3: Overlaying the “as-designed” propeller geometry (red) and 3D laser scan (grey) 

 

The “as designed” propeller geometry model was also supplied by the design company and a similar 

match and compare job was performed for the propeller, Fig.3. Some minor modifications of the 

propeller trip region were performed by Teignbridge Propeller to make the CFD geometry as realistic 

as possible. The key challenge of geometry preparation was faced for the Propeller Boss Cap Fins 
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(PBCF). The designer did not permit to use of this geometry, so the PBCF were redesigned to have a 

non-competitive representation. Obviously, it introduces the uncertainty however it is believed the 

efficiency change between the newly designed PBCF and the original would be minor.  

 

Additionally, weld seams assessment was conducted and shell plate expansion drawings, anodic 

protection drawings, and bulge keel drawings were collected. However, these details weren't included 

in the 3D geometry files now, they can be incorporated if needed in the future. Nevertheless, a 

simplified PIV unit geometry was added to the 3D geometry as it is located upstream of the propeller 

and the vorticity developed from the unit may affect the propeller wake, Fig.4.  

 

 

 

 
Fig.4: Finding the exact location of the PIV unit based on 3D scan data (left) and simplification of the 

unit geometry for CFD simulation (right) 

 

As mentioned before the hull and propeller roughness was measured when the vessel was in the dry-

dock before the trials. The measured values correspond to the Average Hull Roughness (AHR) which 

cannot be simulated directly in CFD. The conversion to the equivalent sand grain roughness is 

required. The recent investigations, Schultz and Hutchins (2021), Hutchins et al. (2023), suggested 

the power mean method which was implemented for the JoRes1 tanker case. According to this 

method, the AHR for the hull of 218 µm gives the sand grain roughness equivalent Ks of 53 µm.  

 

The propeller roughness was measured and estimated to be 4 µm. All the detailed reports showing the 

measurement values and postprocessing details will be publicly available within the JoRes project 

benchmark in 2024.  

 

Apart from the geometry, the following conditions had also been defined based on the sea trials 

reports: vessel draughts, water density and viscosity, air density and viscosity, and vessel speeds.  

 

To make the simulations blind the results of sea trials were not shared with the participants. Only 

geometry files, environmental conditions and vessel speeds were provided. The participants were 

asked to use their best practice techniques to calculate propeller torque and rpm which could be 

compared with the trial results later. The participants were asked to use the same turbulence model (k-

w SST) and the suggested computational domain dimensions. The simulation recommendations were 

different compared to the LR Workshop 2016. In that workshop, participants were asked to keep 

constant rpm (same as at the trials) and determine vessel speed and power. In general, for CFD 

simulations it is easier to keep the vessel speed and adjust the RPM to achieve the self-propulsion 

point. For this reason, for the JoRes workshop, the vessel speed was given, and participants were 

asked to determine RPM and power.  
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4. Workshop results discussion 

 

On average about 10 sets of results were submitted by participants for each speed. Figs.5 and 6 show 

the speed-power and speed-RPM results.  

 

It should be highlighted that the actual results cannot be published before the end of 2024, so the 

figures do not have the scale, however, it is important to see the relative difference between measured 

and calculated power and rpm (at given speeds). Similarly, to LR Workshop 2016, it can be seen that 

the power predicted by CFD is generally lower than the sea trials. The blue band is an average of all 

submitted CFD results with the thickness of the band corresponding to the uncertainty level (standard 

deviation). As can be seen in the figures, some participants (green dots) were very close to the results 

measured at the trials. So, the scatter of the results and thickness of the band were caused by those 

participants who did not predict the sea trials conditions well. 

 

 
Fig.5: Results of the JoRes workshop, 2023, Speed-Power, (orange band – sea trials including 

uncertainty, blue band – mean CFD results including uncertainty, Green dots – individual CFD 

results submitted by participants) 

 

 
Fig.6: Results of the JoRes workshop, 2023, Speed-RPM, (colours as in Fig.5) 

 



 

155 

As discussed and analysed during the workshop there are a few explanations for this: 

 

1. Errors while submitting results. Despite providing the participants with well-defined tem-

plates some submissions had noticeable errors. For example, the total force components on 

the hull (resistance) were not in equilibrium with the forces on the propeller blades (thrust).  

2. Some participants did not converge the simulation cases and stopped the runs earlier than 

needed. To address this challenge and make sure the runs are converged, the participants 

were asked to submit a screenshot of the convergence plot. 

3. Some participants made a mistake in submitting the hydrostatic component of the forces. 

Once the hull is cut in pieces the integration of the submerged surface becomes not straight-

forward and extra attention should be paid to consider the hydrostatic component correctly.  

4. The actual CFD geometry did not have bilge keels and superstructure, so the added resistance 

of these components was calculated empirically and taken into account in CFD runs. The 

same values were provided to all the participants to reduce the uncertainty.  

5. In general, the standard deviation of numerical results is within ±3%. There is no CFD code 

dependency – reasonable results were achieved using various codes. The number of cells var-

ied in the diapason from 10M to 53M cells. 

 

In general, it is believed that the results are encouraging – if participants follow the recommended 

practice and pay attention to converge, force equilibrium and correct representation of hydrostatic 

components, the results will be close to the trials. Another observation is that even with the current 

CFD results the uncertainty level of submitted results is pretty much the same as the sea trials. 

 

Moreover, there has been a clear development in the industry since the LR Workshop 2016. 

Comparing Fig.1 and Fig.2 the scatter of CFD results getting less and the mean CFD band getting 

closer to the sea trials one. It is also important to note that new recommendations (for example related 

to hull roughness simulations) have been introduced after the LR workshop. Now a few working 

groups within the JoRes project focus on other ship-scale cases which should further improve the best 

practices and consequently the quality of results.  

 

5. Conclusions 

 

Even though CFD has been around in the industry for a few decades, sometimes there is still limited 

trust and concerns about the widespread of CFD. The key argument of the discussion is that CFD is a 

“rubbish in, rubbish out” black box and the results can be easily tuned to get desired figures (and 

especially colourful images). Nevertheless, it is believed the numerical methods matured over time 

and relevant best practices were introduced and adopted by CFD practitioners. That is why the blind 

simulations where the CFD participants do not know the final results are particularly important to 

make a status check of CFD predictions. Within the JoRes project a few workshops were run to 

perform these checks. One of them was the 50,000 dwt tanker and the results of that internal 

workshop are reported here. The standard deviation of submitted results is about 3% and the 

uncertainty spread is pretty much in line with the uncertainty reported by sea trials of 3-6%. Those 

CFD practitioners who followed the general recommendations and ensured the quality of their 

submissions got results agreeing well with the sea trials measurements.  
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Abstract

 

In the maritime industry, optimizing ship performance is crucial for operational efficiency, fuel 

economy and environmental sustainability. Therefore, this paper presents a simple but efficient data-

driven model for ship performance. The power shaft prediction consists in three different models: 

baseline, relative wind influence and arbitrary heading wave influence. Traditional semi-empirical 

established models often require extensive ship particulars information that are often unavailable, the 

proposed method does not require any particulars. The model performance is compared, using auto-

logged ship data, to these established models and has its efficiency demonstrated. 

 

1. Introduction 

 

The global shipping industry is vital for facilitating trade across oceans, but its environmental impact, 

particularly greenhouse gas emissions, have been a major source of concern in this industry. It is 

estimated that the shipping sector has a substantial contribution to global greenhouse gas (GHG) 

emissions, accounting for approximately 3% of the total GHG emissions worldwide, IMO (2021). 

Therefore, there has been a growing emphasis on developing new regulations to decrease fuel 

consumption, directly associated with GHG emissions. IMO (2022) attributes significant potential for 

reducing carbon emissions by optimizing ship operations. Reduction up to 10% can be achievable 

through voyage optimization, where accurate ship performance predictions play a crucial role. 

 

Understanding and quantifying hull resistance is critical in ship performance analysis. Accurately 

assessing hull resistance presents numerous challenges due to the complex interaction between the 

ship’s hull and the surrounding environment. Many factors such as hull shape, surface roughness, ship 

speed, and environmental conditions significantly impact the total resistance. Therefore, several 

methods have been developed to evaluate the hull resistance. 

 

To estimate the ship power prediction in calm sea (ship’s baseline), a commonly used method was 

developed by Holtrop and Mennen (1982). It relies on regression analysis of model experiments and 

full-scale data from the Netherlands Ship Model Basin. Another method, introduced by Hollenbach 

(1999), is based on model tank tests conducted for 433 ships by the Vienna Ship Model Basin 

between 1980 and 1995. Both methods provide a general power prediction applicable to ships at no 

trim and under design draught conditions. However, for more precise predictions tailored to specific 

ships, self-propulsion tests and resistance tests in model basins are conducted. 

 

Models of wind resistance analyses from various laboratories with models covering a wide range of 

merchant ships were developed by Isherwood (1973) and further by Blendermann (1994). More 

recent regression formulas based on wind tunnel test for a wide range of ship types were developed, 

Fujiwara et al. (1998,2005), Kitamura et al. (2017). The latter is recommended for the use of sea trail 

corrections by, ITTC (2022).  

 

For the added wave resistance on ships, one of the oldest and simplest models is the one developed by 

Kreitner and presented in ITTC (2005), which is valid only for head waves up to 2 m. More recent 

semi-empirical models, like the STAWAVE-2 considers a broader range of wave height as well as 

wavelength influence but is valid only for wave direction between 0 and 45 degrees. 

 

Semi-empirical methods are developed based on physics and that’s make them powerful to model 

complex phenomenon through the introduction of parameters and at the same time being able to 

mailto:jose.ambiel@ose-engineering.fr
mailto:christophe.leclercq@ose-engineering.fr
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generalize because of their physical meaning. The wind and wave models on the literature described 

above were developed for a broad range of ship types, which makes them very good at predicting the 

added resistance in various scenarios. However, having quality data in hands thanks to Ascenz 

Marorka, a simple semi-empirical model can have better results. Here, we present a simple semi-

empirical formulation for added resistance of wind and waves. Thanks to the auto-logged data we 

have, we are able to fit our model for different conditions by using a machine learning methodlogy. 

Finally, we compare our results with well-established semi-empirical models. 

 

2. Ship Performance Model 

 

The power shaft required to a ship to move through the sea at a certain speed can be described by, 

Birk (2019): 

 

 𝑷𝒔𝒉𝒂𝒇𝒕 = 𝑹𝒕𝒐𝒕𝒂𝒍 ∗ 𝑽𝒔𝒉𝒊𝒑 ( 1) 

 

where 𝑉𝑠ℎ𝑖𝑝 is the ship’s log speed (speed through water) and 𝑅𝑡𝑜𝑡𝑎𝑙 is the total resistance, i.e. 

external forces acting on the ship. In the present study, the total resistance 𝑅𝑡𝑜𝑡𝑎𝑙 is divided in three 

distinct forces: 

 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑅𝑤𝑖𝑛𝑑 + 𝑅𝑤𝑎𝑣𝑒 ( 2) 

 

with 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 being the forces on the hull of the ship when moving through a calm sea, 𝑅𝑤𝑖𝑛𝑑 the 

wind forces on the whole ship and 𝑅𝑤𝑎𝑣𝑒 the resulting wave sea forces on the hull of the ship. 

Therefore, the ship 𝑃𝑠ℎ𝑎𝑓𝑡 can be written as: 

 

 

𝑃𝑠ℎ𝑎𝑓𝑡 = 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑃𝑤𝑖𝑛𝑑 + 𝑃𝑤𝑎𝑣𝑒 

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑉𝑠ℎ𝑖𝑝 

𝑃𝑤𝑖𝑛𝑑 =  𝑅𝑤𝑖𝑛𝑑 ∗ 𝑉𝑠ℎ𝑖𝑝 

𝑃𝑤𝑎𝑣𝑒 =  𝑅𝑤𝑎𝑣𝑒 ∗ 𝑉𝑠ℎ𝑖𝑝 

( 3) 

 

2.1. Baseline 

 

The baseline is commonly written as a power of 3 of the log speed (𝑃 ~ 𝑉𝑠ℎ𝑖𝑝
3 ). Although the cubic 

law holds around the design speed, Psaraftis and Kontovas (2014), at higher speeds this exponential 

coefficient can be higher than 3, Holtrop and Mennen (1982), Taskar and Andersen (2020), MAN 

(2023), and at lower speed studies claim that this coefficient is lower than 3, Berthelsen and Nielsen 

(2021), Adland et al. (2020). Therefore, we decided to consider the 𝑉𝑠ℎ𝑖𝑝 exponential for the baseline 

as a parameter to fit the data. 

 

Other factors also have considerable influence on the ship’s baseline that could be taken into account. 

To cite some: 

 

• The trim affects the hull hydrodynamics as well as the bulbous bow and transom immersion 

• Changes in the rudder angle increases the ship’s resistance when manoeuvring it 

• The biofouling increases the hull friction with time therefore its resistance 

• Shallow waters increase the ship draft by making the ship to squat and increase the wave 

making resistance 

• The draft impacts manly to hull friction surface with the water but also, like the trim, the hull 

hydrodynamics and bulbous bow and transom immersion. 

 

In order to keep the formula simple, with a minimum of parameters, the only influence considered, 

among the ones cited above, is the draft. In the view of the authors, it is the one that impacts the most 

the total resistance in the present study. 
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The exact draft impact on the power shaft is hard to evaluate since it is a complex phenomenon, 

therefore, we keep it simple in this study and consider it with a linear influence. Hence, baseline 

formula can be written as follows: 

 

 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = (𝑥0 + 𝑥1 ∗ 𝑇) ∗ 𝑉𝑠ℎ𝑖𝑝
𝑥2  ( 4) 

 

with 𝑥0, 𝑥1 and 𝑥2 parameters to fit and 𝑇 the draft at midship. 

 

2.2. Wind influence 

 

If there is no Wind Tunnel Test or CFD simulations available to determine the wind coefficient 

resistance (𝐶𝐷𝐴), it can be calculated based on Fujiwara’s regression formula, ITTC (2022). This 

method was developed based on wind tunnel test for several ships, Fujiwara et al. (1998,2005): 

 

 
𝐶𝐷𝐴 = 𝐶𝐿𝐹 cos 𝜃𝑊𝑅 + 𝐶𝑋𝐿𝐼 (sin 𝜃𝑊𝑅 −

1

2
sin 𝜃𝑊𝑅 cos2 𝜃𝑊𝑅) sin 𝜃𝑊𝑅 cos 𝜃𝑊𝑅

+ 𝐶𝐴𝐿𝐹 sin 𝜃𝑊𝑅 cos3 𝜃𝑊𝑅 
( 5) 

 

where 𝜃𝑊𝑅 is the wind relative direction and 𝐶𝐿𝐹, 𝐶𝑋𝐿𝐼 and 𝐶𝐴𝐿𝐹 are regression coefficients. These 

coefficients depend on detailed ship parameters related to its geometry that are not available for this 

study. However, these parameters can be estimated based on Kitamura et al. (2017). The authors 

developed regression formulas to estimate the input parameters for 𝐶𝐿𝐹, 𝐶𝑋𝐿𝐼 and 𝐶𝐴𝐿𝐹 function of the 

ship type, ship length overall and ship beam. 

 

Once the 𝐶𝐷𝐴 determined, the wind resistance can be calculated in the following manner: 

 

 𝑅𝑤𝑖𝑛𝑑
𝐹𝑢𝑗𝑖𝑤𝑎𝑟𝑎

=
1

2
𝜌𝑎𝑖𝑟𝐴𝑋𝑉𝐶𝐷𝐴𝑉𝑊𝑅

2  ( 6) 

 

where 𝜌𝑎𝑖𝑟 is the volumetric mass of the air, the 𝐴𝑋𝑉 the area of maximum transverse section exposed 

to the winds and 𝑉𝑊𝑅 the relative wind speed. 

 

For this study, we are going to compare the presented Fujiwara regression formula to a simple wind 

formulation: 

 

 
𝑅𝑤𝑖𝑛𝑑 = 𝐶𝑤𝑖𝑛𝑑

𝑑𝑖𝑟 𝑉𝑊𝑅
2  

𝐶𝑤𝑖𝑛𝑑
𝑑𝑖𝑟 = 𝑥3 cos 𝜃𝑊𝑅 + 𝑥4 sin 𝜃𝑊𝑅 + 𝑥5 sin 2𝜃𝑊𝑅 

( 7) 

 

with 𝑥3, 𝑥4 and 𝑥5 parameters to fit and 𝐶𝑤𝑖𝑛𝑑
𝑑𝑖𝑟  the wind direction coefficient, i.e. the wind direction 

influence on the wind resistance. The proposed formulation is not far from Fujiwara’s model.  

 

Comparing the formulas, saying that 
1

2
𝜌𝑎𝑖𝑟𝐴𝑋𝑉𝐶𝐷𝐴 =  𝐶𝑤𝑖𝑛𝑑

𝑑𝑖𝑟  the models are the same. 

 

Moreover, the intuition behind the 𝐶𝑤𝑖𝑛𝑑
𝑑𝑖𝑟  formulation is that different sets of parameters [𝑥3, 𝑥4, 𝑥5] 

can result in the different shapes depicted in Fig.1. The shown curves are general shapes found for the 

drag coefficient of ships. 
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Fig.1: Different possible shapes for the wind resistance coefficient 

 

2.3. Wave influence 

 

In the ITTC (2022) guidelines, three well known methods in the literature are cited to calculate the 

wave resistance, STWAVE-1, STWAVE-2 and a semi-empirical method referred as SNNM, Liu and 

Papanikolaou (2020). Following the same formulation of the latter, Mittendorf et al. (2022) improved 

the SNNM method by slightly changing its formula and recalculating the coefficients with an 

enriched database. 

 

The Mittendorf semi-empirical formula is going to be compared with the following simple wave 

formulation: 

 
𝑅𝑤𝑎𝑣𝑒 = 𝐶𝑤𝑎𝑣𝑒

𝑑𝑖𝑟 𝐻𝑆
2 

𝐶𝑤𝑎𝑣𝑒
𝑑𝑖𝑟 = 𝑥6 + 𝑥7 cos 𝜃𝑤𝑎𝑣𝑒 + 𝑥8 sin 𝜃𝑤𝑎𝑣𝑒 + 𝑥9 sin 2𝜃𝑤𝑎𝑣𝑒 

( 8) 

 

with 𝑥6, 𝑥7, 𝑥8 and 𝑥9 parameters to fit, 𝐻𝑆 the significant wave height, 𝜃𝑤𝑎𝑣𝑒 the wave direction and 

𝐶𝑤𝑎𝑣𝑒
𝑑𝑖𝑟  the wave direction coefficient, i.e. the wave direction influence on the wave resistance. 

 

The formula for the wave directional coefficient 𝐶𝑤𝑎𝑣𝑒
𝑑𝑖𝑟  is close to the wind directional coefficient 

𝐶𝑤𝑖𝑛𝑑
𝑑𝑖𝑟  the only difference being the independent parameter 𝑥6 that allows the same curves from Fig.1. 

to move freely on the vertical axis.  

 

Moreover, the presented formulation of 𝑅𝑤𝑎𝑣𝑒 depends on the square of the wave height because all 

other physical and semi-empirical models consider the same. 

 

3. Data analysis 

 

Three different types of ship of three different lengths were chosen to evaluate the model 

performance. For all three ships the dataset was first cleaned with outlies, sensor problems and other 

types of problematic data points being disregarded. The data interval is 15 minutes. The main 

particulars of the analyzed ships as well as few data metrics are summarized in Table I. 

 

Table I: Main characteristics of the analyzed ships and its data 

Ship type LOA (m) Beam (m) Data points Number of voyages 

Car Carrier 170 28 27243 (284 days) 174 

Container Ship 400 61 19854 (207 days) 41 

LNG Tanker 300 46.5 26117 (272 days) 23 
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Fig.2: Histograms relative to ship and weather information for the Car Carrier 

 

It is important to know the data distribution across the dataset, therefore, Fig.3, Fig.4 and Fig.5 show 

histograms of several ship and weather information for the Car Carrier, Container Ship and LNG 

Tanker, respectively. Trim and wavelength (𝜆) are not considered in the Simple model but is used in 

the Mittendorf formula to calculate the wave resistance. 

 

 
Fig.3: Histograms relative to ship and weather information for the Container Ship 
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Fig.4: Histograms relative to ship and weather information for the LNG Tanker 

 

4. Results 

 

In this section we are going to compare the results of the stablished semi-empirical models against the 

simplified presented model, called “Simple model” in the following. The equations that compose each 

model is explicated in Table II. 

Table II: Equations of each model 

 Semi-empirical model Simple model 

Baseline Eq. ( 4) Eq. ( 4) 

Wind model Fujiwara Eq. ( 7) 

Wave model Mittendorf Eq. ( 8) 

 

All parameters were fitted with the “minimize” function inside the SciPy package in python. 

 

4.1. Baseline 

 

Fig.5, Fig.6 and Fig.7 depict the baseline curves on the scatter plot of all points and the calm sea 

points (fitting points for the baseline curve).  

 

The left figures show the baseline of the ships in laden and ballast conditions on the common Power 

vs. Speed plot. The right figures are a look on the baseline in a different angle, the Power Shaft is 

divided by the Log Speed (with the exponential) so the draft influence on the baseline can be 

highlighted. 

 

 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = (𝑥0 + 𝑥1 ∗ 𝑇) ∗ 𝑠𝑡𝑤𝑥2  ⇔  
𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑠𝑡𝑤𝑥2
= 𝑥0 + 𝑥1 ∗ 𝑇 ( 9) 

 

The draft influence on the baseline is weak on the Car Carrier case but important to consider on the 

other two cases. Although saying that the baseline dependency on the draft is linear, it can capture the 

main trend with a small number of parameters. 
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(a) (b) 

Fig.5: (a) Baseline on Power vs. Speed; (b) baseline coefficient in function of draft for Car Carrier 

 

  
(a) (b) 

Fig.6: (a) Baseline on Power vs. Speed;(b) baseline coefficient in function of draft for Container Ship 

 

The exponent value 𝑥2 for each ship is given in Table III. 

 

Table III: Baseline log speed exponent value 

Ship type 𝑥2 

Car Carrier 2.69 

Container Ship 3.00 

LNG Tanker 3.11 

 

Although not far from 3, the optimum value for the exponent is not always 3. 

 

The baselines calculated here are used to find the wind and wave influence of the Simple and Semi-

empirical models (Mittendorf + Fujiwara) in the following. 
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(a) (b) 

Fig.7: (a) Baseline on Power vs. Speed; (b) baseline coefficient in function of draft for LNG Tanker 

 

4.2. Wind influence 

 

The comparison of the wind resistance between models for the three ships is illustrated in Fig.8(a), (b) 

and (c).  

 

  
(a) (b) 

 
(c) 

Fig.8: Comparison between Simple model’s and Fujiwara’s wind resistance for (a) Car Carrier, (b) 

Container Ship and (c) LNG Tanker 
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The calculated wind resistance for both models considers relative wind speeds of 10 m/s. The 

Fujiwara model plot is a mean between the laden and the ballast case, the simple model does not 

differentiate between the two. 

 

The wind resistance comparison between the two models show that the Fujiwara model often 

underestimates the wind impact on the ship performance compared to the Simple model. The 

difference between models is even more accentuated for side winds. Indeed, for side winds the 

Fujiwara formula predicts zero net force on the ship heading direction and the Simple model, 

however, predicts a negative impact (positive resistance) on the power shaft. 

 

4.3. Wave influence 

 

The wave resistance between models for the three ships is compared in Fig.9(a), (b) and (c) for a 

significant wave height of 2 m. 

 

  
(a) (b) 

 
(c) 

Fig.9: Comparison between Simple model’s and Mittendorf’s wave resistance for (a) Car Carrier, (b) 

Container Ship and (c) LNG Tanker 

 

The wave resistance in Simple model is only affected by the wave height and wave direction 

therefore, by fixing the wave height, the wave resistance curve function of wave direction is 

straightforward. On the other hand, in the Mittendorf model the wave resistance depends, in addition 

to many particulars, on the draft aft, draft fore, log speed, wave height, wave direction and 

wavelength. In order to plot the Mittendorf model function of the wave direction only, the resulting 

wave resistance was averaged inside each 10°, the mean value was then plotted. 

 

Both models seem to agree on the general trend of the wave resistance in function of the wave 

direction. The Mittendorf model overestimates the wave resistance comparing to the Simple model in 

the case of the Car Carrier and the Container Ship. For the LNG Tanker, is the contrary. 
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This change in behavior is certainly affected by the different draft, speed and wavelength profiles 

encountered by each ship. If the ship always takes the same routes, it will in average face the same sea 

conditions and therefore the Simple model is probably going to be better suited for the wave 

resistance. However, if the ship encounters sea conditions that deviates a lot from the training data, 

the model can perform poorly. 

 

4.4. Error comparison 

 

In this section the Mean Absolute Percentage Error for each model is calculated. For comparison 

reasons, two other model predictions are calculated in addition. The “Baseline” model refers to the 

baseline prediction only. The “Baseline + 15%” refers to the baseline multiplied per 1.15, common 

rule of thumb used in the naval architecture domain to take in consideration the extra power shaft 

correction due to weather. 

 

Fig.10(a), (b) and (c) show the MAPE for the different models. For all three ships, the Simple model 

performed better than the semi-empirical one (Mittendorf + Fujiwara). For the Car Carrier and LNG 

Tanker ships, the Simple model performed around 1.7% better and for the Container ship, around 

2.7% better. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.10: MAPE for different models for a (a) Car Carrier, (b) Container Ship and (c) LNG Tanker 
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(a) (b) 

Fig.11: MAPE comparison between Simple model and semi-empirical method in function of (a) the 

relative wind speed and (b) the wave height for a Car Carrier 

 

  
(a) (b) 

Fig.12: MAPE comparison between Simple model and semi-empirical method in function of (a) the 

relative wind speed and (b) the wave height for a Container Ship 

 

To further analyze and compare the behavior of the models, the MAPE is calculated in function of the 

relative wind speed and wave height. The count of weather cases is plotted in the histogram on top of 

the corresponding figure. Fig.11(a), Fig.12(a) and Fig.13(a) show for the three ships the MAPE 

comparison between models in function of the relative wind speed. The figures Fig.11(b), Fig.12(b) 

and Fig.13(b) do the same comparison but in function of the wave height. 
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(a) (b) 

Fig.13: MAPE comparison between Simple model and semi-empirical method in function of (a) the 

relative wind speed and (b) the wave height for an LNG Tanker 

 

It is possible to see that the Simple model is also able to generalize to the less frequent cases, even in 

the scope of this study where all points were considered for the parameters fitting therefore the model 

being biased. Nevertheless, is important to point out that, naturally, the model is going to perform 

poorly in the less frequent cases in the dataset. 

 

5. Conclusions 

 

The article presents a relatively simple model to estimate the power shaft of ships in open sea. The 

model considers the ship speed and draft, the wind speed and direction and the waves height and 

direction. Its performance is compared to established semi-empirical models in the literature for three 

different ship types of distinct sizes. Each ship has approximately 8 months of usable data (data when 

the ship is in route, data when ship is in port is not considered). The semi-empirical methods depend 

on many ship particulars and detailed geometry parameters that are often unknown. The presented 

model does not depend on any ship particular but only on data. 

 

The comparison between the two models shows that the Simple model gives better results. Its 

formulation based on physics demonstrates being able to generalize by estimating with acceptable 

error (better than the established models) weather cases where the data is scarce, notably high wind 

speeds and high waves. 
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Abstract 

 

Recent advances in AI and availability of a ship’s operational data makes AI based models to be used 

in ship performance analysis. Many ship performance analysis and monitoring solutions now uses AI 

based models. In this study, an DNN-based model for predicting a ship’s performance and 

performance degradation is proposed. The results show good prediction accuracy for predicting 

FOC. Also performance degradation prediction results shows similar trends and pattern with 

conventional hydrodynamics based performance analysis model. 

 

1. Introduction 

 

Ship performance analysis and monitoring has always been a backbone of shipping company’s 

operations. From simple log-based record collection and monitoring to more sophisticated systems 

with real time data collection and hydrodynamic based analysis models, it is used as a basis to make 

day to day operational decisions. 

 

Recent advances in AI and availability of a ship’s operational data makes AI based models to be used 

in ship performance analysis. Many ship performance analysis and monitoring solutions now uses AI 

based models only or in conjunction with conventional hydrodynamic models. AI based models also 

provide one very strong advantage over conventional models: they can easily be used for prediction of 

future performance.  

 

In this paper, a DNN (Deep Neural Network) based ship performance prediction model is proposed 

and applied to a test case to predict degradation of a ship’s performance over time. First, a DNN based 

model is constructed with previous operational data to predict FOC (Fuel Oil Consumption). Then the 

model is applied to predict for the journey, which data is not used in training of the prediction model. 

The prediction results are then compared with the actual data from the journey to calculate the 

accuracy of the model. Based on this prediction model, it is also possible to predict the amount of the 

ship’s performance degradation.  

 

2. Method 

 

2.1. Data processing 

 

The data is preprocessed before constructing the FOC prediction model to improve the performance 

of the model. The data preprocessing involves two components. The first is feature engineering, in 

which a new feature related to the anchoring effect is developed, and the original features related to 

environmental resistance are converted. The other is the extraction of stable voyage data, where 

abnormal operations such as abrupt accelerations and decelerations, as well as changes in the traveling 

direction are disregarded.  

 

First, for feature engineering, a new feature called CAE (Cumulative Anchoring Effect) is developed, 

mailto:baracude@netopia.re.kr
mailto:joonh.lee@kriso.re.kr
mailto:mskim@kriso.re.kr
mailto:jyjung@khu.ac.kr
mailto:pdh@khu.ac.kr
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based on the well-known assumption that the degradation of performance due to hull fouling is 

significantly affected by the length of the anchoring and the water temperature of the anchorage site.  

 

 𝐶𝐴𝐸𝑛 = (𝑛𝑜. 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)𝑛 × (𝑤𝑎𝑡𝑒𝑟 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 𝑠𝑖𝑡𝑒)𝑛,  (1) 

 where n represent n-th anchoring. 

 

In addition, new features related wind, current and wave are also created for ease of handling data. 

 

 𝑊𝑖𝑛𝑑 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 = 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑𝑡 × 𝑊𝑖𝑛𝑑 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡,    (2) 

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑝𝑒𝑒𝑑𝑡 × 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡, 

 𝑊𝑖𝑛𝑑 𝑊𝑎𝑣𝑒 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 = 𝑊𝑖𝑛𝑑 𝑊𝑎𝑣𝑒 𝐻𝑒𝑖𝑔ℎ𝑡𝑡 × 𝑊𝑖𝑛𝑑 𝑊𝑎𝑣𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡, 

 𝑆𝑤𝑒𝑙𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 = 𝑆𝑤𝑒𝑙𝑙 𝐻𝑒𝑖𝑔ℎ𝑡𝑡 × 𝑆𝑤𝑒𝑙𝑙 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡, 

 where, t represents time.  

In order to extract stable voyage, the following data is removed: 

 

• Data near departure and arrival 

• Data with rudder angle, speed over ground or FOC values outside the range of 3 times the 

standard deviation within a pre-defined time window.  

 

2.2. DNN-based FOC prediction model 

 

A DNN architecture is used to develop an FOC prediction model. DNNs have been actively used in 

many studies because they can automatically extract representative features without generating 

complex handcrafted features, which typically require a considerable amount of expert knowledge, 

Tarelko and Rudzki (2020), Tran (2021), Zhou et al. (2022). Consecutive nonlinear calculations of the 

DNN by stacking several hidden layers allow large and complex problems to be solved, Uzair and  

Jamil (2020). 

 

The architecture of the FOC prediction model is shown in Fig.1. The DNN architecture comprises of 

an input layer, three hidden layers, and an output layer. The layers comprise of several nodes 

connected with weights to be summed in each node using a nonlinear function, ReLU (Rectified 

Linear Unit), Agarap (2023). The last hidden layer is connected to the input layer via a shortcut 

connection, He et al. (2023), where the inputs are summed to the outputs of the last hidden layer 

during model training. This allows the model to be optimized more easily as only the residual 

information, excluding the original information added by the connection, is to be learned. 

 

 
Fig.1: Architecture of DNN-based FOC prediction model 

 

The data acquired during the actual operation of a ship fluctuate significantly because of harsh and 

variable ocean environments. Therefore, the FOC prediction model is trained to predict the averaged 

FOC in a single time window instead of that of all FOCs at all time points. To predict the average 

FOC in a time window, the input features are averaged over the time window. Averaging is conducted 
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for each journey leg, not by averaging the overlapped data in the two journey legs. The configurations 

of the inputs and outputs are shown in Fig.2. 

 

 
Fig.2: Configuration of inputs and outputs of DNN-based FOC prediction model 

 

2.3. Estimation of performance degradation 

 

Using the above FOC prediction model, it is also possible to predict the degradation. The amount of 

performance degradation is estimated as the difference between the predicted FOCs obtained using 

the input data with the original CAE and initial CAE, as shown in Fig.3. The FOC prediction model, 

F, predicts the FOCs in the k-th journey leg, �̂�𝑘, using the input features �̅�𝑘 including the CAE, which 

is denoted as A. If the CAE is changed to 0, which implies that the state of the ship returns to the past 

when no anchoring effects are accumulated, then the prediction model F generates a lower FOC, �̂�𝑘
′ . 

The percent decrease in the predicted FOCs is quantified as the amount of performance degradation of 

the k-th journey leg. 

 

 
Fig.3: Estimation of ship performance degradation 

 

3. Application of the model 

 

3.1. Data description 

 

The data used for the application of the model is from a large crude oil tanker for a period of 21 

months. A data acquisition system was installed on the ship, and operational data were acquired every 

10 s during operation. The features of the acquired data are listed in Table I. The features related to 

wind, wind waves, swells, and currents are nowcast values, not direct measurements. During the 

operating period, the ship traveled 49 journey legs, and dry docking, hull cleaning, or propeller 

polishing were not involved. The propeller of the ship was last polished in August 2019; therefore, the 

initial data were obtained when the degradation had progressed for approximately 6 months. 

 

Table I: Features of acquired data 
Measured Forecasted 

Feature Units Feature Units 

Time stamp yyyy-mm-dd hh:mm:ss Wind velocity m/s 

Latitude degree (°) Wind direction degree (°) 

Longitude degree (°) Wind wave height meter 

Water temperature °C Wind wave period second 

Draft forward meter Wind wave height meter 

Draft after meter Wind wave direction degree (°) 

� = � � , � � � = �

� = � � , � � � = 0
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Draft starboard meter Swell height meter 

Draft port meter Swell period second 

Draft forward when departure meter Swell height meter 

Draft after when departure meter Swell direction degree (°) 

Heading GPS degree (°) Current velocity m/s 

Heading gyro degree (°) Current direction degree (°) 

Rudder angle degree (°)   

Speed over ground m/s   

Speed Through Water m/s   

Shaft torque Newton   

Shaft speed revolutions per second   

Brake power Watt   

Shaft power Watt   

Delivered power Watt   

Fuel power Watt   

Fuel oil consumption kg/s   

 

3.2. Preprocessing 

 

Although the acquired data comprised 44 features, only 11 features, including newly developed 

features, were used as inputs for the FOC prediction model, as shown in Table II. The longitude 

feature was indicated in sine and cosine values because the longitude ranged from 0° to 360°, which 

exhibited a cyclical property that resulted in misrepresentation. Because the longitudes of 0° and 360° 

indicate the same degree, they should be converted to represent the same value using sine and cosine 

values. The external resistance features, i.e., the wind resistance, wind wave resistance, swell 

resistance, and current resistance, were developed as described in Section 2.1. The features of the 

average draft were calculated by averaging the features of the draft forward when departure and the 

draft after when departure. This average draught represents the loaded weights of the ship at the 

departure time, which considers both the fore and aft draughts. The CAE feature was included as an 

input feature to represent the performance degradation caused by the anchoring, as described in 

Section 2.1. 

 

Table II: Features for developing FOC prediction model 

Category Feature Units 

Input features 

Longitude_sin - 

Longitude_cos - 

Latitude degree (°) 

Water temperature °C 

Wind resistance - 

Wind wave resistance - 

Swell resistance - 

Current resistance - 

Average draught meter 

Speed over ground (SOG) m/s 

Cumulative berthing effect (CBE) - 

Output feature Fuel oil consumption (FOC) kg/s 

 

Before training the FOC prediction model, stable voyage data were extracted using the rudder angle, 

SOG, and FOC features as described in Section 2.1. The data of the five shifting journey legs were 

removed because they were short and abnormal operations for special purposes. Finally, the data of 

the four journey legs whose data lengths were shorter than 1 h were removed as they were extremely 

short. Thus, after preprocessing, the data of 42 journey legs remained. 
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3.3. Training of DNN-based FOC prediction model  

 

The preprocessed data were segmented into training, validation, and test data. The validation data 

were used to determine the optimal hyperparameters of the FOC prediction model, and the test data 

were used as unseen data for the final evaluation of the trained model. To avoid data leakage when 

future data are used at the training stage, the data is divided in the sequential order of training, 

validation, and test data, as shown in Table III. The data were divided based on the unit of the journey 

leg. The training data contained 31 journey legs (15.3 months), the validation data 6 legs (3.2 

months), and the test data 5 legs (3.1 months), which resulted in 70% training data, 15% validation 

data, and 15% test data. 

 

Table III: Data segmented into training, validation, and test data 

 Date Months The number of journey legs 

Training data Jan. 21, 2020 to Apr. 25, 2021 15.3 31 

Validation data May 19, 2021 to Aug. 24, 2021 3.2 6 

Test data Aug. 24, 2021 to Nov. 26, 2021 3.1 5 

 

3.4. Results of FOC prediction 

 

The proposed DNN-based FOC prediction model exhibited a good as shown in Table IV. The 

performance of the FOC prediction model was measured using the data of the five journey legs (#38-

42) in the test data by calculating the mean absolute error (MAE), root mean squared error (RMSE), 

and mean absolute percentage error (MAPE). On average, for the five legs, the DNN-based FOC 

prediction model exhibited 0.0161, 0.0209, and 5.79% for the MAE, RMSE, and MAPE, respectively. 

The prediction results of the DNN model are shown in Fig.4. 

 

Table IV: Results of FOC prediction of test data 

# of journey leg MAE (kg/s) RMSE (kg/s) MAPE (%) 

38 0.0139 0.0181 3.73 

39 0.0128 0.0158 4.98 

40 0.0185 0.0244 7.00 

41 0.0165 0.0229 6.36 

42 0.0188 0.0231 6.86 

Avg. 0.0161 0.0209 5.79 

 

 
Fig.4: FOC prediction results of DNN-based FOC prediction model based on test data  

 

The prediction results of the DNN model shown in Fig.4 were obtained using a 10-min time window. 

Six different time-window sizes (1, 5, 10, 20, 30, and 60 min) were tested. The 5-min time window 
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yielded the lowest MAPE, whereas the 10-min time window yielded the lowest MAE and RMSE. The 

errors were calculated by averaging the errors of the five journey legs from the test data. Because the 

10-min time window yielded the lowest errors in two among three of the error metrics, the optimal 

time window for the DNN model was determined to be 10 min. However, it should be noted that the 

optimal time window size will likely vary with the frequency of input data. 

 

Table V: Comparison of prediction results based on time window size 

 Size of time window 

 1 min 5 min 10 min 20 min 30 min 60 min 

MAE  0.0190 0.0171 0.0170 0.0184 0.0222 0.0213 

RMSE  0.0239 0.0223 0.0218 0.0227 0.0277 0.0268 

MAPE  7.09 6.28 6.33 6.91 8.24 7.91 

 

3.5. Results of performance degradation estimation  

 

Performance degradation was estimated using the developed DNN-based FOC prediction model as 

described in Section 2.3. All the data, including the training, validation, and test data, were provided 

to the model as inputs, and the prediction results were obtained, as shown in column 2 of Table 6. 

Subsequently, the CAE value of each journey leg data was modified to 0, and the modified prediction 

results were obtained, as shown in column 3 of Table VI. Finally, the amount of performance 

degradation was calculated using the original and modified FOC predictions for each journey leg, as 

shown in column 4 of Table VI. 

 

In Fig.5, the estimated performance degradations are indicated by a trend line, which was obtained via 

linear regression by adjusting the bias to 0 (R2 = 0.78). As time progress, the estimated performance 

degradations increase and exhibit high volatility. As the performance degradations do not increase 

monotonically, it can be inferred that the CAE does not necessarily impose the same effect on the 

operational performance of ships. This is because the operational environments of ships are highly 

variable depending on the ocean environment, cargo weight, and ship speed.  

 

Journey legs showing performance degradations that differ significantly from the trend line are 

indicated by orange rectangles (set 1: #24, 32, 33, 37, 39, and 41) and red triangles (set 2: #13, 28, 36, 

38, and 42).  

 

On the trend line, the green diamonds represent the performance degradations of the journey legs after 

approximately 0.5, 1.0, and 1.5 years from the first journey leg (y=0.1829x). By not considering the 

variability in the operational conditions, the ship degraded by 2.19%, 4.75%, and 6.76% after 6 

months, 1 year, and 1.5 years, respectively. 

 

Table VI: Estimated performance degradations 
 # of  

journey legs 
Predicted FOC 

Predicted FOC 

(CBE=0) 

performance 

degradations (%) 

Training 

data 

1 297.961 297.961 0.00 

2 16.288 16.284 0.02 

3 11.227 11.202 0.22 

4 121.674 121.451 0.18 

5 86.166 85.295 1.01 

6 374.436 372.999 0.38 

7 84.826 83.411 1.67 

8 46.176 45.297 1.90 

9 215.514 214.746 0.36 

10 17.741 17.577 0.92 
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11 11.696 11.497 1.70 

12 127.039 125.708 1.05 

13 7.917 7.932 -0.19 

14 23.519 23.418 0.43 

15 24.070 23.129 3.91 

16 152.258 148.644 2.37 

17 13.204 12.775 3.25 

18 98.925 96.633 2.32 

19 106.887 103.929 2.77 

20 14.403 13.761 4.46 

21 190.183 186.682 1.84 

22 59.210 57.789 2.40 

23 80.335 77.784 3.18 

24 158.018 147.995 6.34 

25 27.344 26.526 2.99 

26 283.274 274.541 3.08 

27 5.234 5.029 3.92 

28 160.312 156.398 2.44 

29 189.579 180.721 4.67 

30 14.863 14.280 3.92 

31 76.049 72.946 4.08 

Validation 

data 

32 131.394 119.888 8.76 

33 3.010 2.662 11.56 

34 25.886 24.493 5.38 

35 166.806 157.834 5.38 

36 248.602 240.467 3.27 

37 2.528 2.191 13.33 

Test 

data 

38 28.156 27.249 3.22 

39 172.133 152.125 11.62 

40 207.193 190.488 8.06 

41 23.942 20.704 13.52 

42 316.679 306.103 3.34 

 

 
Fig.5: Estimated performance degradations at each journey leg  

 

5. Comparisons with conventional model  

 

Conventional hydrodynamic based models have also been used to analyse ships’ performance and 

performance degradations. Using the methods described in Park et al. (2023), the same data is 

analysed. Fig.6 shows the results as the difference between expected power from speed power 

reference curve and corrected power accounting for external resistance.  

 



 

177 

 
Fig.6: Performance analysis results using conventional model 

 

While it is not possible to directly compare the results of DNN-based prediction model and 

conventional model as their metric representing the performance degradation is different, Fig.5 and 6 

shows similar patterns. More comparative study will be done in near future.  

 

6. Conclusion 

 

A model to estimate performance degradations using a DNN-based FOC prediction model was 

proposed herein. By utilizing the CAE as a feature, performance degradations can be estimated and 

verified based on the performance of the DNN-based FOC prediction model. Moreover, the developed 

features related to environmental resistance (wind, wind wave, swell, and current) were shown to 

facilitate improvements to FOC prediction. Finally, the proposed DNN-based FOC prediction model 

showed quite good prediction accuracies in terms of the MAE, RMSE, and MAPE. 

 

Performance degradations estimation results shows that performance degradations increase over time; 

however, the performance degradations depend significantly on the operational conditions, 

specifically the SOG and average draft. The trend line obtained from the estimated performance 

degradations showed that the target ship degraded by 4.75% and 7.68% within 1 year and almost 2 

years (21 months), respectively. 

 

As a future work item, more close examination between DNN-based prediction model and the 

conventional hydrodynamic based performance analysis model will be conducted for the possibility of 

using combined models. For example, it will be interesting to study whether using the corrected data 

from applying the conventional model for the training of the DNN-based prediction model increases 

the accuracy of prediction.   
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Opportunities and Challenges of CO2 and Exhaust Gas Pollutant  

Measurements in Maritime Applications 
 

Uwe Altenbach, Hoppe Marine, Hamburg/Germany, u.altenbach@hoppe-marine.com 

 

Abstract 

 

This paper addresses the requirements for operating the complex measurement technology for CO2 and 

pollutant emissions on a seagoing vessel, as well as the added value that can result from analysing 

exhaust gas components.  

  

1. Introduction: Types of emissions and their emitting sources  

 

The reduction of emissions from vehicles and other engine applications has become one of the major 

drivers in the development of sustainable mobility and engine technology. In the last decades great 

progress has been achieved to reduce emissions from individual sources, as well as improvements in 

local air quality. However, much more is needed and must be accomplished. When discussing “emis-

sions”, it should be clearly distinguished between CO2 (Green-House-Gases) emissions and pollutant 

emissions. 

 

 
Fig.1: Emission sources and their significant impact on our environment 

 

Green-House-Gas (GHG) emissions consist mainly out of CO2 and a small amount of CH4 and N2O. It 

is not relevant where these gases are emitted, nor do they exert a toxic effect on any organisms. The 

increasing concentrations of greenhouse gases are considered responsible for the rising global temper-

atures, leading to further serious consequences that ultimately affect all of humanity. Analogously, the 

only possible approach is to collectively resolve this problem on a global scale. 

 

Pollutant Emissions consist mainly of Particulate Matter (PM), Sulfur Dioxide (SO2), Nitrogen Oxides 

(NOx), and Carbon Monoxide (CO). 

 

The impact of pollutant emissions on organisms is significant. Through environmental factors such as 

air pollution, water pollution, soil contamination, acid rain, eutrophication and ozone depletion, human 

health is affected, leading to respiratory diseases, cardiovascular diseases, cancer, and neurological dis-

orders. In contrast to greenhouse gases, the location of the emission source is relevant to the respective 

pollutant concentration. Additionally, the topography of the location and weather conditions play 
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important roles. Consequently, high local emission concentrations must be addressed at the source by 

local pollutant emitters. 

 

The sources for both GHG and Industrial sources: 

 

• Industrial sources: Power plants, manufacturing facilities, refineries 

• Transportation sources: Vehicles (cars, trucks, ships, airplanes), railways 

• Agricultural sources: Livestock farming, fertilizer use, pesticide application 

• Residential sources: Heating, cooking, waste incineration 

• Natural sources: Volcanic eruptions, wildfires, biogenic emissions 

 

The consideration of emissions in this document, encompassing both greenhouse gases and pollutants, 

centers on combustion systems utilized in the maritime sector. These systems include reciprocating 

piston engines and boilers operated by fossils such as diesel, heavy fuel oil, and liquefied natural gas 

(LNG). 

 

2. Milestones in Emissions Regulations in Maritime Applications  

 

Before the adoption of the MARPOL (International Convention for the Prevention of Pollution from 

Ships) Convention in 1973, the issue of controlling air pollution from ships, particularly harmful gases 

from ship exhausts, was initially addressed. However, during that period, it was decided not to incor-

porate any regulations regarding air pollution.  

 

At that time, discussions on air pollution also took place in other contexts. The 1972 United Nations 

Conference on the Human Environment in Stockholm marked the initiation of active international col-

laboration in combating acidification or acid rain. Between 1972 and 1977, several studies affirmed the 

hypothesis that air pollutants could travel thousands of kilometers before causing deposition and result-

ing damage. This damage encompassed adverse effects on crops and forests as well. 

 

At IMO, during the mid-1980s, the Marine Environment Protection Committee (MEPC) had been as-

sessing the quality of fuel oils concerning discharge requirements outlined in Annex I, while concur-

rently discussing the issue of air pollution. 

 

In 1988, prompted by a submission from Norway highlighting the magnitude of the problem, the MEPC 

decided to incorporate the issue of air pollution into its work program. Additionally, the Second Inter-

national Conference on the Protection of the North Sea, convened in November 1987, issued a declara-

tion wherein the ministers of North Sea states pledged to take action within appropriate bodies like the 

IMO to enhance the quality standards of heavy fuels and actively support endeavors aimed at reducing 

marine and atmospheric pollution. 

 

During the subsequent MEPC session in March 1989, various countries submitted papers addressing 

fuel oil quality and atmospheric pollution. It was collectively agreed to include the prevention of air 

pollution from ships, alongside fuel oil quality, as part of the committee's long-term work program, 

commencing in March 1990. 

 

In 1990, Norway submitted several papers to the MEPC providing an overview of air pollution from 

ships. The papers highlighted the following: 

 

• Sulphur emissions from ships' exhausts were estimated at 4.5 to 6.5 million tons per year, ac-

counting for about 4% of total global sulfur emissions. While emissions over open seas are 

dispersed with moderate effects, certain routes, including the English Channel, South China 

Sea, and Strait of Malacca, experienced environmental problems. 



181 

• Nitrogen oxide emissions from ships were estimated at around 5 million tons per year, consti-

tuting about 7% of total global emissions. These emissions contribute to regional issues such 

as acid rain and health problems in local areas, particularly harbors. 

• Emissions of CFCs from the world shipping fleet were estimated at 3,000-6,000 tons - approx-

imately 1% to 3% of yearly global emissions. Halon emissions from shipping were placed at 

300 to 400 tons, or around 10% of the world total. 

 

2.1. Adoption of Resolution 

 

Discussions in the MEPC and drafting work by a working group led to the adoption, in 1991, of an IMO 

Assembly Resolution A.719(17) on the Prevention of Air Pollution from Ships. The resolution called 

on the MEPC to prepare a new draft Annex to MARPOL on the prevention of air pollution. 

 

The new draft Annex was developed over the next six years - and was finally adopted at a Conference 

in September 1997. It was agreed to adopt the new Annex by adding a Protocol to the MARPOL Con-

vention, which incorporated the new Annex. This approach allowed for specific entry into force condi-

tions to be outlined in the protocol. 

 

2.2. The Protocol of 1997  

 

The Protocol adopted in 1997 (Tier I - MARPOL Annex VI, Regulations for the Prevention of Air 

Pollution from Ships) included the new Annex VI of MARPOL, which entered into force on 19 May 

2005. It applies retroactively to new engines greater than 130 kW installed on vessels constructed on or 

after 1 January 2000, or that undergo a major conversion after that date. The regulation also applies to 

fixed and floating rigs and to drilling platforms (except for emissions associated directly with the ex-

ploration and/or handling of sea-bed minerals). In anticipation of the Annex VI ratification, most marine 

engine manufacturers have been building engines compliant with the above standards since the year 

2000. 

 

• MARPOL Annex VI sets limits on sulfur oxide and nitrogen oxide emissions from ship ex-

hausts and prohibits deliberate emissions of ozone-depleting substances. The annex includes a 

global cap of 4.5% m/m on the sulfur content of fuel oil and calls on IMO to monitor the world-

wide average sulfur content of fuel. 

• Annex VI contains provisions allowing for special SOx Emission Control Areas (SECAs) to be 

established with more stringent controls on sulfur emissions. In these areas, the sulfur content 

of fuel oil used onboard ships must not exceed 1.5% m/m. Alternatively, ships must fit an ex-

haust gas cleaning system or use any other technological method to limit SOx emissions. The 

Baltic Sea Area is designated as a SOx Emission Control area in the Protocol. The North Sea 

was adopted as SOx Emission Control Area in July 2005. 

• Annex VI also sets limits on emissions of nitrogen oxides (NOx) from diesel engines. A man-

datory NOx Technical Code, defining how this shall be done, was adopted by the Conference 

under the cover of Resolution 2. The Annex also prohibits the incineration onboard ship of 

certain products, such as contaminated packaging materials and polychlorinated biphenyls 

(PCBs). 

• Annex VI prohibits certain substances, including halons and chlorofluorocarbons (CFC´s), 

which, however, are not in the context of combustion engines and are therefore not considered 

further here.  

 

The IMO emission standards are commonly referred to as Tier I...III standards. The Tier I standards 

were defined in the 1997 version of Annex VI, while the Tier II/III standards were introduced by Annex 

VI amendments adopted in 2008. 

 

MARPOL Annex VI distinguishes between global and less stringent regulations on fuel quality and 

emissions, as well as a stricter limit for ships sailing in a so-called Emission Control Area (ECA). An 
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Emission Control Area can be designated for SOx and PM, or NOx, or all three types of emissions from 

ships, subject to a proposal from a Party to Annex VI. 

 

Existing Emission Control Areas include: 

 

• Baltic Sea (SOx: adopted 1997 / entered into force 2005; NOx: 2016/2021) 

• North Sea (SOx: 2005/2006; NOx: 2016/2021) 

• North American ECA, including most of US and Canadian coast (NOx & SOx: 2010/2012). 

• US Caribbean ECA, including Puerto Rico and the US Virgin Islands (NOx & SOx: 

2011/2014). 

• Mediterranean Sea (SOx: 2022/2025). 

 

The NOx emission limits of Regulation 13 of MARPOL Annex VI apply to each marine diesel engine 

with a power output of more than 130 kW installed on a ship. 

 

 
Fig.2: NOx limits determined by IMO 

 

 
Fig.3: SOx limits determined by IMO 

SOx Global limit 

SOx ECA limit 
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MARPOL Annex VI regulations include caps on the sulfur content of fuel oil as a measure to control 

SOx emissions and, indirectly, PM emissions (there are no explicit PM emission limits). Special fuel 

quality provisions exist for SOx Emission Control Areas (SOx ECA or SECA). 

 

Coming to the final and most recent stage, the development of the regulation of greenhouse gas emis-

sions from seagoing vessels. In 2011, IMO adopted first-time amendments to MARPOL Annex VI to 

mandate technical and operational energy efficiency measures to reduce the amount of CO2 emissions 

from international shipping. This resulted in a series of measures. 

 

• EEDI (Energy Efficiency Design Index) – came into force on January 1, 2013. EEDI applies to 

almost all seagoing vessels > 400 GT, providing a specific figure for an individual ship design, 

expressed in grams of carbon dioxide (CO2) per ship's capacity-mile and is calculated by a 

formula based on the technical design parameters for a given ship. The respective limit value 

decreases over a specified time interval. The EEDI is a performance-based mechanism that 

provides flexibility, allowing the industry to select the most suitable technologies for a specific 

ship design, rather than imposing specific technical requirements. 

• EEXI (Energy Efficiency Existing Ship Index) came into force in January 2023 and also applies 

to vessels > 400 GT in an equivalent approach as EEDI. A technology-open approach is also 

followed here, and if technical adaptation of the vessel is required, the method of implementa-

tion is left to the owner or charterer. Possible measures include engine/shaft power limitation, 

waste heat recovery, wind assisted propulsion, etc. 

• CII (Carbon Intensity Indicator) evaluates the operational energy efficiency of ships, utilizing 

data on fuel oil consumption obtained from the IMO DCS (Data Collection System) and the 

Ship Energy Efficiency Management Plan (SEEMP) as a management tool. CII assessment is 

obligatory for vessels with a gross tonnage of 5,000 and above. Ship operators must document 

and verify their annual operational CII against the specified benchmark. Initially, the annual 

carbon intensity reduction target mirrors business-as-usual levels until the regulation takes ef-

fect, followed by a 2% reduction target from 2023 to 2026. Further enhancement of reduction 

targets is slated for the period spanning 2027 to 2030. 

 

3. Application of emission measurement systems in maritime from today´s perspective 

 

In order to ensure compliance with the legal requirements mentioned in the previous chapter, the IMO 

has introduced appropriate measures to ensure compliance. These are described as follows: 

 

NOx: (Nitrogen Oxides) emissions allowances for each ship depends on the engine type, year of build 

and other factors. NOx controls typically occur at the stage of engine installation. The test proceedings 

for each marine diesel engine > 130 kW are documented in detail in MEPC 177 (58) [Amendments to 

the Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines] and shall 

be subject to the following surveys and test procedures: 

 

1a) Engine R &D (Research and Development) on the engine testbed 

1b) Pre-certification survey ensuring that the engine, stand-alone as designed and equipped, com-

plies with the applicable NOx emission limit according to regulation 13. If this survey con-

firms compliance, the administration shall issue an Engine International Air Pollution Preven-

tion (EIAPP) Certificate. 

2a) Initial certification survey, conducted on board a ship after the engine is installed but before 

it is placed in service. This considers all modifications, including any adjustments, since the 

precertification. 

2b) Annual and Renewal surveys, conducted as part of a ship's surveys required to ensure the 

engine continues to comply fully with the provisions of this code. 

3a) Monitoring to prove the effectiveness of exhaust gas aftertreatment systems. 

3b) Surveillance as measure to prove / rate a vessels emissions behavior from an authority site.  
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Fig.4: Application of emission measurement systems in the maritime industry 

 

All the measures above do not require continuous exhaust gas measurement, but only a temporary meas-

urement setup to prove compliance. 

 

The only reason for applying continuous NOx emissions monitoring is the installation of a NOx after-

treatment system, such as Exhaust Gas Recirculation (EGR) or Selective Catalytic Reaction (SCR). 

This is to ensure that the SCR efficiency corresponds to the state at the time of certification regardless 

of ambient conditions, fuel quality or raw emission quality. 

 

As direct and continuous measurement isn't obligatory during vessel operation, even when employing 

EGR / SCR systems, permanently installed NOx measurement systems are the rare exception. 

 

SOx (Sulphur Oxides): Unlike NOx emissions, sulfur is not determined via certification procedures 

using measuring devices but can be derived directly from the Sulphur content of the fuel. However, an 

exception applies in the case of burning fuel with a high sulfur concentration and utilizing an Exhaust 

Gas Cleaning System (EGCS). If such aftertreatment devices are used, it's mandatory to install a direct 

and continuous emission measurement system on the corresponding vessel. The technical specifications 

for emission testing, including preferences, components, and accuracy, are thoroughly detailed in 

MEPC 130 (53) [Guidelines for On-Board Exhaust Gas-SOx Cleaning Systems]. Wash water being 

discharged must also be measured and recorded. 

 

 
Fig.5: Methods for IMO Data Collection System (DCS) according to MEPC 346 (78) 

 

CO2 (Carbon Dioxide): Analogue to SOx, the amount of emitted CO2 can be assigned directly to the 

amount of burned fuel by applying a dedicated correlation value. MEPC 346 (78) [Guidelines for the 
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Development of a Ship Energy Efficiency Management Plan] (SEEMP) - Chapter 7 provides several 

methods for measuring and / or logging fuel oil consumption according to IMO DCS (Data Collection 

System). 

 

Like SOx, an optional direct measurement of carbon dioxide (CO2) via exhaust gas analysis is acknowl-

edged as a valid methodology for DCS recording. However, unlike SOx, this isn't linked to the use of 

any aftertreatment system but can serve as a standalone alternative to fuel measurement. Fuel measure-

ment would only be necessary in the event of a malfunction in the CO2 exhaust gas measurement sys-

tem. 

 

4. Typical Gas Emission Sensors and their Technical Principles 

  

In the industry, a variety of emission measurement systems based on different principles of operation 

can be found, where each measurement principle conforms to the requirements of the measuring gas, 

the respective environmental parameters, and, finally, legislative requirements. An excerpt of the most 

commonly used measurement methods is described below. 

 

Electrochemical Sensors (CO, O2, NO2, O3): These devices utilize a chemical reaction to measure the 

concentration of a specific gas in an environment. There are many different applications for electro-

chemical sensors, and they continue to play an important role in various industries. In this blog post, 

we will explain the functioning of electrochemical sensors and some of the most common applications.  

 

Electrochemical sensors operate by reacting with the relevant gas and generating an electrical signal 

that is proportional to the gas concentration. The sensor consists of two electrodes (a working electrode 

and a counter electrode) and functions by allowing charged molecules to pass through a thin electrolyte 

layer. Electrochemical sensors are used in a variety of applications and continue to play an important 

role in many industries; however, they are primarily used in measuring the quality of ambient air and 

only have a minor role to play in exhaust gas measurement. Here, the most well-known application is 

the function of the lambda sensor used for continuous in-vehicle O2 measurement ensuring the func-

tionality of the catalytic converter. 

 

Gas Chromatography (THC, NOX, N2O, CO2.): Gas chromatography is a laboratory-based technique 

used for analyzing complex mixtures of gases, mostly utilizing a Flame Ionization Detector (FID). The 

FID is based on the detection of ions formed during the combustion of organic compounds in a hydrogen 

flame. The generation of these ions is proportional to the concentration of organic species in the sample 

gas stream. It separates individual components of a gas sample based on their chemical properties and 

measures their concentrations accurately. GC is widely used for analyzing emissions from combustion 

processes and industrial sources. 

 

Nondispersive infrared sensor (NDIR): The main components of an NDIR sensor are an infrared (IR) 

source (lamp), a sample chamber or light tube, a light filter and an infrared detector. The IR light is 

directed through the sample chamber towards the detector. In parallel, there is another chamber with an 

enclosed reference gas, typically nitrogen. The gas in the sample chamber causes absorption of specific 

wavelengths according to the Beer–Lambert law, and the attenuation of these wavelengths is measured 

by the detector to determine the gas concentration. The detector has an optical filter in front of it that 

eliminates all light except the wavelength that the selected gas molecules can absorb. In particular, 

lower initial investment costs speak in favor of this measuring principle, capable of monitoring a of the 

most relevant components, offering the option to modularly add hardware analyzers to expand the num-

ber of measured exhaust gas components.  

 

Fourier-transform infrared spectroscopy (FTIR): Fourier Transform Infrared Spectroscopy (FTIR) is 

the applied technology to measure the concentration of gases in a sample. The gas sample interacts with 

infrared (IR) radiation emitted by a broadband source, such as a thermal emitter. The modulated IR 

radiation is directed onto a moving mirror in the interferometer. As the mirror moves, it generates an 

interferogram, representing the intensity of the IR radiation as a function of time. The interferogram is 
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processed using Fourier transform to convert the signal from the time domain to the frequency domain. 

The resulting FTIR spectrum represents the absorption of IR radiation by the gases in the sample at 

different wavelengths. Each gas absorbs IR radiation at specific characteristic frequencies, correspond-

ing to the vibrational modes of the molecular bonds present in the gas molecules. FTIR is the only 

technology that can measure a wide range of gases simultaneously. A typical emissions monitoring 

setup can measure simultaneously H2O, CO2, CO, N2O, NO, NO2, SO2, HCl, HF, NH3, CH4, C2H6, 

C3H8, C2H4, C6H14, and CH2O. In addition, FTIR CEMS systems can be fitted with an external and 

oxygen analyzer to measure O2. This method offers the highest accuracy and reliability of all known 

emission testing systems. This is mainly because it has been used for many years in the development of 

combustion engines for motor vehicles. A disadvantage is the higher investment cost due to a more 

complicated structure of the analyzer and the necessity to keep the whole system heated continuously.  

 

5. Continuous Emission Monitoring Systems (CEMS)  

 

CEMS are used as a tool to monitor the effluent gas streams resulting from combustion in industrial 

processes. CEMS are capable of measuring a certain range of typical exhaust gas concentrations aiming 

to control and optimize combustion, usually in applied industrial settings. They are also used as a means 

to comply with air emission standards such as the US Environmental Protection Agency's (EPA) Acid 

Rain Program, and other US federal emission programs, or state permitted emission standards. CEMS 

typically consist of analyzers to measure gas concentrations within the stream, equipment to direct a 

sample of that gas stream to the analyzers if they are remote, equipment to condition the sample gas by 

removing water and other components that could interfere with the reading, pneumatic plumbing with 

valves that can be controlled by a PLC to route the sample gas to and away from the analyzers, a cali-

bration and maintenance system that allows for the injection of calibration gases into the sample line, 

and a Data Acquisition and Handling System (DAHS) that collects and stores each data point and can 

perform necessary calculations required to get total mass emissions. A CEMS operates at all times even 

if the process it measures is not active. They can continuously collect, record and report emissions data 

for process monitoring and/or for compliance purposes. 

 

 
Fig.6: Example of CEMS in an industrial application 

 

5.1. CEMS - Requirements for installation on a seagoing vessel  

 

Emission measurement systems are widely used in industry, providing reliable data for the quality of 

combustion, mainly for industrial furnaces, reciprocating piston engines and gas turbines. They equally 

serve to protect the environment and the population from the impacts of poor air quality. Nowhere is 

exhaust gas measurement as widespread as in the automotive industry, where it is an integral part of 

https://en.wikipedia.org/wiki/Emission_standard
https://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency
https://en.wikipedia.org/wiki/Acid_Rain_Program
https://en.wikipedia.org/wiki/Acid_Rain_Program
https://en.wikipedia.org/wiki/Programmable_logic_controller
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powertrain development and is mandatory for both certification and surveillance monitoring. A large 

number of legislative requirements from different national communities and countries not only define 

permissible limit values but also clearly determine the measuring methodology, specifications and ac-

curacy of the measuring devices used, as well as the processes for maintenance and calibration. Due to 

the complex exhaust aftertreatment required, involving successive units such as oxidation catalyst (CO), 

Lean NOx Trap, Particulate Filter (PM), and selective catalytic converter (NOx), especially in diesel 

engines, not only are a variety of different systems required for determining gaseous and solid exhaust 

components, but also sampling points from the raw exhaust to the tailpipe with corresponding piping 

systems must be installed on the respective engine testbed. 

 

 
Fig.6: Typical dynometer setup for Emission measurement on an automotive Diesel engine 

 

Aside from high investment and operating costs, the latter caused by the provision of energy and re-

sources (e.g. reference gases), such test setups are maintenance intensive. Therefore, automobile man-

ufacturers maintain a dedicated maintenance and repair team exclusively for this type of measurement 

technology. Due to sensitivity to environmental influences, measuring instruments are installed in a 

separate room outside of the test bed. Unlike with a CEMS system, the measurement is discontinuous 

and only occurs for the duration of the certification drive cycle, typically not exceeding 30 minutes 

(Worldwide Harmonized Light Vehicles Test Procedure, WLTP). 

 

 
Fig 7: Design of a vessels Exhaust Gas System 
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The challenges of installation on a sea-going vessel are, as you might expect, complex and begin not 

least with the size and the system and the associated requirements for the infrastructure of the system - 

laying the measuring tubes to be heated and installing the sampling points. A ship can have between 3 

and 7 combustion systems on board, which must be taken into account in a holistic view of emissions, 

because only emergency power systems may be excluded from the consideration. Another challenge is 

to ensure low-maintenance operation, even under the significantly more difficult operating conditions 

compared to the automotive test field, namely the significantly higher flue gas and particle content in 

the raw exhaust gas, especially when operating the combustion systems with heavy fuel oil.  

 

Special attention must be paid to the design of the sampling point as well as the filter and automated 

back-flushing principle. Finally, the system is expected to provide a high level of operational reliability 

with low maintenance requirements, not least under the assumption that the system must continuously 

record measurement data from all combustion systems on board at a specified sampling rate. This poses 

the greatest challenge to the measuring unit itself, as it must be installed close to the flue gas ducts in 

the chimney and is exposed to dust, vibration and air pressure fluctuations due to high temperatures. 

 

5.2. CEMS - Sound arguments for installing a CEMS onboard a ship  

 

As summarized in Chapter 3, the installation of a continuous emissions monitoring system on a seagoing 

vessel is only a prerequisite if it also serves to monitor an exhaust gas purification system. Nevertheless, 

there are good reasons to establish such a system, not least in the context of the recently introduced 

CO2 reporting for CII compliance and the EU Emissions Trading System (ETS). In addition, the in-

creasing emphasis on holistic ship and fleet optimization for economical and efficient ship operation 

motivates a closer examination of the enthalpy flows of the ship, in which the exhaust gas of the com-

bustion units has a major share. These are summarized as follows:  

 

• Future-proof Emission and Efficiency Reporting  

Reporting tasks are taking over a more and more important role for the crew. Ultimately, it is 

not just a time-consuming but also error-prone routine that the crew has to manage, which in 

the end takes away time for fulfilling more value-added tasks. An automated, certified, and 

standardized data logging and reporting system, such as for IMO DCS data collection, stream-

lines daily operations and results in more accurate and traceable measurement data. The direct 

measurement of the CO2 mass flow in the exhaust gas has the additional advantage that, unlike 

determining it through correlation with the fuel mass, it only considers the hydrocarbon that 

has actually participated in the combustion. HFO contains between 2-3% non-combustible 

components, which are expected to positively influence the balance. Furthermore, both fluctu-

ations in fuel quality/energy content and inaccuracies in the stated bunker delivery notes are 

herewith prevented. Unlike flow meters, reporting emissions of pollutants and greenhouse 

gases based on exhaust concentration and volume flow is not dependent on the fuel used and 

can function with high accuracy even with blends of multiple fuels.  

 

• Holistic Performance Monitoring  

The introduction of EED, EEXI, and CII served, not least, to focus on and optimize the effi-

ciency of a vessel’s operation. The exhaust gas analysis, under the premise of not only qualita-

tive but also quantitative consideration of emissions and the consequently derivable exhaust 

enthalpy flow, complements the previously used measurement methods consisting of measure-

ment of fuel consumption, propeller shaft power, and of electrical energy. Last but not least, 

with this addition, it is herewith possible to validate individual measurement systems against 

each other and thus assess their quality. The utilization of the CO2 exhaust mass flow is excel-

lent for real-time-based route optimization tools due to its high sampling rate. 

 

• System Monitoring  

With the resulting availability of a comprehensive data package, which opens new opportunities 

for developing analysis algorithms for decision support tool providers, the crew is able to better 
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monitor onboard systems and swiftly identify and resolve issues with their assistance. Addi-

tionally, the data can be forwarded via Ship to Shore / connections and Application Program-

ming Interfaces (API) and be shared with vessel operator and optionally accessed by OEM´s of 

the respective combustion systems to allow for proactive intervention in case of data outside 

the tolerance range, thus preventing system failures.  

 

6. Conclusion 

 

The purpose of this paper was to outline the requirements as well as the added value of installing a 

continuous exhaust gas measurement system (CEMS) on a seagoing vessel. As a basis, a differentiation 

was first made between air pollutants and greenhouse gases, and the components and their effects on 

the environment were discussed in detail. 

 

Although the legal requirements for air pollution control and those implemented by the IMO are com-

plex and have been further amended and elaborated over the years, they also form the basis for under-

standing the added value of such a system in particular and have been elaborated accordingly in this 

document.  

 

Another fundamental aspect for technical understanding is the consideration of different analyzer sys-

tems that can be used for emissions measurement systems. The respective characteristics of these sys-

tems have been examined and analyzed, resulting in the conclusion that particularly the non-dispersive 

infrared sensor (NDIR) and Fourier-transform infrared spectroscopy (FTIR) represent the most suitable 

measurement principles for a system on board. 

 

CEMS have been established in the industry for a long time and are also known in the maritime sector 

for their role in monitoring desulphurization systems (aka Scrubber). However, they differ fundamen-

tally from the high-precision, technically sophisticated and comparatively maintenance-intensive emis-

sion measurement systems that are used in automotive powertrain development, to refer as an example. 

By using these as a reference, the differences and in requirements, particularly in terms of operational 

reliability and low maintenance even under difficult operating conditions, can be highlighted.  

 

The actual target consideration, namely the value of a CEM system in operation on a seagoing vessel, 

has been elaborated in three main pillars: Efficiency Reporting, Performance Monitoring, and System 

Monitoring. Each of these pillars plays a significant role in optimizing operational efficiency as well as 

strategic fleet management. 

 

As an important element not only for emissions, but also for energy balancing as part of a holistic 

performance monitoring system, a CEM System has the potential to provide clearly reliable information 

on the health status of the individual combustion unit. In combination with maritime IoT systems, the 

provision of data via onshore API to the expertise of providers of decision support and optimization 

tools that apply their knowledge using intelligent methods and algorithms, the system is empowered to 

unveil its full potential.  
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Abstract

 

Modeling ship performance can be done in many different ways. The spectrum includes purely theoret-

ical formulas, purely data-driven models, and everything in between. With different data available for 

different vessels, how does one make the right choice for a whole fleet? This paper proposes a frame-

work to select the best model in a consistent way, over a whole fleet where certain vessels may or may 

not have sea trial data, model tests, noon reports, sensor data, etc. 

 

1. Introduction  

 

Efficiency gains are the go-to answer to reach short-term decarbonization targets in shipping. To capture 

these efficiency gains, accurate speed-fuel models of vessels are a prerequisite. The challenge of creating 

accurate speed-fuel models - also called ship performance models - holds many layers of complexity 

from a theoretical point of view: different speeds, different drafts, different weather conditions, changing 

hull performance, changing engine performance, etc. However, in recent years the rise of sensor data 

and data-driven modeling has shown great promise to overcome these theoretical challenges, DeKeyser 

et al. (2022). 

 

Unfortunately, today, the potential of applying data-driven technologies such as machine learning to 

ship performance modeling remains largely untapped in the maritime industry. Not due to theoretical 

reasons, but for practical reasons. There’s too much heterogeneity in the data across a fleet for a single 

type of data-driven model to provide consistently great results. As a result, simpler, traditional ap-

proaches are used to ensure consistency. This leaves the potential of big data and machine learning on 

the table.  

 

This paper explores a practical framework to capture the full modeling potential across a data-hetero-

genous fleet, to always deliver the best model possible given the available data. 

 

2. Heterogeneity in ship performance data across a fleet 

 

There is an endless list of causes for heterogeneity in performance data. This paper initially focuses on 

a single cause for heterogeneity: different data types (public data, design data, noon report data, sensor 

data). After tackling heterogeneity due to different data types, section 6. explores three additional 

sources of heterogeneity and how orchestrations can overcome them. Many other sources of heteroge-

neity remain undiscussed within this paper, as it would lead us too far. This paper identifies 4 funda-

mental ‘types’ of data that can be used to model vessel performance: 

 

1. Sensor Data (SD): High-frequency data collected onboard using sensors 

2. Noon Reports (NR): Daily manual reports 

3. Design Data (DD): Sea trial curves, shop tests, etc. 

4. Public Data (PD): Anything that can be publicly retrieved based on IMO number such as vessel 

type, DWT, LOA, etc. 

 

This paper assumes a fleet of 10 vessels with mixed data types according to the randomly selected dis-

tribution in Table I. For some vessels only a single source of data is available, for others there can be 

multiple sources of data. The goal is to represent a realistic amount of heterogeneity as can occur oper-

ationally in the industry today. Public data is left out of scope. 
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Table I: Data scenarios 

Vessel ID Design Data Available Noon Report Data Available Sensor Data Available 

V1 X X  

V2  X  

V3 X X X 

V4  X X 

V5 X   

V6 X X X 

V7  X X 

V8  X X 

V9  X  

V10   X 

Coverage 4/10 8/10 6/10 

 

3. Different model options 

 

Different data types require different modeling techniques. Design Data (DD) is typically combined 

with traditional formula-based and filter-based approaches (ISO15016, DNV VTI). Noon Reports (NR), 

due to their operational nature, can be valuable for assessing different conditions and tracking perfor-

mance changes over time. Yet, extreme caution is required when using NR data for data-driven tech-

niques given the data is infrequent and error-prone, Collé and Morobé (2022). Sensor Data (SD) is 

suitable for data-driven techniques such as machine learning, but always requires extreme caution to 

safeguard data quality. 

 

This paper applies the following techniques to the following scenarios: 

 

1. Design Data: Seatrial data and Main Engine Shop Test data are combined using a variation of 

ISO15016 that allows for the modeling of different operational conditions. 

2. Noon Reports: A combination of physics-based and data-driven methods. 

3. Sensor Data: A proprietary version of physics-informed machine learning. 

 

4. Validating model accuracy 

 

To guarantee an objective and consistent way of evaluating model accuracy over different approaches, 

the ‘Blue Modeling Standard’ is applied, Deschoolmeester and Morobé (2023). The most important 

details are summarized below: 

 

1. What data is considered the ground truth? 

Sensor data with Speed-Over-Ground above 5 kn is used to validate model accuracy. Opera-

tional sensor data of good quality is available for all 10 vessels. Following the scenarios listed 

in Table I, sensor data is frequently not used to train the model. However, it is always used to 

validate model accuracy, to ensure consistent and representative results. 

 

2. What model validation technique is used? 
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A fit-for-purpose k-fold cross-validation technique is applied, preventing leakage and guaran-

teeing independent and identically distributed random variables over the folds. 

 

3. What relationship is modeled? 

Main Engine Fuel consumption is modeled using SOG (speed over ground) as input. Secondary 

variables such as draft and weather conditions are also used. 

 

4. What time horizon is used for the accuracy? 

Daily. So the predicted daily consumption is compared to the actual. 

 

5. What accuracy metric is used? 

Mean Absolute Percentage Error (MAPE) is applied at daily intervals. This combination is also 

referred to as ‘MADPE’ (Mean Absolute Daily Percentage Error). (See ‘Blue Modeling Stand-

ard’ for more details on the accuracy metrics.) 

 

5. Consistently selecting the best option: results 

 

With a system in place to continuously assess model accuracy against the latest operational data, it’s 

possible to compare different modeling approaches for a single vessel, and then select the most accurate 

option. Table II does this for 10 vessels using different data types. If multiple options are available, the 

‘Orchestration’ ensures the best model is selected and made operational. 

 

Table II: Mean Absolute Daily Percentage Error (MADPE) per scenario 

 Design Data-

based 

Noon Report-

based 

Sensor Data-based Orchestration 

V1 18% 9%  9% 

V2  8%  8% 

V3 13% 7% 4% 4% 

V4  17% 6% 6% 

V5 16%   16% 

V6 26% 14% 9% 9% 

V7  11% 5% 5% 

V8  14% 4% 4% 

V9  13%  13% 

V10   5% 5% 

Coverage 4/10 8/10 6/10 10/10 

Avg. MADPE 18.3% 11.6% 5.5% 7.9% 

 

It can be observed that ‘orchestration’ over different data types, for this specific case, has two major 

benefits. First of all, the coverage (=vessels that can be modeled) of the fleet increases to 10/10. Ap-

proaches based on only a single data type, would have to leave some vessels unserved. Secondly, the 

average accuracy also improves considerably. If we were to only use NR-based models because it has 

the largest coverage, the average daily error would be 11.6%. Because Orchestration enables to benefit 
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from sensor data - when available - the error drops to 7.9% on average, and even to 5.5% on average for 

sensor-based vessels, while still guaranteeing a 10/10 coverage. 

 

6. Other forms of orchestration to solve for heterogeneity 

 

This section explores three other sources of heterogeneity present in performance data & performance 

modeling: changes over time, different modeling approaches, and data quality issues. It also suggests 

how orchestration can overcome these challenges. 

 

6.1. Updates over time 

 

The above exercise for different data types is an oversimplification, as it does not account for time. Over 

time, different data types become available, and for operational data sources such as NR and SD more 

and more data continuously becomes available. These changes over time in available data types and 

available data duration, will continuously alter what modeling approach is the most accurate one. As a 

result, the orchestration exercise above, should be repeated frequently, to ensure the best possible model 

is always available. 

 

Fig.1 does exactly that for a vessel that initially only has Design Data, then gets access to Noon Reports 

after 2 weeks, and gets access to Sensor Data after 1 month. Every time a new data source becomes 

available, a more accurate model is deployed and used operationally. 

 

 
Fig.1: Model accuracy over time, as more data types become available 

 

6.2. Different modeling approaches within the same data type 

 

There is no single model that is always the best choice - even within a certain data type, the best mod-

eling approach might differ depending on many factors. For example, sometimes it can be beneficial to 

use data over multiple vessels to improve modeling accuracy. Below we explore a case where the ‘Aug-

mented Approach’ is applied, Collé and Morobé (2022). This approach takes sensor-based learnings 

from similar vessels in the fleet, and transfers those modeling insights to vessels with only Noon Re-

ports. This enables the creation of a model that is much more accurate than just a NR-based model, as 

it also incorporates the sensor-based insights from similar vessels in the fleet.  
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For the fleet of 10 vessels explored in this paper, 2 out of the 3 NR-based models can benefit from this 

different modeling approach. Meaning that this type of orchestration improves accuracy for those 2 out 

of 3 vessels, by leveraging the most suited modeling approach within that data type. As a result, even 

though there is only sensor data available for 6/10 vessels, eventually 8/10 vessels benefit from that 

sensor data. This allows the error to drop by 2% and 7% for those respective vessels, a meaningful 

improvement. 

 

 
Fig.2: Vessel - data flow 

 

Table III: Mean Absolute Daily Percentage Error (MADPE) per scenario 

 Design Data-based Noon Report-based Sensor Data-based Orchestration 

V1 18% 9%  9% 

V2  8% *6% 6% 

V3 13% 7% 4% 4% 

V4  17% 6% 6% 

V5 16%   16% 

V6 26% 14% 9% 9% 

V7  11% 5% 5% 

V8  14% 4% 4% 

V9  13% *6% 6% 

V10   5% 5% 

Coverage 4/10 8/10 6/10 10/10 

Avg. MADPE 18.3% 11.6% 5.6% 7.0% 
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6.3. Data Quality Issues 

 

So far the table has always assumed the available data is free from data quality issues. But in practice, 

NR-data and Sensor Data are often plagued by data quality issues throughout time. If these are not 

flagged and resolved, this can have a very negative impact on model accuracy, Colle et. al (2023). Below 

we assume a scenario where one vessel experiences unreliable noon report data, and another two expe-

rience unreliable sensor data. 

 

Once the issues are detected, the best alternative modeling options are selected. For V1 with NR data 

quality issues, a Design Data-based model is selected instead. For V3 and V7 with sensor data issues, 

an NR-based model is selected instead. 

 

 
Fig.3: Vessel - data flow 

 

If the data quality issues had remained undetected, it would have increased inaccuracy considerably for 

those specific vessels. For example, V3 would suddenly have an error of 20%. The average fleet error 

would have increased to 12.1%. After detecting the issues and redirecting to the best alternative model-

ing method with reliable data, the average error was reduced to 8.8%. For example for V3 specifically, 

the inaccuracy drops from 20% to 7%. 

 

Table IV: Mean Absolute Daily Percentage Error (MADPE) per scenario 

 Design Data-based Noon Report-based Sensor Data-based Orchestration 

V1 18% **31%  31% 18% 

V2  8% *6% 6% 

V3 13% 7% **20% 20% 7% 

V4  17% 6% 6% 

V5 16%   16% 

V6 26% 14% 9% 9% 
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V7  11% **18% 18% 11% 

V8  14% 4% 4% 

V9  13% *6% 6% 

V10   5% 5% 

Coverage 4/10 8/10 6/10 10/10 

Avg. MADPE 18.3% 14.4% 9.3% 12.1% 8.8% 

 

7. Results 

 

In Table V, we compare the effect of all the different types of orchestration. The first column describes 

the outcome of an approach based only on Noon Reports - achieving mediocre accuracy and being 

unable to create models for all vessels within the fleet. The orchestration of different data types, has a 

big effect and reduces the average daily error from 11.6% to 7.9% over the mixed fleet assessed in this 

paper. The second type of orchestration enables to leveraging of different modeling types within a single 

data type, and reduces inaccuracy by 0.9% on average across the fleet. The third type of orchestration 

handling data quality issues reduces the inaccuracy by 3.3%. It’s important to stress this paper considers 

only a very limited amount of very simple orchestration processes. There is much more potential in more 

numerous and more advanced processes to tackle heterogeneity. 

 

Table V: The different types of orchestration 

 No Orchestration 

(NR-based models) 

Orchestration v1 

(Data Type) 

Orchestration v2 

(Model Type) 

Orchestration v3 

(Data Quality) 

Coverage 8/10 10/10 10/10 10/10 

Before 11.6% 11.6% 7.9% 12.1% 

After 11.6% 7.9% 7.0% 8.8% 

 

8. Conclusion 

 

This paper explores the potential of orchestration to tackle the heterogeneity present across performance 

data and modeling approaches within the domain of ship performance modeling. Even though within 

this paper only a few sources of heterogeneity are addressed and fairly simple orchestration solutions 

are proposed, the benefits are clear. To capture the full potential of the data across a fleet, one must look 

beyond a single modeling approach and data type, and develop a holistic fleet-wide approach that’s able 

to address and overcome the different sources of heterogeneity. Otherwise, the potential of sensor-de-

rived big data and machine learning to decarbonize the shipping industry will remain a theoretical con-

struct. 
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Abstract 

 

The maritime industry's decarbonization journey necessitates a fundamental shift away from 

conventional fuels, foreseeing a future with a burgeoning demand for renewable energy sources, 

especially in green fuel production. While green fuels are essential, it is the combined effect of their 

use and reduced energy demand from global shipping by being more energy efficient which is needed 

to reach the revised International Maritime Organisation’s (IMO) green-house gas (GHG) emission 

reduction ambitions. This paper accentuates the importance that best practices exist to mitigate 

challenges faced in widening, and accelerating, the adoption of energy efficiency measures, that is 

mainly used by a certain part of the industry. The challenges impeding rapid adoption of energy 

efficient technologies (EETs) include uncertainties in operational performance and a clear procedure 

for benefit tracking, that can help de-risking the investments and increase confidence in the energy 

abatement through EETs. This paper proposes a benefit tracking procedure and applies it to 

operational performance data of 11 containerships of three different vessel classes receiving retrofits 

of different types of packaged EETs. Calculated benefits are presented in aggregated formats 

demonstrating how varying speed and draft show that improved efficiency is achieved when 

operational profile correlates with the design points of the EET(s) and provides insights into the 

empirical advantages of EET implementation. The paper attempts to be a demonstration of 

performance of the studied EET retrofit packages, contribute to a more informed decision-making, 

and support an acceleration of the industry's adoption of energy efficient measures. 

 

1. Introduction 

 

In July 2023, the IMO (2023) took a significant step towards decarbonizing global shipping by 

adopting a strategy towards net-zero greenhouse gas (GHG) emissions by or around 2050. This 

strategy comes with clear milestones, including indicative checkpoints for shipping to meet in 2030 

and 2040, and emphasizes the crucial role of energy efficiency in achieving long-term sustainability. 

 

Major obstacles for the shipping industry’s energy transition to reduce GHG emissions are the long 

lifespan of vessels, diversified operation at global scale, need for high energy density fuel, and low 

availability of alternative fuels and global production capacity. To bring alternative production sites 

online it demands significant investments into an energy supply chain that is associated with 

significant energy loss, but also competes with access to renewable energy sources. According to 

Barcarolo and Hintze (2024) 1 EJ saved at the propeller translates into at least 4 EJ less energy 

needed upstream at a production site excluding investment into electrical power production site (e.g. 

solar farms or wind turbine farms). The indirect path from energy source to conversion into energy 

carrier and finally to energy release at the propeller along with the other industry obstacles contributes 

to the “hard to abate” nature of the industry. This argues for the importance of focusing on solutions 

that deliver demonstrably positive results in ships’ energy demand through implementation of energy 

efficiency measures. In the recent decade, a global fleet has seen sizable reduction in the operational 

speed. This results, usually, in saving potential from hydrodynamic improvement measures, such as 

propeller re-design or bulbous bow retrofit. Also, dry docking with proper hull treatment in form of 

full blasts and premium paints yield to higher energy efficiency. Usually, multiple different energy 

efficiency measures are implemented in parallel to reduce a vessel’s energy efficiency and carbon 

footprint, such as slow steaming (operational measure) and retrofits of EETs (technical measure).  
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This paper presents an approach to benefit tracking and analysis using Vessel Performance Solutions' 

performance monitoring tool, called VESPER. The study is carried out as part of an industry project 

led by the Mærsk  Mc-Kinney Møller Center for Zero Carbon Shipping, https://www.zerocarbon

shipping.com/projects/shared-investment-and-benefits-in-retrofits-of-energy-saving-technologies/. 

Partial deliverables from this project are presented in this paper. 

 

2. Background 

 

The intensified emission regulatory landscape with recent introduction of carbon intensity index (CII), 

EU emission trading scheme (ETS), but also more competitiveness of vessels and cost leaders and 

increased awareness on supply chain emission footprint from customers, cargo-owners and freight 

forwarders sends a demand signal for ocean transportation to reduce its environmental footprint. 

 

The increase of ship efficiency is one crucial level towards reducing GHG emissions as well as 

essential to align shipping with IMO’s short-term GHG emission reduction ambition. In case of 

Hapag-Lloyd’s net-zero emissions target in 2045, the decarbonisation strategy includes a large fleet 

upgrade program that retrofits more than 150 vessels. 

 

One measure to reduce the carbon footprint is the widely used slow steaming. This means often that 

vessels sail at lower speeds than where they were initially designed for. Also, the introduction of the 

energy efficiency design index for existing vessels (EEXI) requires many containership vessels to 

reduce available engine power and, in some cases, consequently vessel speed.  

 

The consequence is an increased potential for energy efficiency improvements. Re-design of bulbous 

bow and propellers are obvious energy efficiency measures to take to redeem improvement potential. 

However, attention must be given to adequate propeller and hull treatment during dry docking for a 

shipowner to expect his retrofit investments to realize the energy efficiency potential of his vessel. 

The efficiency gains from propeller upgrades are at risk to be neutralized by poor hull surface 

treatment practices during the dry docking, where a spot blast is chosen over a full blast. 

 

However, all the above require investments, while at the same time their gains are only calculated and 

approximated ahead implementation. During operations savings depend on interaction between 

different energy efficiency measures trading on a diversified operational profile. 

 

3. Ship representation 

 

The methodology, which is presented in this paper was applied to three vessel classes, Table I, with 

 

• Four vessels referred as 7,000 TEU class, 

• Three vessels referred as 10,000 TEU class, and 

• Four vessels referred as 13,000 TEU class vessels. 

 

The 7,000 TEU class, built in 2008, at a time with lower fuel costs, the design specification was 

designed for high speeds, optimised for one design draft. However, due to changes in market 

requirements, environmental regulations and increased awareness, service speeds decreased 

significantly within the last decade. Consequently, the 7,000 TEU class operates at speeds 

significantly lower than its original design point offering a large saving potential from a re-design of 

the bulbous bow and propeller. 

 

The 10,000 TEU class, built in 2016, is already designed for lower speed compared to the 7,000 TEU 

class. A decrease in operational speed profile of about 2kn lower than initial design also yields to 

optimisation potential for a propeller re-design. 

 

The 13,000 TEU class, built in 2012/13, with an initial design for speed around 24kn. The class is 

https://www.zerocarbonshipping.com/projects/shared-investment-and-benefits-in-retrofits-of-energy-saving-technologies/
https://www.zerocarbonshipping.com/projects/shared-investment-and-benefits-in-retrofits-of-energy-saving-technologies/
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already retrofitted with new propellers and bulbous bows in 2014/15, optimised for speed at 21kn. 

Despite this there is still saving potential of the class due further speed decreased in recent years. 

Fehler! Verweisquelle konnte nicht gefunden werden.The change of the operational profile is 

exemplarily illustrated for the 7,000 TEU class in Table II. Sailed speeds and drafts are far away from 

the initial design, hence a high potential for hydrodynamic optimisation. 

 

Table II: Recent operational profile of 7,000 TEU class and initial design point (red square). Percentage 

of time sailed at draft and speed bins. 

 Speeds [kn] 

Draft [m] 14 17 20 23 26 

10 4% 17% 17% 0% 0% 

12 5% 21% 14% 0% 0% 

14 1% 11% 10% 1% 0% 
 

3.1. EET retrofit types 

 

Design requirements at the time of delivery were different, especially in terms of speed, for the three 

classes. Hence, different energy efficiency measures were considered for the different classes. Table 

III provides an overview of retrofitted EETs and dry dock hull treatment approach for the three 

classes. It applies that the type of coating system (self-polishing properties) is consistent between the 

‘ordinary dry dock and ‘retrofit’ dry dock, Fig.4. 

3.1.1. Bulbous bow modification 

 

The lower operational speeds for the 7,000 TEU class mean that the bulbous bow’s ‘neutralizing’ 

effect on the ship hull’s wave generation is substantially less effective, hence a re-design is made on 

basis of the expected operational profile. The results of a thorough hull form optimization process 

with over 15,000 simulated designs converges at a slenderer and less protruding bulb with more than 

10% reduction in wetted surface as shown in Fig.1 and Fig.2. 

 

  
Fig.1: Bulbous bow initial design Fig.2: Bulbous bow optimised 

Table III: Overview of dry dock hull treatments and EET installations 

Class 
Previous dry dock Retrofit dry dock 

Year Hull treatment EETs Year Hull treatment EETs 

7,000 TEU 2017 
Full blast, premium 

coating 
N/A 2023 

Full blast, premium 

coating 

Re-designed 

propeller, 

bulbous bow 

10,000 TEU 2017 
Newbuild, 

premium coating 
N/A 2023 

Spot blast, eco 

coating 

Re-designed 

propeller w. 

PBCF 

13,000 TEU 2017 
Spot blast, premium 

coating 

Re-designed 

propeller, 

bulbous bow 

2023 
Full blast, premium 

coating 

Re-designed 

propeller w. 

PBCF 
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3.1.2. Propeller redesign 

 

The efficiency of a propeller is closely tied to its design and how well it matches the operational 

profile of the vessel. Propellers with smaller expanded blade area are often more suited to lower 

speeds due to their lower loading, reduced drag, and therefore a better compatibility with the vessel's 

operating conditions. Table IV compares the parameters of the initial and new propeller indicating a 

noticeable reduction in skew and expanded blade area ratio.  

 

 

 
Fig.3: Initial (left) and redesigned (right) propeller design 7,000 TEU class 

 

Fig.3 illustrates the shape of the redesign. Additionally, the propeller is equipped with boss cap fins. 

The total estimated saving for the propeller redesign is about 8% reduction in power demand. 

 

4. Benefit tracking methodology 

 

The methodology to determine the propulsion improvements from a single or a bundle of retrofitted 

energy efficiency technologies is based on comparing the vessel’s performance during two separate 

periods. The first period is a time span after the ordinary dry dock prior to the dry dock of retrofit and 

the second period is a time span after the dry dock of retrofit, Fig.4. To have a fair comparison be-

tween the two benchmark periods certain governing assumptions should be true. These are described 

in Section 5. The improvement in performance due to the installation of energy efficiency technolo-

gies is calculated by: 

 

Δ𝑃𝐸𝐸𝑇 =
�̅�(𝑡1) − �̅�(𝑡0)

�̅�(𝑡0)
∙ 100% 

 

�̅�(𝑡0) and �̅�(𝑡1) refer to the average power in the period after the ordinary dry dock, 𝑡0, and the 

period after the dry dock of retrofit, 𝑡1, respectively. 

 

In this study, a digital ship model (referred as model and described in Section 4.2) is used. It predicts 

a vessel’s resistance in ideal conditions, e.g. no wind, no waves or other environmental impact, as a 

function of its mean draft and speed. Hereto, it also estimates the added resistance from waves, swell, 

Table IV: Parameters of the initial and optimised propeller 7,000 TEU class. 
Propeller Main Dimensions  Original Design Redesign 

Diameter  8,700 mm  8,700 mm 

Number of Blades 5 5 

Material Cu3 Cu3 

Pitch Ratio (P=D)hyd  1.007  1.019 

Expanded Area Ratio EAR  0.830  0.555 

Skew  40.00°  28.1°  

Hub Diameter Fwd DH,fwd  1,730 mm  1,600 mm 

Propeller Weight  81,665 kg 53,189 kg  
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wind speed, and seawater temperatures and density. Finally, it deducts the environmental forces from 

the measured shaft power to correct the performance observation to ideal condition, whereafter it is 

compared with the vessel’s predicted delivered power in ideal conditions. This metric is known as 

added resistance (AR) and corresponds to the resistance increase due to hull and propeller 

degradation. The added resistance is expressed as: 

 

Δ𝐴𝑅[%] =
(𝑅𝐷𝑚𝑠 − Δ𝑅) − 𝑅𝑖𝑑

𝑅𝑖𝑑
∙ 100% 

 

𝑅𝑖𝑑 is the calm-water resistance for the given mean draft and speed, which can be derived from sea 

trial speed/power curves, CFD simulations or towing tank self-propulsion test. Where 𝑅𝐷𝑚𝑠 is the 

resistance corresponding to the measured delivered shaft power at a given operational condition under 

impact from environmental forces: 

 

𝑅𝐷𝑚𝑠 = 𝑃𝑆𝑚𝑠 ∙
𝜂𝑆

𝑉𝑠
 

 

𝑃𝑆𝑚𝑠 is the measured shaft power. 𝜂𝑆 is the shaft efficiency of 0.99 for a conventional shaft. 𝑉𝑠 is the 

ship’s speed through water. 

 

The resistance increase Δ𝑅 due to encountered environmental force is estimated to normalize the 

measured shaft power to a calm-water condition with no influence from wind, waves, and sea 

temperature, ITTC (2021): 

Δ𝑅 = 𝑅𝐴𝐴 + 𝑅𝐴𝑊 + 𝑅𝐴𝑆 

 

𝑅𝐴𝐴 is the added resistance due to wind, 𝑅𝐴𝑊 the added resistance due to waves, and 𝑅𝐴𝑆 the added 

resistance due to sea water temperature and density. Any resistance increase due to excessive rudder 

movement or shallow water can be included in Δ𝑅, if the ship’s deployment predominantly is in 

shallow water region. Alternatively, periods with intense rudder movement or shallow water can also 

be excluded from an analysis, provided the data is available. The calculation of added resistance along 

with conversion between shaft power measurements and corresponding resistance is carried out in 

VESPER, and details to the procedure is probatory rights of Vessel Performance Solutions. 

 

4.1. Improvement impact and confidence interval 

 

The impact of the retrofitted technology package is quantified by comparing the deviation in the mean 

added resistance for two time periods of equal duration; (1) after the previous dry dock denoted 𝑡0 and 

(2) after the retrofit dry dock denoted 𝑡1, see Fig.4. The comparison between the two periods of up to 

4 months is chosen to minimize the probability for propagated fouling of the propeller and/or hull 

becoming an increased uncertainty when quantifying the impact of the retrofit. The added resistance 

for 𝑡0 is averaged over the operational profile in the period: 

 

Δ𝐴𝑅̅̅ ̅̅ (𝑡0) =
1

𝑁
∑ Δ𝐴𝑅(𝑡0)𝑖[%]

𝑁

𝑖=1

 

 

𝑁 is the number of performance observations in 𝑡0. An equal weight is given to each performance 

observations irrespectively of the time duration it represents or its data source (manual noon report or 

high frequency auto-logged).  
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Fig.4: Schematic overview of added resistance calculated for historical performance observations and 

indication of the two periods use for performance benchmarking to determine the impact of 

retrofitted energy efficiency technologies. 
 

The model represents the original ship design, and the added resistance is averaged to one value as it 

is assumed that there is no draft or speed dependency in the model for period 𝑡0 (see Fig.5, Fig.6, and 

Fig.7 for model dependencies). On the contrary the model dependencies are expected to appear after 

the retrofit, and therefore the added resistance is averaged at several bin combinations of mean drafts, 

𝑇𝑚, and ship speeds, 𝑉𝑠, of 𝑛 number of performance observations in each bin for period 𝑡1: 

Δ𝐴𝑅̅̅ ̅̅ (𝑡1, 𝑇𝑚, 𝑉𝑠) =
1

𝑛
∑ Δ𝐴𝑅(𝑡1, 𝑇𝑚, 𝑉𝑠)

𝑛

𝑖=1

[%] 

 

The mean added resistance after the retrofit for each bin is converted into power reductions through 

VESPER where the Δ𝐴𝑅̅̅ ̅̅
𝑏𝑖𝑛 at each draft and speed bin combination is used calibration of the calm-

water speed to power curves: 

 

Δ𝑃 (𝑡1, 𝑇𝑚, 𝑉𝑠, ΔAR̅̅ ̅̅
𝑏𝑖𝑛)[%] =

�̅�𝐷𝑖𝑑(𝑡1, 𝑇𝑚, 𝑉𝑠, Δ𝐴𝑅̅̅ ̅̅
𝑏𝑖𝑛) − �̅�𝑖𝑑(𝑡0, 𝑇𝑚, 𝑉𝑠, Δ𝐴𝑅̅̅ ̅̅

𝑏𝑖𝑛)

�̅�𝑖𝑑(𝑡0, 𝑇𝑚, 𝑉𝑠, Δ𝐴𝑅̅̅ ̅̅
𝑏𝑖𝑛)

 

 

�̅�𝐷𝑖𝑑 is the delivered power in ideal condition, i.e. no wind, waves, or other environmental impact, at 

the mean draft, 𝑇𝑚, and mean speed, 𝑉𝑠, for the respective draft- and speed bins. 

 

A simple Student’s z-test with a confidence interval is used to quantify the reduction in added 

resistance between the two time periods, 𝑡0 and 𝑡1. The z-test investigates the hypothesis that the 

mean of the two data samples is equal or different. Normally, an equal mean is the hypothesis and if it 

fails the alternative hypothesis is true. To verify that the retrofit had an effect and changed the mean 

from one data sample (𝑡0) to the other data sample (𝑡1), it is tested for the alternative hypothesis to be 

true. The impact is the difference between two means of the two data samples: 

 

Δ𝐴𝑅𝐸𝐸𝑇 = [
1

𝑛0
∑ Δ𝐴𝑅(𝑇0)𝑖 −

1

𝑛1
∑ ΔA𝑅(𝑇1)𝑗

𝑛1

𝑗=1

𝑛0

𝑖=1

] ± 𝑍∗√
𝜎0

2

𝑛0
+

𝜎1
2

𝑛1
 

= [Δ𝐴𝑅̅̅ ̅̅ (𝑇0) − Δ𝐴𝑅̅̅ ̅̅ (𝑇1)] ± 𝑍∗√
𝜎0

2

𝑛0
+

𝜎1
2

𝑛1
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The confidence interval is described with a confidence level of 𝐶(95%) resulting in a z-score 𝑍∗ =
1.96, since the data sample exceeds 𝑛 > 30 and approximately follows a standard normal 

distribution. 𝑖 and 𝑗 are incremental performance observations in each data sample with the sample 

sizes 𝑛0 for period 𝑇0 and 𝑛1 for period 𝑇1. 𝜎0 is the standard deviation of the data sample. The 

standard deviation: 

𝜎 = √
∑ (Δ𝐴𝑅𝑖 − Δ𝐴𝑅̅̅ ̅̅ )2𝑛

𝑖=1

𝑛 − 1
  

 

Δ𝐴𝑅̅̅ ̅̅  is the mean added resistance of the sample of size 𝑛. 

 

4.2. Digital ship model 

 

A digital ship model (model) in the context of this study is a digitalized representation of the 

relationship between speed and draught in calm-water and associated resistance. This relationship is 

normally described with self-propulsion test carried out in a towing-tank test, by CFD simulations, or 

in sea trial results. Alternatively, it can be estimated with empirical methods e.g. Harvald and 

Guldhammer (1974). 

 

Before using the model in a benefit tracking context, that aims at quantifying the resistance or power 

reduction delivered by one or multiple energy efficiency technologies being retrofitted, it is 

recommended to inspect the prediction for speed or draft dependencies, which could originate from 

either the model or the data quality. Model evaluation should at least cover speed and draught 

dependencies at period 𝑡0. This is to ensure that a change in mean added resistance,  ΔA𝑅̅̅ ̅̅ %, from the 

two time periods,  𝑇0 and 𝑇1, is not a result of model dependencies as the operational profile is likely 

to change after retrofit implementation. Speed or draught dependency is defined as a change in the 

trend corrected added resistance (TCAR) when draught or speed changes. TCAR is defined as the 

error of each calculated added resistance at each data point from the regression line for a given period 

of analysed events, e.g. dry dock cycle. It applies to a good model that TCAR is constant over the 

analysed speed and draught range during a longer time duration. Critically for the selected time 

duration is that performance observations cover a broad variety of speed and drafts. 

 

Model dependency checks are done using performance observations for the time duration between the 

ordinary dry docking and the retrofit dry dock, Fig.4. The long time-duration allows for a significant 

data sampling across a diversified operational and trading pattern helping to improve model 

confidence. The type of retrofits considered in this study works in a way, that translates into speed and 

draught dependencies when analysis is done for period 𝑡1. This dependency is the hydrodynamic 

improvements generated by the retrofitted energy efficiency technologies. 

 

Pronounced speed or draught dependencies in the model should be adequately tackled by removing 

these dependencies before a model is used in a benefit tracking context. It is crucial that root-causes to 

model dependencies are understood not to introduce additional uncertainty to the benefit tracking 

results. Thus, to avoid these dependencies at the extremities of draught or speed, lower or upper limits 

in the digital ship model are imposed, resulting in exclusions of performance observations above or 

below such limits for the two periods. 

 

A model zero (0) calibration of added resistance (Δ𝐴𝑅̅̅ ̅̅ (𝑡0) ≈ 0) for the period 𝑡0 is not required, as a 

model bias will be present in both periods and can reasonably be assumed to neutralize with the 

relative comparison between the two periods. 

 

The data source for added resistance calculations are based on both propulsion power and fuel oil 

consumption (FOC) acquired from torsion meter and flowmeter readings, respectively. The frequency 

of performance observations are daily manual noon reports and hourly aggregations of high frequency 

auto-logged measurements. 
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Fig.5: Model draft and speed dependency check of 7,000TEU class. Added TCAR% is calculated 

from torsion meter power and ME FOC readings from high frequency auto logging and 

manual noon reports. 
 

Fig.5 gives a visual inspection of the model draft and speed dependencies for the 7,000 TEU class. A 

small degree of draft dependency occurs at drafts below 9 m, and speed dependencies shows at speeds 

below 12 kn and above 21 kn. Performance observations outside these limits have been removed from 

this study to increase model confidence. 

 

Fig.6 shows the model draft and speed dependencies for the 10,000 TEU class, where lower and upper 

limits for draft is set to 8.0 m and 14.0 m and for speeds is set to 12.5 kn to 21.5 kn, respectively. 

 

 
Fig.6: Model draft and speed dependency check of 10,000TEU class. TCAR% is calculated by use of 

torsion meter and ME FOC readings from manual noon reports. 
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Fig.7: Model draft and speed dependency check of 13,000 TEU class. TCAR% is calculated by use 

of torsion meter and ME FOC readings from manual noon reports. 
 

Fig.7 shows the model draft and speed dependencies for the 13,000 TEU class. The draught lower and 

upper limits was set to 12.0 m and 16.0 m, respectively. The speed ranges from 12.5 kn to 21.5 kn. In 

both cases model dependency at the extremities is catered for by excluding performance observations 

beyond these boundary values. 

 

4.3. Data quality and data filtration 

 

Due to uncertainties, both in modelling and data quality, it is unrealistic to fully eliminate scatter in 

the calculated added resistance result. However, to reduce scatter, filtration has been applied in both 

noon and auto-logged data. In the case of auto-logged data, there are periods of various unsteadiness 

in the signals caused by e.g. acceleration or deceleration in speed, strong gusts, corrupt signals etc. An 

algorithm based on the theory of probability of detection of a change in the mean and standard 

deviation to detect stable periods simultaneously has been applied, as described by Montazeri (2019). 

Data, not fulfilling the following criteria, are removed from analysis in this study, as our experience is 

that inclusion of performance observations beyond these limits often are associated with increased 

uncertainty coming from violating the constraints of weather correction methods: 

 

- Maximum Beaufort wind force scale up to 5 for wind and waves. 

- Speed over ground (SOG) equal to or less than 12.5 kn, or beyond any lower or upper limits 

defined basis a model dependency check. 

- Duration of noon reports equal to or less than 20 h. 

- Main engine (ME) specific fuel oil consumption (SFOC) at a class level i.e. ME type. 

- Reported distance (over ground) is deviating more than 5% from the distance (over ground) 

calculated by means of AIS positions. 

 

Reduction in scatter improves the accuracy of the results, though biases due to low quality data are 

even more crucial. Data, either sourced from noon reports or auto-logged systems, can be biased due 

to uncalibrated sensors onboard. Thus, thorough filtration was applied from the authors to disregard 

inadequately calibrated speed logs, torsions, or flowmeters. 

 

5. Governing assumptions 

 

The benefit tracking methodology applied in this study is subject to multiple assumptions, as any 

performance monitoring methodology would be. The violation of assumptions will in most cases 
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result in a poor baseline to measure improvement against, hence lead to erroneous results providing a 

wrong picture of the ‘true’ savings attained from certain EETs. Main assumption applicable for this 

study covers, but are not limited to these: 

 

- Mechanical hull degradation effect on added resistance, e.g. caused by hull plate buckling or ero-

sive welding seams, is not modelled and assumed unchanged for the period after the ordinary dry 

dock (𝑡0) and after the retrofit dry dock (𝑡1). 

- Generalized wind resistance coefficient are representable to a containership with variable project-

ed frontal and longitudinal areas because of different configuration of containers stowed on deck 

i.e. wind resistance is not adjusted for high or low number containers placed on deck. 

- Hull and propeller treatment during dry docks are similar to each other i.e. full blasting of hull 

and hull roughness before paint and antifouling application is assumed comparable. In the case 

that full blasting of the hull is an added activity during the retrofit dry dock compared to the ordi-

nary dry dock, it is then considered an integrated part of the EET retrofit package.  

- The quantified savings are combined savings from the installed EET(s), and the quality of hull 

and propeller maintenance work carried out during the dry dock. 

 

6. Data sourcing and frequency 

 

This section elaborates on the data sources and frequency of data collection for the performance 

observation available for this study. 

 

6.1. Manual noon report and high frequency auto-logging 

 

The vessel classes analysed in this study reports performance observation as manual noon reports at a 

daily frequency. The reports consist of ~80 different observations, manually entered by the crew. 

Figures are read from onboard measurement equipment. The noon reporting is the least minimum 

which can be found on every ocean-going vessel. It collects various operational information, such as 

nautical, engine and weather-related data. 

 

Additionally, to the noon reporting the vessels of the 7,000 TEU class are equipped a sensors-based 

data collection system that samples data a high frequency. Data measured by sensors and from the 

automation systems of the vessel include engine and nautical data. 

 

6.2. Hindcast weather and AIS ship position 

 

Reported weather is, within the experience of the authors, known to be unreliable for performance 

prediction for two reasons. Firstly, the crews’ frequently reporting of instantaneous weather at the 

time of the observation, though the averaged weather throughout the duration of a noon report is 

required. Secondly, even if the crew attempts to report the averaged weather, this is also frequently 

erroneous in the cases that the wind and wave direction is also varying during a noon report period. 

This issue is tackled by enhancing the noon reports with AIS positions data and introducing hindcast 

weather from weather forecasters. Detailed steps of this process are described by Georgousis (2022). 

  

7. Analysis 

 

This section covers a presentation of the results using the described benefit tracking methodology on 

the three vessel classes that have been subject to retrofitting of EETs. The objective is to determine, to 

what extent the applied methodology can quantify a reduction in speed and power relationship 

because of re-designed propellers and/ or hull forms and simultaneously provide the corresponding 

reliability of these calculations. 

 

7.1. Results of 7,000TEU class 

 

The 7,000 TEU class is a slender and low block coefficient containership originally designed for 
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service speed around 26 kn, that receives a redesigned bulbous bow and propeller optimized for a 

design speed around 18 kn. The results are presented in tabulated format where draft and speed bins 

are aligned with CFD analysis with the attempt to correlate benefit tracking results with design 

expectations. In addition, the results are also shown as a contour plot, Fig.8, basis the averaged draft 

and speed from performance observations captured inside specific bins.  

 

The CFD-based improvement potential for the bulbous bow and propeller are presented in Tables VII 

and VIII, respectively. The results in Table VI show a noticeable reduction in power, consistent with 

the draft and speed dependencies observed in the CFD simulations, Table VII. The results indicate a 

fair correspondence in the magnitude of the results between the CFD simulation and benefit tracking 

results. However, this is not a suggestion that the potential power reduction from the redesigned 

propeller and bulbous bow simply can be extrapolated through linear superposition, as there will be 

interactional terms between the two hydrodynamic upgrades. 

 

Table V: Reduction in added resistance percentage with confidence interval at 95% confidence level. 

Negative is reduction. 

Difference in AR% after retrofit with confidence 

interval 

Draft [m] 

Speed [kn] 

14 17 20 

10 -45±5 -26±3 -20±3 

12 -39±4 -20±1 -18±2 

14 -10±8 -14±2 -2±4 

 

Table VI: Percentage reduction in shaft power across draft and speed bins. Negative is reduction.              

Percentage (%) change in power after retrofit 

Draft [m] 

Speed [kn] 

14 17 20 

10 -25 -17 -14 

12 -23 -14 -13 

14 -8 -11 -1 

 

Table VII: Vendor CFD based power reduction potential of re-designed bulbous bow. Negative is 

reduction. 

 

 

 

 

 

 

 

 

Table VIII: Vendor CFD based power reduction potential of re-designed propeller. Negative is 

reduction. 
Percentage (%) power reduction of propeller with PBCF 

re-design 

Draft [m] 

Speed [kn] 

14 17 20 

10 -8.6 -8.9 -8.7 

12 -8.7 -8.7 -7.9 

14 -9.3 -8.8 -8.5 

Percentage (%) power reduction of bulbous bow re-design  

Draft [m] 

Speed [kn] 

14 17 20 

10 -25 -19 -12 

12 -16 -12 -6 

14 -5 -3 -3 
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Fig.8: Contour plot with power reduction (%) in shaft power across draft and speeds 

 

7.2. Results of 10,000 TEU Class 

 

The 10,000 TEU Class is a containership originally designed for a service speed of 21 kn, with a new 

design speed targeted around 19 kn. Tables IX and XI shows the AR% and power reductions 

aggregated into single values, respectively, provided the assumption that the redesigned propeller, 

combined with a PBCF, is relatively independent of draft and speed variations, Table XI. Moreover, 

due to limited performance observations at inadequate quality and the lack of auto-logged data, there 

is a constraint on the number of observations at each discrete draft and speed combination. Therefore, 

at the authors' discretion, performance observations are aggregated into single values along the whole 

operational profile; one for reduction in shaft power and another for added resistance.  

 

 

The benefit tracking results shows a small reduction in power, Table X, being noticeable less than 

then the saving prediction from the CFD simulations, see Table XI. This is believed to be caused by 

Table IX: Reduction in added resistance and 

associated confidence interval with 95% 

confidence level. Negative is reduction. 
Difference in AR% after retrofit with confidence 

interval 

Draft [m] 

Speed [kn] 

14 16 18 20 

10 

-1.2±2 12 

14 
 

Table X: Total (%) reduction in shaft power 

corresponding to added resistance reduction 

Percentage (%) reduction in power after retrofit 

Draft [m] 

Speed [kn] 

14 16 18 20 

10 

-1.0 12 

14 
 

 

Table XI: Vendor CFD based power reduction potential of re-designed propeller with PBCF for 

10,000 TEU class. Negative is reduction. 
Percentage (%) power reduction from propeller with 

PBCF re-design 

Draft [m] 

Speed [kn] 

14 16 18 20 

11 -8.4 -7.8 -7.2 -6.6 

12 -7.3 -7.4 -7.3 -6.9 

13 -7.2 -7.2 -7.2 -7.2 
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an inconsistent hull treatment between the ordinary dry dock and the retrofit dry dock for 10,000 TEU 

class, also further discussed in Section 8. 

 

7.3. Results of 13,000TEU Class 

 

The 13,000 TEU class is subject to EPL and a re-designed propeller with PBCF allowing for a new 

top speed at 21 kn and new design speed of 18 kn at 14.25 m draft (optimization target). The results 

are presented similar to for the 10,000 TEU class with the same assumptions for one average 

reduction across draft and speed bins. The quantified shaft power reduction in Table XIII show good 

alignment with expected reduction potential stated in the Vendor’s CFD simulations, Table XIV. 

 

Table XII: Reduction in added resistance with 

confidence interval at 95% confidence 

level from retrofitted technologies. 

Negative is reduction.  
Difference in AR% after retrofit with confidence 

interval 

Draft [m] 

Speed [kn] 

14 16 18 20 

12.5 

-8.5±2 14 

15.5 
 

Table XIII: Total (%) reduction in shaft power 

corresponding to added resistance 

reduction 

Percentage (%) reduction in power after retrofit 

Draft [m] 

Speed [kn] 

14 16 18 20 

10 

-6.9 12 

14 
 

 

Table XIV: Vendor CFD based power reduction potential of re-designed propeller with PBCF for 

13,000 TEU class. Negative is reduction. 

Percentage (%) power reduction from propeller with PBCF re-design 

Draft [m] 

Speed [kn] 

14 16 18 20 

13.0 -6.4 -6.5 -6.5 -6.7 

14.25 -6.8 -6.7 -6.7 -6.7 

15.5 -7.4 -7.4 -7.4 -7.6 
 

 

8. Discussion and conclusions 

 

Two key drivers contribute to the success of energy efficiency retrofits in shipping: data-driven 

decision making and business-oriented evaluation of EETs. While Computational Fluid Dynamics 

(CFD) studies are crucial for building the initial business case for certain types of EETs, their value 

lies in conjunction with robust benefit monitoring. This combination validates the effectiveness of 

chosen EETs and empowers data-driven optimization for future investments. The presented case 

studies demonstrate the importance of data gathering at relevant frequency, need for better data 

quality, continuous feedback to both data-driven processes and business decision-making processes 

for other business cases in similar or other vessel classes and types. 

 

Assessing the 7,000 TEU class offered the most promising scenario due to both receiving full hull 

blasting and similar paint systems at both dry dockings, facilitating the most reliable comparison. 

Furthermore the 7,000 TEU class offered sufficient data due to high resolution data reporting. 

 

However, limitations arose with the 10,000 TEU vessel due to limited noon reports, potentially 

restricting the data's ability to capture the full impact through the applied methodology. Additionally, 

the second dry docking of this vessel introduced a propeller redesign with spot blasting of the hull 

before applying paint, introducing an uncertainty when attempting to isolate the impact of each of the 

energy efficiency upgrades. The improvement of the redesigned propeller showed to be neutralized by 

the partial hull treatment during the retrofit dry dock, which points to the importance of deploying 
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‘basic’ energy efficiency measures before implementing more complex energy efficiency measures. 

 

Analogously, data limitations affected the 13,000 TEU class, where hull treatment was spot blasting 

in the ordinary dry dock hindered clear differentiation between the effects of the new propeller and 

hull roughness, since the retrofit dry dock included hull full blasting. Due to this the quantified power 

reduction must be assigned to both hull full blasting and the new propeller as a total saving. 

 

Despite these challenges, learnings emphasize the importance of comprehensive data collection 

strategies. Improving the quality of the reporting from the crew and expanding it with high frequency 

sensors data is believed to allow capturing of draft and speed dependencies, offering deeper insights 

into benefit tracking results of the 10,000 TEU class and 13,000 TEU class. By refining data 

collection and analysis approaches, the accuracy and granularity of the assessments can be improved, 

driving informed decisions for future EET investments, and maximizing the return on the 

sustainability efforts. 

 

The 7,000 TEU class vessels provide a compelling example, showcasing the value of robust data 

collection encompassing coverage, source, and frequency. The findings establish a hierarchy of data 

requirements, highlighting the shift from basic compliance monitoring to performance assessment 

and, ultimately, rigorous benefit tracking. 

 

However, the limitations encountered with the 10,000 TEU class and 13,000 TEU class underscore 

the importance of comparable conditions for accurate evaluation. Inconclusive results in these cases 

emphasize the need for comprehensive data sets across multiple dry docks to isolate the effects of 

individual EETs, as well as increased representation of good quality data across the class’s operational 

profile. 

 

While one finding of this paper is strict requirements to data collection, for a period spanning from at 

least the retrofit dry docking to the ordinary dry docking event, and quality, there are nevertheless 

effects which hardly can be quantified accurately. One key challenge lies in mechanical degradation 

of hull performance over time. The initial smoothness at a vessel’s launch, will deteriorate due to 

various factors, making it difficult to isolate the true impact of EETs from this ongoing wear and tear. 

Furthermore, inconsistent dry dock treatment quality influenced by weather, humidity, and application 

techniques. Acknowledging these challenges and implementing standardized procedures and detailed 

documentation are crucial. 

 

In conclusion, while this study validates the quantifiability of EET retrofits under strict data 

requirements and comparable conditions, it also highlights the challenges associated with limited data 

availability and mixed interventions, e.g. full blast vs. spot blast. Moving forward, a standardized data 

collection scheme ensuring comprehensive coverage and consistent high frequency will be 

fundamental in unlocking the full potential of EET retrofits, that can enable meaningful quantification 

of the improvements from retrofitted EETs by means of performance monitoring applications. By 

prioritizing rigorous data collection and analysis, the pathway to higher energy efficiency with higher 

confidence, maximizing the impact of investments and contributing to a cleaner future for ocean 

transport. 
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Abstract 

 

To achieve optimal ship routing, the reliability of oceanic data is paramount. In this scope, our study 

seeks to establish a benchmark for evaluating different ocean current datasets, by employing high 

frequency vessel sensor data, alongside information from ocean drifters. Our findings reveal the 

limitations of conventional operational oceanic models in accurately predicting surface currents. 

Through a novel approach stemming from satellite observations, we demonstrate significant 

improvements in the resolution and reliability of ocean current data, unlocking further potential for 

route optimization. Through Mediterranean Sea case studies, we highlight the effectiveness of accurate 

ocean current data in optimizing routes for fuel efficiency and CO2 reduction, while also recalibrating 

vessel speed-log measurements for energy efficiency metrics. This approach presents a pragmatic, low-

risk method that could aid maritime decarbonization. 

 

1. Introduction 

 

The environmental impact of route optimization is officially added to the economical and safety impact, 

as the shipping decarbonization roadmap requires immediate solutions, Psaraftis (2019), Mallouppas 

and Yfantis (2021). Since 2018, the International Maritime Organization (IMO) has implemented sev-

eral regulatory constraints in order to address GHG emissions, introducing in the maritime sector spe-

cific indices that evaluate and classify the performance of each individual marine vessel. Among them, 

the Carbon Intensity Indicator (CII) will consider an annual estimation of the fuel consumption and 

distance travelled, both affected by the choice of the route. 

 

Ship routing has been a method of increased interest, both in industry and academia, Zis et al. (2020), 

in order to optimize the fuel saving and emissions reduction during a voyage by considering optimal 

routes with respect to environmental conditions as well as optimal vessel speed. Psaraftis and Kontovas 

(2014) demonstrated that the optimal route problem is closely linked with the optimal speed problem, 

which in turn is regulated by financial conditions such as fuel or freight price. Meanwhile, speed and 

route optimization rely strongly on the accurate prediction of metocean conditions encountered along a 

ship route. More than 60 years ago Hanssen and James (1960) documented how the United States 

Hydrographic Office used long-range predictions of wind, waves and currents to select optimum routes 

for transoceanic crossings. Avoidance of severe weather events in navigation is a century-old practice, 

nowadays improved by the usage of meteorological forecasting numerical models. The economic po-

tential of reducing fuel consumption by harnessing ocean currents has been already documented, Lo et 

al. (1991), McCord et al. (1999). Defining an optimal route based on surface currents could be such 

directly affecting optimal speed and fuel consumption. 

 

Furthermore, Ikonomakis et al. (2021) has demonstrated the limitations of available ocean current data 

when comparing vessel speed-log measurements (Speed Through Water) with GPS-received velocities 

(Speed Over Ground). Correct estimations of vessels’ Speed Through Water, can allow for limiting 

uncertainty in the estimation of fuel oil consumption curves in calm water, pointing the need for ocean 

current data not only for route optimization but also energy efficiency modelling. 

 

Today, ocean currents for weather routing are provided by operational numerical models that forecast 

daily the sea state. While winds and waves models seem reliable enough, current models are not. De-

pending on the assimilation schema, a set of models in the same region and period can provide different 

outputs, Moschos et al. (2022). Nevertheless, numerical model forecasts for ocean currents are em-

ployed today in all available commercial tools for weather routing, to our knowledge. 

mailto:evangelos@amphitrite.fr
mailto:evangelos@amphitrite.fr
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A recent survey led by Amphitrite questioning captains of commercial vessels, allowed to highlight this 

difference between MetOcean variable predictions. Fifty vessel captains replied - among others - to the 

question "What is your opinion on the reliability of Weather and Ocean Forecasts", with the results 

illustrated in Fig.1. Not surprisingly, while wind and wave data were deemed of good reliability by 70% 

and 66% of respondents correspondingly, only 7% of captains thought the same about ocean currents 

data at their disposal. On the contrary a 35% believes that the current data available today are of poor 

reliability. 

 

How then can we assess and improve reliability of ocean current forecasts? Contrary to numerical mod-

elling, satellite observations of the sea surface topography deduce daily information on sea surface cur-

rents, Chelton et al. (2001,2011), Ballarotta et al. (2019). Moreover, recent studies using advanced 

Machine Learning methods have shown that satellite altimetry including the new SWOT mission can 

be complemented by additional satellite information provided by other sensors such as infrared or vis-

ible observations to provide reliable, high-resolution surface current maps, Ioannou et al. (2019), Mos-

chos et al. (2023). 

 

This paper demonstrates that employing ocean current maps of high-reliability can improve the optimal 

ship routing strategies while also enhancing vessel energy efficiency modelling. By employing vessel 

data sailing in the Mediterranean Sea, we demonstrate that our AI-based model that fuses various sat-

ellite observations to receive high-resolution surface current maps greatly outperforms numerical model 

outputs used for ship routing today, both for nowcasting and forecasting, with a halving of the errors. 

These novel and reliable surface current data allow for a short-term optimal routing solution with a low 

cost, low risk and significant gains in fuel consumption, while also allowing ships to reduce emissions 

in the framework of decarbonization. 

 

Fig.1: Result of the captain’s survey on qualitative assessment of general meteorological data, winds, 

waves and currents. 

 

2. Data: Satellite and Models 

 

We include in our analysis sea surface current data from various operational ocean numerical models 

that are widely used in ship routing as well as our proposed solution that is based on satellite 

observations. 

 
For that purpose, we extract outputs from three numerical models, namely the MERCATOR European 

oceanic model and GOFS (HYCOM-NOAA) American oceanic model that run daily and globally as 

well as a regional model for the Mediterranean Sea, the Mediterranean Forecasting System - MFS, run 

by the Italian CMCC. The characteristics of these models are presented in Table I. To compare oceanic 

data, for each model and for each day during the sample period, we extract sea surface currents at 

nowcast mode (real-time) and forecast mode. 
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Furthermore, we employ real-time satellite observations in order to compare with the outputs of the 

numerical models. Specifically, we extract data of observations from a constellation of over 10 satellites 

carrying altimetric, infrared and visible sensors as can be seen in Fig.2. We fuse the data of these 

satellites as described in Kugusheva et al. (2024) to retrieve high-resolution surface current maps 

(HIRES). We focus our analysis in the sea for the most recent period of 2021-2023. 

 
Table I: Characteristics of three operational ocean models, MERCATOR, GOFS and MFS - country of 

origin, covered domain and output resolution. 

Model Provider Coverage Resolution 

MERC EU Global 9x9 km 

GOFS USA Global 4x9 km 

MFS ITA Regional 4x4 km 

 

 
Fig.2: Illustration of the three types of data used for HIRES-CURRENT model 

 
3. Comparing surface current maps with drifters and vessel data 

 

3.1. Drifter-based evaluation method 

 

In order to evaluate the ability of the different operational models to represent oceanic currents, we 

perform a statistical study using independent in-situ drifter measurements that are sampling surface 

currents in the Mediterranean Sea. We consider all available drifter measurements in the Mediterranean 

Sea during the study period (20212023), as illustrated in Fig.3 where the mean ocean current velocity 

measured by drifters is shown in the observed areas. From those observations we only extract those 

where the ocean current is higher than 0.5 kn or 0.25 m/s i.e. with an impact on the ship’s speed, 

resulting in a total of 46000 data points. To evaluate the accuracy of each model on reproducing sea 

surface currents, we compute the angle θ between velocity components as measured from the drifters 

and as estimated from the different datasets. Hence smaller values of θ, will indicate sea surface currents 

that remain along a similar direction with the drifter measurements, while larger values of θ will indicate 

currents of opposite direction. To illustrate the main differences on currents directions along the drifter 

trajectory we define different angle ranges, Fig.4. Cases where θ remains less than 15° (green colour) 

are considered excellent while only cases where θ is less than 45° (light green colour) provide a good 

estimation of the real direction of oceanic currents. For more than 45° of angle error the ocean current 

estimations are deemed at least inaccurate if not completely wrong, making difficult to optimize a 

vessel’s route (orange and red colours). 
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Fig.3: Location of drifter measurements for the period of 2021-2022 in the Mediterranean Sea. 

Colours illustrate the mean measured velocity in m/s. 

 

 
Fig.4: Simple Metric Comparing the angle error between an Ocean Current Model (blue arrow) and 

a corresponding drifter in-situ measurement (black arrow) 

 

 
Fig.5: Statistical errors of the angle of ocean current nowcasts comparing different model outputs to 

drifter measurements: MERCATOR (Global Numerical Model), GOFS (Global Numerical 

Model), MFS (Regional Numerical Model) and HIRES-CURRENT-MED (Our Satellite Data 

Fusion). 
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The results of our analysis are illustrated in Fig.5, comparing the four categories of ocean current 

direction evaluation (excellent, good, inaccurate, wrong) for different models: MERCATOR (Global 

Numerical Model), GOFS (Global Numerical Model), MFS (Regional Numerical Model) and HIRES-

CURRENT-MED (Our Satellite Data Fusion). Our satellite data-driven model based on AI, HIRES-

CURRENTS-MED, is able to predict at least 80% of the time accurately the direction of oceanic 

currents, while accurate percentages always remain less than 60% for the MERCATOR, GOFS and 

MFS operational models. Compared to the MERCATOR model, employed in most of the current 

weather routing tools, our ocean current predictions in the Mediterranean Sea offer 4 times reduced 

wrong and inaccurate observations. Furthermore, we find the performance of operational models in 

forecasting mode to be even less efficient, while our HIRES-CURRENTS-MED retains its performance 

for a period of 5 days. 

 

3.2. Vessel-based evaluation method 

 

3.2.1. Speed-log recalibration 

 

Assessing the reliability of our models based on vessel data relies on the measurement of an essential 

parameter, the Speed Through Water (STW), measured by the vessel "speed-logs", often a Doppler 

Velocity Log (DVL) measuring instrument. In order to conduct our analysis using vessel data, these 

STW measurements must be as reliable as possible. Nevertheless, Ikonomakis et al. (2021) showed that 

it is still challenging to measure STW with accuracy, as most vessels’ DVL measurements highly 

fluctuate, mostly due to ocean currents, along with other systematic measuring errors. 

 

The error on STW measurement must be corrected in a post-voyage analysis setting before using these 

observations as ground truth. Speed-log recalibration depends on the considered ship and route. Thus, 

the bias must be calculated for each voyage. Here, we introduce a specific method to evaluate the error 

and recalibrate the measures, Fig.6. We assume that our currents model is fully correct for areas where 

no current has been observed (i.e. currents < 0.1 kn). Then, we find points from the dataset with a 

negligible current impact according to HIRESCURRENT prediction such as: 

 

P = {|∆Uhires| ≤ 0.1kn} 

 

  
Fig.6: Recalibration of STW measurements for 2 vessels navigating on the Suez-Gibraltar leg, ac-

cording to the described method. Green points belong to Ufiltered, while orange points show all 

measurements (including those where ocean currents are significant). The black line, passing 

from zero, is shifted to the position of the green line to better fit the Ufiltered observations. 

 

P represents the set with correct values. Then we are able to isolate points impacted by a measurement’s 

error such as: 

 
Ufiltered = {Ucf ∈/ P} 
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Finally, the shift that corresponds to the correction value is given by the mean of Uc within the given 

set such as: 

  

shift = Ucf,Ucf ∈ Ufiltered 

 

In what follows, we employ these recalibrated values STWcorrected, to conduct our analysis. 

 

3.2.2. Comparing Ocean Models with Vessel Data 

 

In order to reinforce the evaluation of ocean current models presented in the previous section, we 

conducted a pilot test for Mediterranean Sea crossing using data from the speed-logs of CMA-CGM 

vessels sailing in regular routes in the Mediterranean Sea. The vessel sensors allow access to high-

frequency measurements Speed Through Water combined with the GPS information of Speed Over 

Ground. From these variables, we are able to estimate the real (ground truth) current, as measured by 

the vessel, that corresponds to: 

 

U = SOG − STW 

 

We note that STW is corrected, through the re-calibration method presented in the above section. 

 

We introduce a new metric to evaluate the reliability and the accuracy of oceanic current predictions. 

We compare the magnitude of the HIRES-CURRENTS vector projected on the vessels speed vector to 

the calculated Uc from the vessel’s data. Results presented in this paper are based on the study of six 

routes including the Suez-Tanger leg, Malta-Suez leg and Genoa-Beirut leg (Fig.7). It represents filtered 

2320 data points from vessel database. 

 

Fig.8 compares the values of Uc from the measurements of vessel instruments, to ∆Umodel from the 3 

different models, Mercator (Global Model, Red Dots) and MFS (Regional Model, Purple Dots) and our 

AI model, HIRES-Currents (Satellite Observations, Green Dots). On the x-axis Uc=SOG - STW) 

represents the vessel measured current and on the y-axis ∆Umodel represents the current impact 

(projected current) at the vessel’s position. Therefore, for an ocean current model to be perfectly 

accurate, both observations need to be in agreement, i.e. perfectly aligned along the diagonal’s envelop. 

The prediction is considered as correct if the predicted value is within +/-0.5 of the measured value. 

Values close to (0,0) represent ocean points without current. 

 

 
Fig.7: Mediterranean Sea legs used for the vessel-based evaluation method 
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Fig.8: Comparison of vessel measured current (SOG - STW) on x-axis with current impact (projected 

current) at vessel position, U on the y-axis. Comparison is performed for two numerical 

models Mercator (Red Dots) and MFS (Purple Dots) and our AI model, HIRES-Currents 

(Green Dots). The two lines parallel to the diagonal represent the envelop of accurate 

measurements (±0.5 kn). For strong currents (high absolute values in the diagonal) our HIRES 

model agrees better with vessel observed currents than the other two models. 

 
In Fig.8, the global model (MERCATOR) presents many points outside the envelop of the diagonal, 

i.e. inaccurate ocean currents that don’t agree with the vessel observations. The regional model (MFS) 

appears to perform better, but also presents many outliers for high current magnitudes. This highlights 

the limits of both numerical models, which have difficulty in providing reliable information for strong 

currents. Conversely, for HIRESCURRRENTS, the scatter plot reflects the correlation between Uc and 

∆Uhires for all current intensities, implying that eddies with high intensities have been accurately 

predicted. Table II presents analytical results for the six routes where vessel data have been considered, 

highlighting the reliability of the HIRES model for areas with strong currents, in comparison to the two 

aformentioned numerical models (Mercator, MFS). 

 

Table II: Analytical results on the errors of different ocean current models using vessel data 

Data source Param. All currents >0.5 kn > 1 kn 

All ships Mean Uc 0.29 kn 0.87 kn 1.56 kn 

 UMercator Error 1.52 0.88 0.72 

 UMFS Error 1.25 0.79 0.65 

 UHires Error 1.05 0.50 0.35 

 

4. An optimal routing solution 

 

In the previous section, we evaluated the performance of different numerical models on their capacity 

to reproduce accurately sea surface oceanic currents against real-time in-situ, both using drifter and 

vessel measurements as ground truth. We have further demonstrated that HIRES-CURRENTS provide 

higher reliability on estimating oceanic current, characterized by statistically smaller errors. In order to 

evaluate how different predictions of the oceanic currents could actually affect optimal ocean routing, 

we investigate in this section two specific routing examples. One corresponds to a vessel sailing along 

the Suez - Gibraltar route, Fig.9, and the other to a good example of strong ocean currents encountered 

in the Alboran Sea, Fig.10, both in high commercial routes in the Mediterranean Sea. 
 
The highly-reliable and high-resolution ocean current data HIRES-CURRENTS enables the employ-

ment of a short-term optimal routing (STOR) scheme. STOR concerns a fine-scale optimisation that 

can be applied to prescribed routes while benefiting from oceanic currents with minimum adjustments. 

In Fig.10, by adjusting with given waypoints, this ship could benefit from strong oceanic velocities not 

only by avoiding counter-current but by also redirecting its route towards the opposite side of this 

swirling motion soon enough. In this scenario, the ship could realise fuel savings of up to 4% by slightly 

lowering its speed to arrive at the original ETA. 



 

220 

 
Fig.9: Example of optimal routing application along Suez to Gibraltar route in the Mediterranean Sea 

for a vessel navigating with an average speed of 18.5 kn. The background velocities 

correspond to the HIRES-CURRENTS as derived for the 21 August 2023. The upper panel 

corresponds to the direct route followed by the vessel. The bottom panel corresponds to the 

fine-scale optimisation route (green line) compared to the direct route (black dashed line). 

 

We highlight that all vessels following the Suez to Gibraltar trajectory are concerned and could benefit 

from this optimization. Depending on the vessel type and fuel consumption characteristics, the fuel gain 

estimation will differ, being directly linked to the ship-current speed ratio as well as the vessel Fuel Oil 

Consumption curve (FOC). The consumption depends on the technical specifications of the vessel and 

on the meteorological conditions. This study is centered on assessing the reliability of ocean current 

and demonstrating a new mode of ocean routing, therefore we did not perform analytical FOC 

estimations. 

 

Nevertheless, following the findings in Ikonomakis et al. (2021) we believe that accurate estimations of 

the Ocean Current can lead to better speed-log recalibration, increased accuracy in the STW estimation, 

leading to better calm-water FOC estimations. We consider a theoretical and simplified model of a 

ship’s consumption at calm water with: 

 

FOC(v) = αvβ 

 

Table III: Correction of the calm-water FOC curve for a speed-log recalibration of ±0.4 kn, on a 

theoretical, simplified curve FOC(v) = αvβ with α = 0.015 and β = 3 

Velocity [kn] 10 12 14 16 18 20 

FOC correction 6.0% 6.7% 7.5% 8.6% 10% 12% 

 

By considering parameters α = 0.015 and β = 3 and a speed log calibration of ±0.4 kn as show in Fig.6, 

we demonstrate in table 3 that significant uncertainty reduction in the calm-water FOC estimations can 

be obtained. Varying with vessel speed, uncertainty can be reduced from 6 to 12 % in this theoretical 

example, providing a valuable tool for energy efficiency and post-voyage analysis. 
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Fig.10: Example of optimal routing application along Tanger to Tunis route in the Alboran Sea for a 

vessel navigating with an average speed of 16 kn. The background velocities correspond to 

the HIRES currents as derived for the 26 November 2023. The upper figure shows the current 

intensity on a theoretical direct route on this leg. The middle one shows the fine-scale 

optimisation route for the given day with the suggested waypoints to follow the route. The 

figure below shows the correlation of the HIRES-Currents map with the Sea Surface 

Temperature, as observed by satellite. 

 

5. Conclusion 

 
Present operational numerical models, frequently used for forecasting oceanic conditions along a ship 

voyage, present limitations in reproducing oceanic currents with high reliability. On the contrary, the 

fusion of multiple satellite observations with AI-based models provides oceanic current data that are 

characterized by statistically smaller errors, especially for regions with strong currents. This solution is 

available today thanks to advances in remote sensing of the ocean and AI-based models and could 

reinforce operational routing and energy efficiency applications in the shipping industry. 

 

High reliable oceanic currents enable the application of an optimal routing strategy that directly 

translates into additional time and fuel gains. Each vessel navigating in Suez-Gibraltar axis in the 

Mediterranean Sea is concerned by such fine scale optimisation since strong oceanic currents will be 

encountered along ship routes at least once (on average 1.3 times per trajectory). Within the scope of 

significantly increasing CO2 emissions of the shipping sector in the coming years, short-term 

optimization based on HIRES-CURRENTS data can reinforce present ship optimal routing strategies 

with a low-cost and low-risk solution. 
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Abstract 

 

Shipping gradually merges to Industry 4.0 becoming a part of smart mobility. Nowadays, ships move 

not only in space and time, but also across dense grid of digital information in virtual reality. Ships 

cross the seas and oceans, leaving a virtual wake of data. Access to data becomes possible thanks to 

the cloud solutions. The availability of data enables creation of innovative services. The new, added 

value for ship owners, operators and other parties in shipping industry can be created by merging of 

multiple layers of information. Thanks to smart processing user involvement is minimised, each vessel 

equipped with functional AIS transponder can be analysed without requirement of any additional 

hardware integration. Enamor has developed a cloud-based ship voyage evaluation service requiring 

only a ship identification number and a date range as the input. The service automatically collects and 

processes data about the voyage route, ports of call, weather and navigation conditions. Based on them, 

service prepares a detailed report providing a comprehensive assessment of the voyage empowering 

the users with detailed information about the vessel's operating conditions. Service provides a wealth 

of data and insights that can be used to enhance performance, optimize costs, improve efficiency, and 

ensure compliance with contractual and regulatory requirements. It may serve as a learning tool for 

continuous improvement in the maritime industry. Service is available as SaaS.  

 

1. Introduction 

 

Shipping nowadays intensively relies on data which constitute a backbone of marine transportation. 

Ship herself is a complicated data environment. Her safe and efficient operation requires data processing 

within the internal network interconnecting vital ship systems and interacting with a crew. Data 

exchange is not limited to the ship environment. Even vessel travelling through the most remote seas 

exchange data with external data network. Some data are protected against third party some other like 

principal navigational parameters belong to public domain. Particularly, automatic identification system 

(AIS) is an example of rich, public data source. AIS provides ships unique identification, position, 

course, and speed often supplemented with vessel draft and voyage destination. Data collected by AIS 

are used not only for the purpose of safe navigation (as initially intended) but constitute a building block 

of many analytical services. Another data source intensively used in shipping is metocean data. Weather 

forecasts are used for voyage planning while hindcasts allow for retrospective an analyses. 

 

We identified a niche for utilization of publicly available data, AIS and weather datasets, in order to 

create a comprehensive voyage evaluation tool. It facilitates data collection, processing and visualiza-

tion based on minimum input from the user. The only information which user needs to provide is the 

ship identification and her period of operation. Service will process these entries finding ports of calls, 

identifying voyages and match them to the weather conditions. It performs also all necessary data 

processing including outlier detection, resampling and interpolation, gap filling and recalculation 

weather conditions with respect to vessel frame of reference. Service provides elaborated, easy-to-

comprehend visualisations encapsulated in an interactive dashboard and more traditional static report. 

 

Tool is available as the web service (SaaS) available for any party who needs unambiguous (i.e. based 

on publicly available data and not restricted by privately owned datasets) voyage evaluation. Primary 

stakeholders group include vessel owners and operators for whom it helps to resolve vessel performance 

issues. Cargo owners, insurance companies, classification societies and marine enthusiasts are among 

those who could also benefit from this service. 

mailto:wojciech.gorski@enamor.pl
mailto:aleksandra.heino@enamor.pl
mailto:aleksandra.karolik@enamor.pl
mailto:dominik.lesniak@enamor.pl
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2. Service arrangement  

 

Various data sources and data processing tasks imposes need for robust, yet expandable data pipeline 

architecture closely incorporated with user actions, waiting time and information quality. The voyage 

reporting service back spine relays on AIS data collection systems. The AIS transponder being 

mandatory shipborne navigational equipment depending on the vessel’s type according to SOLAS 

regulation V/19 provides information about the ship’s identity, type, position, course, speed, 

navigational status and other safety-related information. This information is further processed and 

exchanged between various parties, some of them providing services with application programming 

interfaces allowing to collect the AIS real time and historical data from global merchant navy fleet. 

Accessing the vessel’s positions in time is realized with one of the AIS applications programming 

interface providers, basing on those data first processing task is realized in order to provide a list of 

detected routes and ports of calls. Such approach allows user for selection of suggested vessel 

identifications and routes made in initially provided time scope. Having the route selected it is then 

possible to gather remaining data necessary for final report preparation. Positions recorded in time 

allows to utilize third party historical weather data and bathymetry information for given positions. In 

order to minimize the report preparation time, the tasks relaying on already collected data are being 

performed in parallel regime. The data processing and report preparation tasks (Fig.1) alone are utilized 

the same way in order to maximize the efficiency of the process performed in the background. Once 

the final report data structure and features are prepared, the information is being broadcasted to both 

the report visualization tasks and to database for further reuse and recapture for the user. Such 

arrangement of the service allows to control the process and prioritize the efficiency of data processing, 

third party data utilization and user-service interaction.  

 

 
Fig.1: Data flow chart of the service 

 

2.1. Data sources 

 

Our service pulls data from industry-recognized sources, ensuring we have a broad spectrum of 

information to base our evaluations on. Each data source is thoroughly vetted for accuracy and 

reliability before being integrated into our system. 

 

Tidetech, https://www.tidetech.org/, is a well-known and reliable metocean data provider. They provide 

detailed, accurate and validated metocean data including global weather, waves, sea temperature, ocean 

and tidal currents. 

 

Seametrix, https://seametrix.net/, is a company specializing in software solutions for route optimization 

in the maritime industry. Recently, they have introduced historical AIS data accessible via API. 

https://www.tidetech.org/
https://seametrix.net/
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GEBCO (General Bathymetric Chart of the Oceans), https://www.gebco.net/, is a non-profit 

organization that operates under the joint auspices of the International Hydrographic Organization 

(IHO) and the Intergovernmental Oceanographic Commission (IOC) (of UNESCO). They produce a 

range of bathymetric data sets and products. 

 

UN/LOCODE (United Nations Code for Trade and Transport Locations) is a code list of country and 

territory names maintained by UNECE (United Nations Economic Commission for Europe), 

https://unece.org/trade/cefact/unlocode-code-list-country-and-territory.  

 

To prepare the collected data for analysis, it undergoes rigorous cleaning and pre-processing. This 

includes identifying and addressing outliers that could skew results, filling gaps in data sequences to 

maintain consistency, and resampling to ensure uniformity in data intervals. These steps are crucial in 

maintaining the integrity of our evaluations. 

 

The positional coordinates provided by AIS for vessels are generally of very good quality, as 

demonstrated in the publication Jankowski et al, (2021). The assessment carried out in the study, which 

compared AIS data with radar tracks considered as ground truth, revealed an average deviation of 

approximately 97.72 m. Additionally, it was noted that less than 2 percent of vessel positions are 

ambiguous, Stasinakis (2015), primarily limited to small non-commercial vessels. Nevertheless, 

outliers do occur. In AIS datasets, outliers are defined as points or sets of geographic points that 

significantly deviate from the vessel's intended route. For example, if a vessel reports its position and 

then, after a few minutes, is found several hundred nautical miles away, it can confidently be classified 

as an outlier Duarte and Sakr (2023). However, a significant challenge to the accuracy of AIS data 

stems from human error. Although some AIS data, such as position coordinates, course, and speed, are 

automatically collected from trusted sources (e.g. navigation equipment), other information like 

navigational status, destination, and estimated time of arrival (ETA) is manually entered by the crew. 

In this context, determining the destination posed a significant challenge. We developed a specialized 

approach to address this, which will be presented in the subsequent sections of the article. 

 

Within data processing, gaps in datasets are a common occurrence. These gaps typically fall into two 

distinct categories: those amendable with reliable data and those beyond immediate rectification. In the 

context of AIS data management, when faced with an insurmountable gap, our approach involves 

segmenting the dataset into smaller subsets. We then proceed to conduct analyses based on the available 

segments of the vessel's route, ensuring that users receive insights derived from the existing dataset. 

Our determination of an unfillable gap is based on parameters such as the temporal and spatial disparity 

between consecutive vessel positions; if these metrics exceed predefined thresholds, the gap is classified 

as unfillable. 

 

Data regarding vessel journeys, encompassing parameters like longitude, latitude, speed, and heading, 

arrive irregularly over time. To normalize and ensure uniform frequency in the dataset, we undertake 

oversampling to generate data points for each minute. Following interpolation between existing data 

points, we engage in down sampling, preserving data at hourly timestamps. 

 

2.2. Data processing 

 

Data processing constitute a pipeline of computations which employs different algorithms. Initially user 

input is processed helping in vessel identification based on searching and filtering techniques. This 

initial step allows for gathering AIS data. These data are processed in order to obtain uniformly 

distributed waypoints. At this stage dataset usually needs improvement either by interpolation or gap 

filling algorithms. A further step includes metocean data retrieval corresponding to vessel positions and 

timestamps. Gaps can be detected also metocean data which requires additional data improvement 

algorithms (interpolation is employed for this purpose). Finally metocean data are recalculated to the 

vessel frame of reference. Completing the process provides the dataset ready for performance 

assessment and reporting. 

https://www.gebco.net/
https://unece.org/trade/cefact/unlocode-code-list-country-and-territory
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One of the key features of our service is its ability to accurately detect individual voyages by recognizing 

patterns and key indicators within the data. Combined with sophisticated interpolation methods, we can 

fill any remaining gaps in data sequences, ensuring a seamless and comprehensive overview of each 

voyage. Unfortunately, this stage of data processing heavily relies on what and when the crew enters in 

the AIS. The vessel's destination is a manually entered field in any text format, making it susceptible to 

misspellings and other errors. Moreover, changes in destination may be recorded by the crew with 

significant delays, rendering it ambiguous as the beginning of a new journey. These pieces of 

information are essential for correctly identifying the ports vessels call at and determining specific 

voyages, hence the necessity for validating the received data. Identifying vessel stops is based on the 

vessel's positions where the minimum speed threshold is met within a specified time frame. These points 

are recognized as stops. This methodology enables the segmentation of the dataset into voyages and 

port stays. To authenticate a vessel's port, we extract the position from the last entry pertaining to the 

voyage and cross-reference it with the coordinates stored in our port database. Subsequently, the port 

name undergoes validation through a three-stage process: initially, we verify if the name recorded by 

the crew matches any entry in the port list; if not, the subsequent criterion entails assessing the distance 

and size of the port relative to the coordinates, with preference given to the largest port listed. 

 

Segmenting the dataset based on stops and voyages is crucial, particularly due to the interpolation 

techniques utilized. During voyages, the vessel's coordinates undergo cubic spline interpolation to 

enhance accuracy in navigating around landmasses along the route. Conversely, other data related to 

voyage and information gathered during vessel stops in ports, is interpolated linearly. 

 

AIS data sometimes contain gaps. While short ones can be efficiently filled in with use of interpolation 

techniques the longer ones pose the challenge for the processing pipeline. Proper identification of vessel 

position and corresponding time is critical for establishing weather conditions during vessel operation. 

For this purpose longer gaps are replenished with use of voyage planning service. Although exact 

positions of the vessel in data gap cannot be precisely established implemented technique gives 

satisfactory results for gaps up to 3 days. Obtained waypoints can be considered as very probable voyage 

trace. Timestamps corresponding to estimated waypoints are generated under constant speed assump-

tion. This way data set sufficient for enquiring weather conditions is established. 

 

Metocean and bathymetric data are gathered for positions from a prepared AIS dataset. To fully exploit 

the potential of the acquired data, we conduct a series of calculations enabling a more comprehensive 

analysis of the conditions under which the ship operated. Wind, wave, ocean current directions, and 

their magnitudes are presented in relation to the ship's frame of reference. Additionally, we compute 

the ship's speed relative to the water and the encounter frequency and period of waves. This meticu-

lously prepared dataset is showc-ased in an interactive report. 

 

3. Computer technologies 

 

The Service Production Environment was selected in order to provide security and scalability features, 

that will allow for further adaption depending on the workload strictly related to the amount of users 

interacting with the reporting tools. Due to high uncertainty in initial interest assessment, the scalable 

architecture has been selected. In order to ensure seamless service operation the main application is 

being served with WSGI HTTP server software Gunicorn suited for python application and compatible 

with Django Framework adopted for service development. Furthermore the reverse proxy application 

has been adopted in order to directly interface with client requests and forward them to backend 

Gunicorn server. The Nginx web server software has been selected for that role and to also provide load 

balancing features for further scaling of the service. Both server software solutions are deployed in 

separate Docker containers in order to isolate and control the working environment. Further 

communication with various data sources in form of third-party API’s or databases is operated from the 

main application, Fig.2.  

 

The main application has been developed with use of Python 3.11 version providing major 

improvements in relation to previous Python versions that were crucial to ensure the efficient service 
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operation. Despite official stable release of Python 3.12 version in October 2023 the previous version 

has been selected due to incompatibility of some of the ML libraries like Tensorflow at the moment of 

service development. 

 

 
Fig.2: Service Architecture 

 

In order to ensure efficient data processing and further service development, several Python modules 

and methods has been considered and tested against performance for typical data processing and feature 

engineering tasks. For efficient database connections and thread secure sessions the Sqlachemy python 

toolkit has been utilized. The main data processing and operation tasks are handled by Polars, the Python 

& Rust dedicated DataFrame library, that poses significant data processing tasks acceleration still 

ensuring the use of transparent data frame objects and clear data modification methods. For the main 

application framework the Django high-level web framework has been selected. Such implementation 

allowed for reduction of overall service environment complexity and ensured ease of development. The 

reports creation and data presentation are supported by the Plotly library allowing for low-code, highly 

customizable, highly interactive data graphs definition and creation. The various graphs type object are 

directly designed and declared within the scope of the main application and further directly forwarded 

for the front-end side rendering process. Other modules not described within scope of this article are 

utilized for minor backend and frontend operations in order to provide robust and scalable data flow 

still ensuring informative data presentation method allowing to capture the essence of combined 

vessel’s operation data. 

 

4. User interface 

 

The user interface is designed with a focus on usability and functionality. It features an intuitive layout 

that makes navigation and operation easy even for first-time users. Navigation bar is located at the top 

of the page, it facilitates easy access to different sections of the website. In the top-right corner, there 

are options for ‘Login’ and ‘Sign-up’. These options are strategically placed for users to either sign in 

to their existing accounts or register for new ones. 

 

The application utilizes a color palette predominantly centered around Yale Blue. This choice offers a 

refined and professional aesthetic. Yale Blue's deep, rich tone enhances readability and visual clarity, 

ensuring a seamless and visually appealing user experience throughout the application. 

 

The user identification process is straightforward, ensuring quick access to the service. Users log in 

using their email address and password, which streamlines the authentication process while maintaining 

security measures. 

 

The platform allows users to easily input data for analysis. After logging in, the user can generate a 

report for any vessel within a selected date range. The only requirement is to know the IMO or MMSI 

number of the vessel. Alternatively, if the user doesn't know the IMO number, there is still an option to 

search for the vessel by its name. Users can choose to define the time range based on specific port calls 
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or stick with their initial selection. Service provides insight to vessel operation up to 12 months in past. 

When it comes to results, our service provides a detailed voyage report as output. This report contains 

all essential metrics and observations derived from the analysis. The dashboard can be customized ac-

cording to individual preferences, allowing user to focus on data points that are of most interest. 

 

The report comprises three sections. The first section presents general information, displaying the se-

lected ship route on a map, alongside basic details concerning the ship, the voyage, and the meteoro-

logical conditions during its course. Subsequent sections present data in chronological order and from 

a statistical perspective.  
 

Charts with respect to time portray: vessel speed over ground and through water; water depth; wind 

direction and magnitude; wave direction, height, and period of encounter; current velocity and direction; 

ice concentration. For charts necessitating a change in reference frame, users may opt for either charts 

referenced to the geographic North (true) or those aligned with the ship's axis of symmetry (relative).  

 

Statistical charts illustrate: vessel speed over ground and through water depicted via histogram; water 

depth represented on a separate histogram; wind parameters presented on two charts: wind speed via 

histogram and both speed and direction on a polar plot; wave characteristics displayed on two polar 

plots, the former illustrating wave height and direction, and the latter wave period and direction; current 

velocity and direction portrayed on a polar plot; and ice concentration depicted via histogram. Once 

again, for charts requiring a shift in reference frame, users are provided the choice between charts ref-

erenced to the geographic North (true) or those aligned with the ship's axis of symmetry (relative). 

 

The report is designed to adapt to various screen sizes and resolutions, ensuring optimal rendering 

across different devices. It is also cross-browser compatible, guaranteeing consistent performance 

across different web browsers. Once generated, the report can be downloaded in PDF format or printed. 

Additionally, for future reference, all reports are archived and accessible at any time. 

 

5. Presentation of results 

 

Project aims on supporting the user in straightforward and unambiguous evaluation of the voyage. It is 

designed in such a way that simplifies input data entry by contextualization and background processing. 

Let us have a closer look on the process. Following successful logging user can select the ship of interest 

and her period of operation. Vessel can be identified by its name, IMO or MMSI numbers. In case if 

the user entry is ambiguous system proposes a list of vessels which complies with user key. The calendar 

entries are processed in order to identify port calls which helps user to define interesting part of the 

vessel operation. 

 
Fig.3: List of ports identified by the service 



 

229 

Confirmation of the vessel and date’s selection triggers data collection and processing. After a short 

while dashboard with voyage details is presented. Set of visualizations allows for voyage assessment. 

General voyage summary is accompanied with an interactive map. 

 

 
Fig.4: Voyage summary and map view customization 

 

Following sections of the dashboard provide more insight into the conditions of vessel operation. The 

example reveals that the voyage has been executed in fair weather conditions. Relative wind speed was 

moderate with velocities rarely exceeding 15 knots and predominantly from transverse-bow direction. 

Significant  wave height did not exceed 1.1 m and for the majority of time wave direction reached vessel 

from stern sectors. Combined impact of wave and wind did not cause significant drift, allowing vessel 

to keep course without excessive rudder action. 

 

 
Fig.5: Wind conditions during voyage 

 

Major part of this particular voyage was executed in confined waters. As indicated on the water depth 

histogram and the time graph, vessel operated on shallow waters for roughly half of the voyage time. 

In order to assess the vessel’s performance one can evaluate vessel speed with respect to water depth. 

Graphs shows that the speed was not adjusted with this respect. Since small bottom clearance 

contributes substantially to added hull resistance, better performance could have been achieved if the 

speed was better adjusted to waterway conditions. 
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Fig.6: Water depth conditions during voyage 

 

6. Summary 

 

Post-voyage assessment is an important part of the vessel performance evaluation. It provides insight 

into operational conditions, helps in resolving voyage claims, forms internal knowledge which may be 

used for crew training or to improve voyage planning process. Ship owners or charterers shall perform 

voyage evaluation on regular basis while for other users like insurance companies or classification 

societies it can be used case by case. Irrespectively of the purpose and goal of the analyses, it requires 

integration of many data sources and processing them which can be laborious and time-consuming 

process. Presented project significantly simplifies the task. With the minimum involvement of the user 

it automatically gathers required data and process them in informative and readable manner. Data 

presented in a form of dashboard provide valuable insight and may reveal operational deficiencies 

opening the way for improvements.  
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Abstract 

 

As alternative fuels and electric propulsion are becoming more widely used, especially in short sea 

shipping, it is becoming even more important to monitor and optimize the energy consumption during 

operations. Further short sea shipping meets performance constraints like navigation in defined routes, 

shallow water, and complex current patterns, which should be captured in a performance system. This 

paper describes the development of a performance system for a short sea electric vessel and highlights 

the concerns and the complexity for the route and the propulsion considered when defining the system. 

 

1. Introduction 

 

Maritime shipping is one of the most sustainable ways to transport cargo and around 80-90% of global 

trade is enabled by the maritime sector. This makes the shipping sector responsible for around 3% of 

annual global greenhouse gas (GHG) emissions on a carbon dioxide (CO2)-equivalent basis and has an 

effect on manmade climate changes. To decarbonize the shipping sector a number of initiatives have 

been introduced from regulatory bodies and following this, the shipping industry has been looking into 

reducing the carbon footprint of cargo transported at sea.  

 

This is being done by reducing the energy demand by improving the energy efficiency of the existing 

fleet by retrofits, and/or changing the operational behavior of the fleet. Further alternative fuels are 

being investigated and vessels are being built and planned to be built to sail on alternative fuels like 

methanol and ammonia as the main interesting fuel for ships in international trade. For vessels sailing 

short sea trades or for ferries on shorter routes, electrification is an alternative that is viable, and several 

vessels have been built and are in service today. The electrification can either be included as hybrid 

solutions or battery powered solutions pending the relevance of the technology for the trade.  

 

Looking at battery powered solutions, the availability of power supplied by the batteries for propulsion 

and hotel load have to be in place all times during operations and depending on the size of the battery 

pack, regular charging is need during operation time of the vessel. To keep track of the availability of 

power and to optimize the energy consumption during operations, a performance software system de-

veloped for the purpose should be used and should be available both for the vessels crew and for the 

operations team ashore.  

 

This paper will focus on the development of a performance system for a battery powered inland ferry 

vessel and further elaborate on the usage of the system in inland operated vessels in general. 

 

2. Performance, short sea shipping and electrification 

 

Performance can generally be defined as the number of resources available by a system compared to 

the time and resources used. For vessels sailing on the same routes the performance can specifically be 

targeted towards a given voyage in an area where conditions for operations are known in detail. The 

performance prediction and the operational advice that a performance system can give to the team 

operating the vessel, can be more precise given the vessel is operating in same area e.g., as a ferry on a 

given route or a short sea operated vessel. The energy usage can then be optimized to a minimum which 

leads to the charging time can be reduced and thereby the operation costs can be kept to a minimum. 

 

2.1. Short sea shipping and ferry operations 

 

In general, for short sea shipping, the operational pattern is locked to a specific route in coastal waters. 

The operation in areas like these includes often more congestion due to traffic from both merchant and 

mailto:svh@vesops.dk


 

232 

leisure ships and the navigation is often regulated by close coastal routes, narrow channels and areas 

with shallow water. This complexity in addition to maintaining a schedule adds some constraints to the 

operations of the vessel and therefore also puts some restrictions on the ability to focus on the 

performance and energy usage while operating.  

 

On the other hand, repeating routes in the same areas adds some value to the analytics and the 

performance evaluation. Different seasons, weather, and current conditions along with different vessel 

navigational modes adds to the ability of comparing voyages for the purpose of improving the 

knowledge of the operational behavior of the ship. Often this is known by the creation of a digital twin 

model for the vessel and using this model as a benchmark for the actual performance of the vessel. By 

using the statistics collected over time on a particular route, the operational behavior dictated by the 

twin model can be adjusted to a “real life” model that gives a better reflection of the actual behavior of 

the vessel. 

 

2.2. Electrification 

 

As part of the decarbonization of the shipping sector, shifting tonnage to electric operations is an 

approach that has relevance for vessels with short routes typically in coastal waters. The technologies 

are gaining traction and 552 (1. January 2023) vessels are currently in operation. The electrification can 

either be provided by hybrid, plug-in hybrid or pure electric ships. An overview of the usage of the 

different technologies can be seen, in Fig.1. Over half is hybrid technologies and pure electric 

applications are covering around 20%. An overview of the geographic spread of the usage of electric 

ships shows that in Norway, the uptake of the technologies has a large uptake with 34% of the ships in 

operation. 

 

 
Fig.1: Batteries in shipping (Maritime Battery Forum, January 2023) 

 

In Denmark, the technology has gained traction but so far in ferries only. The case study in this paper 

is related to an inland electric ferry projected to be deployed on a route in 2025. 

 

2.3. GHG emissions  

 

The vessel operating on battery power alone has in principle no GHG emissions and therefore no climate 

impact during operations. This makes it a preferred solution in coastal areas where the environment 

then is free of noise and emissions and in port, the operations are very clean. The vessel still has a GHG 

emissions footprint. When charging the batteries, the power used in the charging can come from various 

sources. Pending on the source of power and the time of charging, the GHG footprint can vary. Looking 

at an example from Denmark, in 2022 the production of electric power came from different sources, 

Fig.2, Energinet (2024). 
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Fig.2: Energy source in the production of electric power in DK in 2022, Energinet (2023) 

 

Production from renewables was over 60% and it is expected to go up over the coming years. The high 

usage of renewables in the DK grid makes the CO2 emissions drop annually even though more elec-

tricity is produced every year. Still the CO2 intensity on production of electricity was an average of 119 

g/kWh in 2022 in DK. It is possible to get as much as possible from renewables and then the cost of 

production also will be higher. The energy origin can be provided by the supplier, example Fig.3, En-

erginet (2024). 

 

 
Fig.3: Origin of energy for the production of electricity, Energinet (2023) 

 

By using pure renewables as a source for power alone, the CO2 footprint can be lowered to 16 g/kWh, 

Maersk LCA (2024).  

 

2.3. Operational data 

 

Pending on the age, operational data are generated and stored in the vessel. In older vessels data is 

generated, but not stored due to the outdated equipment and the lack of connection in between 

equipment. The data can be transferred to shore either manually (as “noon data”) typically in an e-mail 

or if logged with higher frequency transferred through a data connection to a server. 

 

The noon data solution is not considered to be able to provide proper analyses in a performance system 

and cannot provide any performance advisory to vessels sailing in coastal waters. Traditionally, older 

tonnage does not have any data capturing systems and since it has not been needed for the business 

model, this has not been retrofitted in vessels of this type. Retrofitting data capturing systems has also 

been considered as too high a cost due to the stand-alone equipment fitted in the vessel. 
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To give the opportunity to log data with high frequency, a low cost data logger can be installed in the 

vessel, Fig.4. The logger is connected to the engine, typically on the canbus connection and logs the 

main engine parameters as engine RPM, torque and fuel oil consumption. Further it is built with a GPS 

included and data is logged to the device continuously. Since the vessel is sailing in coastal waters, it 

will be connected with a 3G/4G connection, and the data flow goes to a server ashore. In cases where 

there is no connection, data is stored on a memory card until the connection is reestablished and the 

data can be sent. 

 

 
Fig.4: Data logger to vessels in coastal trade 

 

Once the data is sent to shore it is stored on a server where it is collected in the performance system. 

The system analyses the data and provides the analyses in dashboards that are available in the 

performance application. The application is available via a web connection and the dashboards are 

developed for the different users interests where the vessel has a real-time display, the operator has a 

real-time/statistics display and the technical management has the fleet overview. 

 

In case of the electric vessel, the performance parameters, especially regarding the engine are less 

complicated and since all functions in the vessel are electric, the components are free of oil, grease and 

noise and maintenance is considered simpler than in traditional ship equipment. For the specific case 

study ferry, the data is collected based on an I/O list and transferred to a cloud server from where the 

performance provider gets the operational data. 

 

 
Fig.5: Data setup for the electric ferry 

 

A concern is that even in a case of new tonnage where the collection of data is in place, the data is not 

stored or transferred to an analytics module and the opportunity of having the advantage of being able 

to get insight in the vessel’s performance is not in place. Further the costs of installing systems can be 

high and once installed, the time and the manhours to maintain and use the system systematically might 

not be available. 
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Based on the above-mentioned concerns, the performance system developed for the purpose has to be 

cost effective and deliver clear answers on the operational performance of the vessel. 

 

3. The vessel 

 

The particular vessel that is going to be monitored will be modelled as a digital twin. All the known 

design information will be included in the twin. A set-up for a conventional vessel is usually divided 

into three load groups, Fig.6. 

 

 
Fig.6: Digital Twin model for a conventional vessel 

 

The model includes the propulsion and maneuvering characteristics (Mechanical load) and the hotel 

load (Thermal and Electric load) under different operational conditions. The model defines the baselines 

for the performance and is a refence model for all the analytics related to performance. 

 

For electric powered vessel, the thermal load is added to the electric load which then defines the total 

hotel load. The mechanical load is also electric and pending on vessel design defined by propellers and 

thrusters. All power is delivered by a battery pack that then needs charging regularly when the vessel is 

in port where the sufficient infrastructure needs to be in place, Fig.7. 

 

 
Fig.7: Propulsion, battery storage and charging set-up 

 

4. Performance Model 

 

The performance model is defined to be used in the analyses shown in Table I. The items shown in the 

table are related to an electric inland ferry and can be adjusted to any given vessel. 
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Table I: Performance models 

# Item On Board Local Central 

1 Propulsion & Maneuvering x   

2 Time management x x x 

3 Power management x x x 

4 Charging x x x 

5 Emissions management x x x 

6 Cargo  x x 

7 Benchmarking   x 

 

In general, the base model is based on the dimensions of the vessel, the hydrostatics and the 

hydrodynamic information. The models for each mode are defined as 

 

• The propulsion model includes results from speed trials, model tests, wind tunnel tests and/or 

CFD simulations. Further the engine information is included and so are details on shaft and 

propellers.  

• The time management is related to a schedule either voyage related or to a timetable (Ferries).  

• The power management is the total consumption on Hotel + Propulsion and relates to the digital 

twin. 

• The charging sequences are dependant on the battery set-up and the charging capabilities 

ashore. The charging sequences relate to the descriptions in the digital twin. 

• The hotel load is defined by the energy consuming equipment on board for electric load on 

consumers. 

• The cargo is by manual input or from an API to a booking system (Ferries). 

• Emissions management is related to fuel oil consumption or to electric power used versus the 

carbon intensity of the charged power. 

 

The Performance KPIs then has to be defined e.g., optimum power consumption or on-time arrivals and 

presented to the users in dashboards. The information relates to an overview looking back in time and 

the performance system should further be used to predict future voyages and to give advice to the user 

e.g. in a real time display with projections forward. 

 

4.1. Performance prediction 

 

The predictions of the performance can assist the crew on board in taking decisions that keep the 

performance on track i.e. it meets the targets defined in the KPI scheme. The prediction can be quite 

accurate when the vessel is sailing in “known” areas like a ferry on a particular route or a short sea 

vessel between the same ports in a schedule. The prediction can then be used in determining the best 

setting of the power on a route which means that the vessel will reach its destination at the right time 

no matter the conditions along the voyage. The factors that can have an effect on the performance are 

wind, waves, currents, steering, load conditions and shallow water effects. These factors can be 

predicted along the route and can be taken into consideration when setting the engine power to the 

optimum speed.  

 

4.2. Case Study 

 

A case study was done on an inland ferry described in the HullPic 2021 paper by S.V. Hansen et al. The 

case was a ferry sailing between 3 ports in the southern part of Denmark. The area where it sailed was 

heavily congested during the summer periods, the current conditions varied irregularly due to weather 

effects, it was sailing partly in a sound with wind tunnel effects and a part of the route was in shallow 

waters. This means that there for this ferry are a lot of local effects that need to be put into the system 

and in this paper as an example, the description of how to handle the shallow water effect is shown. 
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The speed reduction is found by using the Lackenby, ITTC (2017), relation for speed reduction over 

shallow waters: 

 

∆𝑉

𝑉
= 0.1242(

𝐴𝑀
ℎ2

− 0.05) + 1 − (𝑡𝑎𝑛ℎ
𝑔ℎ

𝑉𝑆
2)

1/2

 

 

for 
𝐴𝑀

ℎ2
≥ 0.05. The relation is used to give a first estimation of the shallow effect and over time the 

relation will be data driven with the physical model as origin for the data model. V is the speed, ∆𝑉 the 

speed loss. AM is the midship area, h the water depth, g the acceleration of gravity. 

 

The ferry will sail over a shallow water area from port 2 to port 3. The total sailing distance between 

the ports is 4 nm, where 1 nm is in deep water and 3 nm is over shallow water. Over the shallow water 

area the speed will be reduced, Fig.8, and to find the reduction and to include it in the passage plan 

should be included in the software. 

 

  
Fig.8: Depth below keel, measured. Right: Vessel speed passing the channel, Hansen et al. (2021) 

 

As an example, the ferry has a certain number of minutes to pass between the two ports, where 5 mins 

is allocated maneuvering in both ends. The minutes left are used on the passage and the software should 

give the operator advice on the most optimal speed over the passage. 

 

The estimated time to complete the passage is then used to find the most efficient speed. Since the depth 

curves can vary in the channel, the speed can vary as well. A first estimate of the average water depth 

over the channel is used to find the speed. An average water depth of 3.5 m will be used to estimate the 

speed and as an example the ferry could have 30 minutes to complete the distance, Fig.9. 

 

 
Fig.9: Chart with shallow water channel 



 

238 

Considering a speed of 8 knots, the duration of the passage would be 30 minutes if there were no shallow 

water involved. If the operator then continues with the 8 kn and does not change the power settings, the 

speed will reduce to 6.52 kn, Table II. The speed loss will then increase the passage time by 5 minutes. 

 

Table II: Passage with constant Power assuming no shallow water; dist = distance 

Vorg Vshallow distdeep distshallow tdeep tshallow Power 

[kn] [kn] [nm] [nm] [min] [min] [kW] 

8.00 6.52 1 3 7.5 27.5 130 

 

Assuming the operators starts by the 8 kn and when the shallow water is reached, the power is increased 

to a level where the 8 kn are kept also through the shallow water area. The power then needs to be 

increased with 94% to maintain the schedule. 

 

Vorg Vshallow distdeep distshallow tdeep tshallow Power 

[knots] [knots] [nm] [nm] [min] [min] [kW] 

8.00 8.00 1 3 7.5 22.5 252 

 

The operators are often uncertain on how big the shallow water effects are and they often approach this 

area even with a higher speed than the 8 kn. Just to be sure to make it on time. The performance system 

should include a function that compensates for the effect and give the constant power setting that is 

needed to reach the destination on time. The ferry will be on time and use the least energy to get there. 

 

5. Performance dashboards 

 

To assist the operator in operating the vessel most energy efficiently, the performance system should 

developed so it is user friendly. The performance dashboards should be clear in the information they 

give to the user. In view of the wealth of data available in the system, the dashboards could easily be 

overloaded with information and the performance advice would disappear.  

 

The performance dashboard should present the performance according to the performance models 

described in section 4. On board the vessel a real time display will give advice to the operator about the 

optimal settings for sailing on the route, Fig.10, and several sub dashboards are available for different 

functions. Charging and charging sequences are monitored as well as battery performance, Fig.11. 

 

 
Fig.10: Part of an on-board real-time dashboard for performance 

 

Other users will need to see other information where statistics will be of interest to the operator team 

and a benchmark view of all vessels in the performance system would be of interest to the technical 

management. 

 

The system described in this paper is currently under development and will go out in test in April 2024.  
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Fig.11: Part of charging control & performance monitoring dashboard 

 

6. Conclusion 

 

The effort of decarbonizing shipping includes among many initiatives the electrification of vessels on 

short sea routes. The vessels emit no GHG emissions while operating, they are free of carbon products, 

and they are less noisy than traditionally built vessels. So, they are a popular choice especially on inland 

ferries. Even though the vessels emit no GHG emissions, the upstream carbon footprint of the charging 

can still be large and if not chosen wisely the carbon footprint can be high.  

 

To keep track of the energy efficiency of the vessels, a performance software system can be developed. 

The system includes high frequency data, and the analytics include all performance influencing factors 

on the vessels passage. The analytics are available for all the stakeholders involved in the operations of 

the vessel and provide both a historic overview and recommendations on operations that minimize the 

energy consumption. 

 

The system also is designed to be retrofitted on existing tonnage where high-frequency data traditionally 

have not been available, and the system could assist owners and operators to reduce their carbon foot-

print. 
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