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Performance Indicators for Wind Powered Ships:  

Towards an Industry Standard 
 

Sofia Werner, RISE SSPA Maritime Center, Gothenburg/Sweden, sofia.werner@ri.se 

Frederik Gerhardt, RISE SSPA Maritime Center, Gothenburg/Sweden, frederik.gerhardt@ri.se 

Anders Alterskjaer, Sintef Ocean, Trondheim, Norway 

 

Abstract 

 

Wind propulsion has emerged as one out of many possible solutions to reduce GHG emissions from 

ships. The industry for wind propulsion solutions develops rapidly. This calls for some industry 

standardisation. A committee under ITTC is currently working on recommended procedures for 

performance indicators, performance prediction methods and sea trial procedures for wind powered 

ships. This paper proposes indicators that can enable fair comparison and facilitate the investment 

decision. A new sea trial procedures for wind propulsion solution verification is also proposed. 

Finally, the application of performance models in cost-saving split agreements, monitoring and 

weather routing of wind powered ships are discussed.  

 

1. Introduction 

 

Wind propulsion is one out of many technical solutions that can reduce the fuel consumption and 

improve the EEDI/EEXI of cargo vessels. By the end of 2022 there were 26 cargo vessels equipped 

with wind assistance technology. This number will be doubled the next year, IWSA (2022), and the 

coming decades the number is predicted to increase to 10 000+ ships according to UK Clean 

Maritime, Plan (2019) and Nelissen (2016). 

 

The number of companies providing wind propulsion technologies is increasing and includes both 

small start-ups, large established suppliers and recently also shipyards. The byers have in this first 

decade been dominated by front-runner ship owners willing to take risks and try the unknown. 

Recently, the ordinary shipping companies are joining as well. The wind propulsion community also 

includes designers, consultants, and suppliers of routing software. As the industry matures and grows, 

all these stakeholders need a common ground, standardised terminology and definitions especially 

regarding performance indicators and performance models. 

 

The performance of conventional ships is usually expressed in terms of a speed-power curve. This is 

the basis for the communication around performance from the early concept phase, through design 

phase, yard contracts, sea trial verification, and charter party contracts. Once in operation, the 

performance monitoring and routing software use the speed-power curve in the baseline model. For 

wind powered ships the one-dimensional speed-power curve is not sufficient to describe the 

performance. The wind propulsor generates not only additional thrust but also a side force which 

causes significant drift and increased rudder angles. The thrust and the side force vary with the wind 

speed and the wind direction. This makes power modelling more complex, but the industry still needs 

simple transparent performance indicators, and methods for prediction and verification. Before this 

background, International Towing Tank Conference (ITTC) started up a Specialist Committee for 

Wind Assisted and Wind Powered Ships in 2019. This committee is, specifically tasked with 

developing key performance indicators (KPIs), guidelines for performance predictions and sea trial 

procedures for wind assisted ships.  

 

2. Performance indicators and performance prediction methods 

 

2.1. Current situation – a variety of indicators 

 

Many new wind propulsion technologies (WPTs) exist on the market, ranging from rotor sails over 

kites and suction wings to rigid sails that resemble vertical aircraft wings. All these technologies have 

mailto:sofia.werner@ri.se
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their specific strengths and weaknesses, which need to be assessed and quantified when selecting a 

WPT for a particular application. The wind propulsion community has, however, not yet agreed on 

common key performance indicators (KPI). Some technologies are described using aerodynamic 

coefficients, others by e.g.  expected fuel savings. Percentage saving figures are commonly used, but 

it is often unclear what is included in the comparison. This complicates comparing technologies, puts 

the level playing field at risk, and delays investment decisions. 

 

The following fictive test case is used to illustrate that ambiguous definitions of KPIs can be 

misleading. Three generic wind propulsion technologies (WPT 1, 2, and 3) are compared. The test 

case ship is a 5000-dwt general cargo / bulk carrier with a length of 90 m. The main parameters of the 

test cases are given in Table I. 

 

Table I: The three test cases   
WPT 1 WPT 2 WPT 3 

Ship 5000 dwt general cargo, L=90 m 

Max CL 9.6 5.8 1.3 

Max CD 3.6 1.9 0.1 

Active/passive Active Active Passive 

Projected area [m2] 54 114 200 

Deck footprint [m2] 7 64 136 

Foldable /tilting no yes no 

 

Four example routes are analysed (the first two routes are illustrated in Fig.1): 

 

• Rotterdam-Bergen (return trip) 

• Copenhagen-Riga (return trip) 

• New York- English Channel (return trip) 

 

 

 
Copenhagen – Riga 

 

 
Rotterdam – Bergen 

Fig.1: Generic Wind Propulsion Technologies fitted to a general cargo vessel   

 

2.1.1 Aerodynamic characteristics as KPI 

 

The first idea for a standard KPI could be to select an aerodynamic characteristic, such as coefficients 

of thrust force, side force, lift, drag at different wind angles. Fig.2 provides an illustration of some 
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typical features. The test case WPT1 (dashed line) which has the highest lift coefficient has the 

highest max thrust (Cx). However, it has a narrower range of operation and a drag penalty in head 

wind since it is not tiltable. In order to rank the technologies, the probability distribution of wind 

angles that the ship will meet must be known. This depends on the specific route and the ship’s speed. 

This illustrates that it may be misleading to describe the performance of a wind propulsion technology 

with a single aerodynamic characteristic. 

 

 
Fig.2: Example characteristics of WPTs, illustrated as thrust force coefficient (Cx) vs. apparent wind 

angle (AWA) curves for two different WPTs 

 

2.1.2 Fuel saving as KPI 

 

The benefits of wind propulsion technology are often described in terms a claimed percentage power 

or fuel saving: 

∆𝑃% =
𝑃𝑛𝑜 𝑊𝑃𝑇 − 𝑃𝑤𝑖𝑡ℎ 𝑊𝑃𝑇

𝑃𝑛𝑜 𝑊𝑃𝑇
 (1) 

 

One could think that a percentage saving is a clear KPI that can be used for comparison between 

different installations, since it is nondimensional. Very often, percentage saving number are published 

without any further description of the specific cases. The following examples illustrate that this can be 

quite misleading. 

 

The first and probably most common source of misunderstanding is to use the “up-to” performance 

indicator, meaning the saving at the most favourable wind condition. As shown in Fig.3, the power 

reduction of WPT 2 is 35% at the most favourable wind condition. Averaged over the various wind 

conditions on a given route, the power reduction on the best route is about a third of that, 12%. 

Communicating these two numbers would result in rather different expectations and business cases.  

 

Another important issue with the percentage saving KPI is that it matters what the savings have been 

related to, i.e. what number is used in the denominator in Eq.(1). Fig.4 (left) shows the percentage 

power saving of the three test cases computed in different ways. First, the fuel saving is predicted for 

the sea legs in calm water. The ship’s propulsion power when employing the WPT is compared to the 

propulsion power when there is no WPT, for the same sea leg and same speed. 

 

Secondly, the sea margin, or added resistance in waves, is included in the prediction. This is the 

standard procedures for some organisations, whereas others do not include it. It has minor effect on 

the predicted fuel or power saving in absolute terms (tons, kW), but it has a significant effect on the 
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percentage, since it increases the denominator in Eq.(1). For WPT2, as an example, it makes the 

saving to decrease from 13% to 11.5%. 

 

For the third group of numbers in Fig.4, the comparison is done against the ship’s total fuel 

consumption, i.e. not only the fuel used for propulsion on the same sea legs. The denominator hence 

includes port manoeuvres, hotel load etc. That makes the saving to decrease further still, to 10% for 

WPT2. Note that the trends between the WPTs are preserved: in all cases WPT 2 is still the “winner”. 

 

Finally, the %-saving is also shown for a higher ship speed, 13 kn, to illustrate how much this can 

affect the saving number. The saving is now down to 7%. The trends are preserved in this case, 

however this is not always true since some technologies work better for higher speeds than others. 

 

Fig.3 (right) shows that the power savings differ considerable between different routes. For WPT2, as 

an example, the fuel saving is 10% for the least favourable route and 16% for the most favourable. 

The trends between the three WPTs are preserved, although the advantage of WPT1 over WPT3 

differs between the routes. These examples illustrates that a percentage saving number, taken out if its 

context, may be misleading. A percentage number gives the false impression that it can be universally 

compared with other percentage saving predictions.  

 

In addition to the possible sources of confusion explained here, the methods for deriving the numbers 

differs completely between different organisations and can be based on everything from experimental 

test, CFD to experienced based guesses. Without a common definition of performance indicators and 

methods to derive them, it is very difficult to compare performance expectations and claims. That is 

the reason for the deriving the proposed guidelines described in the next section. 

 

  
Fig.3: Sometimes the performance is expressed as “up to xx%”, meaning the performance at the most  

          favourable wind condition. The averaged wind condition on a route gives quite different saving. 

 

 
Fig.4: Percentage power saving can be computed in different ways, and for different conditions, 

          which results in different performance expectations 
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2.1. Proposed guidelines for performance predictions of wind assisted ships 

 

The Specialist Committee for Wind Assisted and Wind Powered Ships under the 30th ITTC is 

currently preparing guidelines for prediction of power saving of wind propulsion technology. This 

section gives an outline of how the guidelines will be structured and how they connect to performance 

indicators. In the process to derive common KPI’s, several focus group meetings were held with 

industry stakeholder in cooperation with the International Wind Ship Association (IWSA) and the 

Interreg North Sea region project WASP. The proposed guidelines have also been discussed with the 

French WindShip association and it has been presented at the RINA conference Wind Propulsion for 

Ships in London 2023, Werner (2023). 

 

Note that the guideline below is a draft proposal. By presenting it here, the ITTC Specialist 

Committee hope to receive input and comments from the industry before publishing the final ITTC 

guidelines. 

 

The proposed guideline is the first attempt to create a common ground and common terminology for 

expressing performance expectations of wind powered ships at design stage. They focus on 

methodologies for predicting the power saving of a wind powered ship on a route at design stage, 

compared to the corresponding ship without wind propulsion. The guidelines give an overview of the 

type of methods that are suitable for the different stages of the ship design process, considering the 

balance of confidence level and computational cost. It is not the intention to provide detailed 

procedures. It is assumed that the organization conducting the predictions has relevant background 

knowledge and tools.  

 

The guidelines are intended to be used by organizations conducting performance predictions for wind 

powered ships (e.g. consultants, yards, technology providers). They are also intended to be used 

indirectly by all stakeholders who need to discuss the resulting performance indicators (e.g. ship 

owners, operators, investors). By providing standard indicators that are linked to prediction 

procedures of varying confidence levels, the guidelines aim to provide a common terminology for all 

stakeholders.  

 

The guidelines are mainly applicable to cargo vessels with wind assistance technology (moderate size 

of wind propulsion), although they can to some extent be applied to vessels with primary wind 

propulsion. Sailing yachts, racing boats or traditional sailing vessels are not in the scope.  

 

The focus of the guidelines is the relative performance of wind assisted ships, i.e. the power saving 

relative to the same ship with conventional motor propulsion. The industry today still sees the 

conventional motorship as the benchmark which the business case for novel technologies relate to. 

However, this perspective may change in future versions. It is expected that the guidelines will be 

updated frequently the coming years as the knowledge and tools in the industry develops.  

 

Deriving the expected fuel saving from a wind propulsion solution involves four principal steps: 

 

1. Generating background data. (Towing tank tests, wind tunnel experiments, CFD simulations). 

2. Generating models from the background data, which describes the sub-systems response to a 

changed of state. For example, describing the aerodynamic force of a sails in different wind 

angles.  

3. Deriving steady state force equilibrium with Velocity Prediction Programs (VPPs) or Perfor-

mance Pre-diction Programs (PPPs).  

4. Route studies, where the variation of environmental conditions that the vessel will meet on a 

route is combined with the static performance model to derive the expected average power or 

energy saving due to the wind propulsion. 

 

Predictions of the power savings from wind propulsion systems are used at various stages of the 

design process, from initial assessments to final performance expectation. The guidelines are arranged 
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into various levels of accuracy to meet the specific needs, requirements, and availability of data of 

each stage. The fidelity and the required efforts increase with increasing level. An overview is given 

in Table II, the complete table is given in Appendix. 

 

Table II: Overview of methods for prediction of power saving of wind propulsion technologies 

  Level 0 Level I Level II Level III Level IV 

Applicability -

> 

WPS 

rated 

power 

Early idea 

Early business 

case 

assessment 

Business case 

& 

Performance 

expectation 

Advanced Business 

case & 

Performance 

expectation 

Force balance  1DOF 1DOF 3-4DOF 4DOF 4 DOF (at least) 

Aerodynamics Specific Generic 
Low/Mid 

fidelity*) 

High fidelity*) High fidelity 

Hydrodynamics  
 Generic  

Low/Mid 

fidelity 

High fidelity  High fidelity 

Machinery 

interaction   

Generic SFOC 

+ limitations 

Specific 

SFOC + 

limitations 

Specific SFOC + 

limitations 

Weather on the 

route 
 

EEDI or 

intended route 
Intended route Intended route 

Intended route or 

weather routing 

 

 

      

Optional effects: e.g. 

ship motions and 

varying wind energy 

management 

optimisation 

*) Low/Mid fidelity methods can be for example high fidelity data or regression models from similar 

cases, or case specific lifting line methods 

**) High fidelity refers to case specific CFD, model test or full-scale test. 

 

 

2.2.1 Level 0 Wind Propulsion Unit rated power 

 

In the first phase, when scanning the market and shortlisting possible devices, it would be convenient 

to have an indicator of the available power of a single, stand-alone wind propulsion unit, independent 

of the ship and route. For this purpose, a WPU rated power indicator is proposed: 

𝑃𝑆𝑃0[𝑘𝑛] = ∑ [
𝐹𝑥 ∙ 𝑉𝑠

𝜂𝐷
− 𝑃𝑊𝑃𝑈−𝑖𝑛   ]

𝑖,𝑗

𝑛,𝑚

𝑖,𝑗

 x [W𝑖,𝑗] (2) 

 

Where W𝑖,𝑗 is the EEDI weather matrix (MEPC.1/Circ.815 (2013)) 

𝜂𝐷=0.7 

𝐹𝑥,𝑤𝑝𝑢 is the thrust force from the WPU at the corresponding winds as the weather matrix (N) 

𝑉𝑠 is the ship speed (m/s) 

𝑃𝑊𝑃𝑈−𝑖𝑛   is the power consumption of the WPU (W) 

kn is the 𝑉𝑠  in knots 

 

PSP stands for power saving potential, and 0 indicates the Level. The PSP-0 can be derived at a range 

of standard ship speeds, for example 10, 15, 20 knots. 

 

The thrust forces 𝐹𝑥,𝑤𝑝𝑢 should be determined by the provider with the best possible available methods. 

Industry standard is today RANS CFD and/or wind tunnel test. Predicting the max lift of wing sails 

with RANS CFD is not trivial. The choice of turbulence model and grid may change the stall point 

considerably and result in overpredicted performance. Flettner rotors are seemingly easy geometries 

but exhibit complex dynamic flow structures and require unsteady computations with carefully 
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selected CFD parameters. Wind tunnel test on the other hand suffer from scale effects, which are as 

today not fully qualified for the type of large structures in focus here. In summary, a combination of 

unsteady RANS in full scale and model scale, and wind tunnel test is today the recommended source 

of data for the WPU rated power. This may change, as the technology develops.  

 

2.2.2 Level 1 Early idea 

 

Level I provides a simple approach for obtaining an early estimate of the potential of wind propulsion 

technology. Compared to Level 0, the prediction is done for a given ship. It gives an indication of 

power saving but is not intended to be used for business case decision support. Several physical 

effects are neglected such as side force and yaw moment, propeller underload, and aerodynamic inter-

action between hull and wind propulsion units. This which will in general give a non-conservative 

prediction.  

 

The thrust force from the wind propulsion units can be based on generic data, open published data or 

data from similar cases, if no case specific data is available. The wind distribution on a route is taken 

into account by a general wind probability matrix, for example the EEDI weather matrix, IMO (2013), 

which represents all major world-wide shipping routes.  

 

2.2.3 Level II Early business case assessment 

 

Level II predictions is intended for input to the early business case. At this level of predictions, the 

intention is to get more reliable estimates of the power saving potential, at a level of effort that still 

allows for assessing several different options. Most of the important physical effects are accounted 

for, however with low/medium fidelity methods. The guidelines give example of suitable methods for 

modelling the various physical effects. 

 

A route study is required to properly accounting for the wind distribution. This is done with a statis-

tics route simulation for example of Monte Carlo type or a voyage simulation with fixed speed. The 

result of the route study is the average power requirement 𝑃𝑤𝑝𝑠 and 𝑃𝑛𝑜 𝑤𝑝𝑠   for the ship with and 

without wind propulsion system respectively, for the same ship’s speed and same route. 

 

2.2.4 Level III Business case & Performance expectation  

 

Level III is intended to be final level for most wind-assist applications. This level of predictions is 

intended for evaluating power saving potential to a degree at which performance contracts can be 

established between supplier and buyer. As such, it sets requirements to the use of high-fidelity 

methods for the various modelling approaches, and covers all physical effects that at the time of 

writing is considered to have noticeable influence on the power saving potential. High-fidelity 

methods are typically 3D URANS (validated with experiments), or model test. The route study is 

carried out in the same manner as for Level II. 

 

2.2.4 Level IV Advanced Business case & Performance expectation 

 

Level IV is recommended for ships that use extensive weather routing, primary wind powered ships, 

and ships with advanced hybrid propulsion systems. The main difference from Level III is that the 

route studies can include weather routing and speed optimisation. Hence, the route and speed may be 

different for the case with and without wind propulsion. Level IV performance modelling requires 

methods that are yet on the research forefront, for example aero-hydrodynamic interaction in a sea 

way. 

  

2.2 Performance Indicator for Level I-IV 

 

The guidelines recommend three performance indicators according to Table III. 
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Table III: Recommended KPI’s 
   Level 0 Level I Level II Level III Level IV 

P
re

fe
rr

ed
 

 

Rated power (kW) PSP-0      

Power Saving Potential (kW)  PSP-I  PSP-II  PSP-III   

Energy Saving Potential (MWh)     ESP-IV  

O
p

ti

o
n
al

 Percentage Saving Potential – Propulsion power (%)   PSPp-II PSPp-III PSPp-IV 

Percentage Saving Potential – Total fuel (%)   PSPt-II PSPt-III PSPt-IV 

 

Power saving potential PSP for Level I – III is derived as 

 

𝑃𝑆𝑃 = 𝑃𝑛𝑜 𝑤𝑝𝑠 − 𝑃𝑤𝑝𝑠 (3) 

 

where 𝑃0 is the yearly average power on a given route for the ship without wind propulsion system 

𝑃𝑤𝑝𝑠 is the yearly average power on a given route for the same ship with wind propulsion 

system, for the same ship speed.  

 

The word “potential” indicates that the result is the technical potential that the installation can deliver. 

During operation, many practical aspects may include the real saving, such as maintenance, damage, 

operating in confined waters. The saving may also be larger than predicted, if the ship is routed with 

respect to the wind in a favourable way. 

 

As discussed in the previous section, when it comes to the percentage saving indicators it matters 

what to include in the denominator. The PSPSp indicator includes the propulsion power only, and the 

route includes the sea leges only (pilotage to pilotage).  

 

𝑃𝑆𝑃𝑝 = (𝑃𝑛𝑜 𝑤𝑝𝑠 − 𝑃𝑤𝑝𝑠)/𝑃𝑛𝑜 𝑤𝑝𝑠 (4) 

 

The PSPt indicator relates the fuel saving to the ships total fuel consumption including auxiliary pow-

er, harbour manoeuvres etc: 

 

𝑃𝑆𝑃𝑡 = (𝐹𝑂𝐶𝑛𝑜 𝑤𝑝𝑠 − 𝐹𝑂𝐶𝑤𝑝𝑠)/𝐹𝑂𝐶𝑛𝑜 𝑤𝑝𝑠 (5) 

 

For Level IV prediction, it is feasible to derive the energy saving rather than average power saving. 

The comparison can even be against other ship sizes and ship speeds. The indicator is denoted Energy 

Saving Potential (ESP), which is derived by comparing the average energy consumption to transport 

the same transport work between the same ports.  

 

3. Sea trial procedures 

 

After the installation of a wind assisted solution, there is a need to verify the performance in real life. 

Since wind propulsion for modern, commercial ships is still a novelty, the community has not 

converged towards a standard procedure for conducting full scale verification tests. A practical sea 

trial methodology was proposed and tested in the EU Interreg North Sea Region project WASP, 

Werner (2022). The same approach with minor modifications is now proposed for the ITTC 

Recommended Procedures. A short description is given here. 

 

Like a conventional sea trial, the WASP sea trial consists of a series of short runs. The main dif-

ference to a conventional sea trial is that the outcome is not the absolute value of the speed-power 

curve, but the power reduction due to the wind propulsion system. The effect of the wind propulsion 

system is extracted by comparing speed and power of single runs with and without rotor for the same 

wind condition. This is repeated for 5-6 wind directions. The measured speed difference is converted 

to a power difference using the shape of the speed power curve and with some corrections for speed 
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differences. 

 

In contrast to the normal procedures, the current correction based on double runs cannot be applied 

when wind propulsion is active. To overcome this, the speed is measured using the ship’s log. Since 

the purpose is to derive a speed difference, the poor uncertainty of the speed logs is acceptable.  

 

The WASP sea trial can be carried out at any wind conditions that gives sufficient driving force from 

the wind propulsion system, typically between Bf 4-7. It requires no additional instrument than what 

is used on a normal sea trial: speed, shaft power, anemometer. However, it is acknowledged that the 

largest error source for the WASP sea trial is the disturbance of the hull on the wind measurement. 

This can be overcome by using a Lidar, either during the trial or by establishing correction tables of 

the anemometer based on earlier Lidar measurements in various wind conditions. This is, however, a 

costly approach and can therefore not be requested in general.  

 

Fig.5 shows example of sea trial results for three of the ships tested in the WASP project, Werner 

(2022). The minimum WASP sea trial program covers only 5-6 wind directions and one wind speed. 

It can therefore only provide a spot check of the complete performance matrix (the polars). This is 

however in analogy with the conventional sea trial, which only verifies a few speeds at calm water 

and one draft, whereas the real operation includes a wider range of conditions.  

 

The wind propulsion industry is still in an early phase, and many knowledge gaps remains to be filled. 

This includes the performance prediction, where effects such as hull-WPU interaction and dynamic 

effects are yet hard to quantify. Another knowledge gap is the uncertainty of WASP sea trials, since 

only less than 10 has been conducted so far. Therefore, we recommend to not yet use WASP sea trials 

to strictly confirm performance guarantees in a contractual context. However, it is strongly recom-

mended to request at the minimum a WASP sea trial program to confirm the performance expectation. 

Not only will that give important information for the provider and ship owners for future investments. 

It is also important knowledge that can be used in the operation, as will be discussed in the following 

sections.  

  

   

   
Fig.5: Example of WASP sea trial results 

 

4. Cost-saving split – a proposed approach 

 

Note that Section 4 and 5 are outside of the scope of ITTC and represent our suggestions only. 

  

The investment cost for retrofitting vessels with wind propulsion technology may be a hinder, 

especially for the chartered fleet. To lower this obstacle, owners and charterers can agree to share the 
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cost and the resulting fuel savings. There are also examples in the industry of providers offering pay-

as-you-save contracts. These types of arrangements require a procedure for estimating the actual 

saving. Due to the complex physics and dependency on wind variation, this is not trivial to derive. To 

measure the forces produced by the wind propulsion devices seems like an obvious solution, but that 

kind of measurements is still, to our knowledge, not yet a matured technology for use in commercial 

shipping. To rely on advanced force measurements could be unreliable, expensive and inaccurate. 

   

We propose here instead a robust solution in three steps: 

 

1. The fuel saving is predicted as described in chapter 2 using agreed confidence level. This re-

sults in a matrix (or polar diagram) of power saving for combinations of wind speeds and 

wind directions, speeds and drafts. 

2. The power saving matrix is confirmed by a WASP sea trial (spot check) and possibly updated 

if not confirmed. All parties agree on the power saving matrix. 

3. During operation, the wind conditions that the ship experience are obtained from AIS and 

metocean data, alternatively measured wind by the ship’s anemometer if it is logged. Statis-

tics of the experience weather over a given period is easily combined with the agreed power 

saving matrix to give an acceptable estimate of the power saving. Of course, excluding days 

when the wind propulsion device is down due to maintenance or repair. 

 

The advantage of this approach is that it is transparent, understandable by all parties (hence mini-

mising risk for claims and disputes), technically sound, robust, and cost-effective. It does not rely on 

expensive or fragile sensor systems and is thus fail safe.  

 

5. Models for weather routing and performance monitoring software 

 

Performance monitoring and weather routing are today well-established fuel saving measures. For 

wind powered ships, weather routing has in theory even higher saving potential. Software for weather 

routing and performance monitoring require baseline performance models of the actual ship. They 

usually consist of speed-power curves at various drafts derived either with CFD or model test. 

Routing software for wind powered ships does however require more complex baseline models that 

reflect the aerodynamic and hydrodynamic force balance in 4 degrees of freedom, including drift and 

rudder angles etc. The aerodynamic part needs to include the control system algorithm of the wind 

propulsion system. Since the route optimiser is likely to lead the ship to a windy area, where there are 

also more waves, it is important that the performance model can accurately predict the wave added 

resistance including the aero-hydro coupling. This means a Level 4 performance model. The baseline 

models for monitoring software do not need to be that complex but at least a Level II model is 

probably needed. 

 

Incorrect performance models risk to deteriorate the potential of performance monitoring as well as 

the route optimisation software. Therefore, to verify or correct the performance model with a WASP 

sea trial is very valuable.   

 

6. Conclusions 

 

Wind propulsion technology for modern cargo vessels has developed from non-existing to a viable 

industry in a few years and it is expected to expand further before the decade is out. This calls for 

technical development in a range of aeras. In this paper a number of issues regarding performance 

prediction procedures and performance indicators are discussed: 
 

• No standard performance indicator or performance perdition methods exist. A specialist 

committee under ITTC is currently preparing the first guidelines, as an attempt to create a 

common terminology for expressing performance of wind powered ships at design stage. 

• Verifying the performance of wind propulsion installations in full scale is highly recommend-

ed, especially now in the developing phase of this new industry. A procedure for conducting 
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and analysing sea trials for wind propulsion system verification is proposed and will be pub-

lished by ITTC. 

• Cost-saving split or pay-as-you-save contracts can be a way to overcome the investment bur-

den for ship owners. A feasible strategy for deriving the saving in the daily operation is pro-

posed.  

• Weather routing and performance monitoring software for wind powered ships will require 

more complex baseline models.  

 

We welcome readers who have comments or suggestions to the proposed methods to contact us and 

continue the discussion. 
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Abstract 

 

The OCTARVIA project phase 2 developed a simplified method for estimating propeller open-water 

characteristics, self-propulsion factors, hull form data, and superstructure parameters for ship 

performance evaluation using monitoring data. In the project, the evaluation based on the simplified 

method is called “Level-1 evaluation” and that based on model tests and the real form parameters is 

called “Level-2 evaluation”. This paper compares Level-1 and Level-2 evaluations on ship 

performance in calm seas for 14 ships in operation including domestic and ocean-going ships. The 

comparison clarifies the effectiveness of Level-1 evaluation as results equivalent to Level-2 evaluation. 

 

1. Introduction 

 

Ship performance monitoring is globally recognized as a means for measuring performance of ships in 

operation and the data collected through ship performance monitoring should be analysed in appropriate 

way to evaluate the ship performance with accuracy. The OCTARVIA project where 25 stakeholders 

in Japan Maritime Cluster participated discussed and established the method for collecting and 

analysing the data and evaluating the ship performance. The method is featured by Resistance Criteria 

Method (RCM) in which filtering of the data is conducted based on resistance increase rate from a 

specified sea condition such as calm sea condition. The subsequent project “OCTARVIA Project 

phase 2” launched in March 2022 progresses the applications of the established method to ships in 

operation to clarify the effectiveness of the method. 

 

The one of purposes of the monitoring is to evaluate ship performance in calm seas. To achieve this 

purpose, the established method includes a correction for wind and waves on engine revolution and 

output prior to conducting RCM. The correction requires not only propeller open characteristics and 

self-propulsion factors obtained by model tests but also form parameters expressing hull shape below 

waterline and superstructure which are provided for predicting response functions of added resistance 

due to wind and waves. While shipbuilding companies are accessible to these data, it is not easy for the 

other parties in maritime cluster to use such data. Bearing in mind that various parties in the maritime 

cluster use the monitoring data, the simplified method for estimating propeller open characteristics, 

self-propulsion factors, hull form data, and superstructure parameters is developed. In the project, the 

evaluation based on the simplified method is called “Level-1 model” and that based on model tests and 

the real form parameters is called “Level-2 model”.  

 

This paper presents the comparisons between Level-1 and Level-2 models on ship performance in calm 

seas for 14 ships in operation including domestic and ocean-going ships. The comparison clarifies the 

effectiveness of Level-1 model as equivalent to Level-2 model. 

 

2. Simplified and Accurate Models 

 

Onboard monitoring is conducted mainly by shipowners who operated ships. The data collected from 

onboard monitoring (called “onboard monitoring data”) is not only in the hands of the shipowner, but 

also in the hands of shipyards and marine equipment manufacturers. In other words, now that onboard 

mailto:sogihara@m.mpat.go.jp
mailto:tatsuya.akamatsu@one-line.com
mailto:tetsuo_yanagida@monohakobi.com
mailto:hiroyuki.sano@molgroup.com
mailto:ito.ryu@jp.kline.com
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monitoring is widely used, any interested party in the shipping industry can obtain onboard monitoring 

data, which enables them conduct analyses of onboard monitoring data and evaluate ship performance 

based on the analyses.  

 

The evaluation method of ship performance in calm seas based on onboard monitoring data established 

by the OCTARVIA project includes corrections on engine revolution and power for wind and waves. 

Since the correction is conducted in compliance with ISO15016(2015), it is necessary to prepare the 

following parameters: 

 added resistance in waves based on hull form data, 

 added resistance in wind based on superstructure parameters, 

 propeller open characteristics (POC), and 

 self-propulsion factors. 

To ensure the reliability of the corrected engine revolution and power, these parameters should be 

estimated with accuracy. For parties other than shipyards obtaining these parameters is a hurdle. For 

surmounting the hurdle, the OCTARVIA project discussed “Level-1 evaluation (Level-1)” as the 

simplified evaluation. Level-1 estimates the four parameters based on ship principal particulars.  

 

On the other hand, it is not difficult for shipyards to prepare these parameters since they have hull form 

data and general arrangement that allow them to estimate added resistance in waves and that in wind. 

Ishiguro et al. (2016) and Orihara et al. (2019) estimated sea margin based on the analysis of onboard 

monitoring data. In their studies, they used their own hull form data to estimate added resistance in wind 

and that in waves. Further, although not explicitly stated, POC and self-propulsion factors obtained by 

model test or numerical simulations seemed to be used. The OCTARVIA project named the evaluation 

above “Level-2 model (Level-2)”. 

 

The parameters in Level-1should have equivalent accuracy with those in level-2. For this purpose, 

Sogihara et al. (2019) conducted the validation of the parameters in Level-1. A comparison of added 

resistance in regular waves and POC for the DTC containership is shown in Fig.1 and Fig.2, respectively, 

as the validation.  
 

  
Fig.1: Added resistance in regular waves Fig.2: Propeller open characteristics 

 

In Fig.1, red line and blue line indicates the estimated added resistance by Level-1 and Level-2, 

respectively. In Fig.2, solid line and plots indicates the POC estimated by Level-1 and model test data 

provided for Level-2, respectively. These figures show that Level-1 has equivalent accuracy with Level-

2 for the estimation. The definition of Level-1 and Level-2 is summarized in Table I. 

 

Table I: Definition of Level-1 and Level-2 

Item Simplified model 

(Level-1) 

Accurate model 

(Level-2) 

Hull form data and parameters Estimated based on  

ship principal particulars  

(Using EAGLE-OCT.-web, 

Sogihara et al. (2022)) 

Lines Data 

Superstructure parameters General Arrangement 

Propeller open characteristics Model tests,  

Numerical simulations Self-propulsion factors 
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3. A Model of Ship Performance established by OCTARVIA Project 

 

Sogihara et al. (2020) presented the evaluation model of ship performance using onboard monitoring 

data which had been established by the OCTARVIA project. The flowchart of the evaluation model is 

illustrated in Fig.3.  

 

 
Fig.3: Flowchart of the evaluation model established by the OCTARVIA project. 

 

3.1 Compiled onboard monitoring data 

 

The evaluation model developed by the OCTARVIA project (hereafter “OCTARVIA model”) requires 

onboard monitoring systems to collect the following items.  

 ship speed over ground 

 ship speed through water 

 heading angle 

 ship course 

 rudder angle 

 wind speed and direction 

 wave dimensions (significant wave height, mean period, primary direction) 

 engine revolution 

 engine power 

 ship draft and displacement 

Items indicated above other than wave dimensions and draft at port can be collected as time history, 

therefore the mean value for a certain period should be calculated onboard for each item. The wave 

dimensions, which are necessary for evaluating ship performance based on onboard monitoring data, 

are obtained by either hindcast or observation by measurement instruments such as wave radar. The 

OCTARVIA project uses the hindcast data provided by Japan Weather Association, Sato and Matsuura 

(2019). 

 

Ship draft in port is usually recorded to logbook and the recorded draft can be used in the OCTARVIA 

model. Ship displacement can be calculated based on hydrostatic table. In using the draft measured by 

draft gauges equipped to the ship, attentions should be paid because it can be affected by ship static trim 

in voyages. Each item should be compiled into tabular format. 

 

3.2 Data filtering and validation 

 

The OCTARVIA model does not use the data collected in unsteady conditions such as ship’s 

acceleration or rudder operation. In ship’s acceleration, ship speed continues to increase, which cannot 

be considered as steady condition. Similarly, ship’s course changes continuously under rudder operation, 

which is treated as unsteady condition. 

 

Data filtering and 

validation

Data correction

Compiled onboard 

monitoring data

Data filtering by apparent 

slip ratio

Performance in 

calm seas

Evaluation by increase 

rate of added resistance
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It is well known that ship speed through water cannot be measured with accuracy. The OCTARVIA 

model focuses on the difference between speed over ground and that through water. The data with the 

larger speed difference are eliminated from the complied onboard monitoring data.  

 

To extract the data in steady condition and with the small speed difference, the criteria shown in Table II 

is applied in the OCTARVIA model. 

 

Table II: Criteria for data validation 

Item Criteria Purpose 

Engine revolution [rpm] more than 

40%NEMCR 

Eliminate the unsteady data measured under 

the acceleration after departure and the 

deceleration before arrival 

Drift angle [deg.] less than 3.0* Eliminate the data under rudder operation 

Rudder angle [deg.] less than 5.0* 

Difference between ship speed over 

ground and through water [knot] 

less than 0.5* Eliminate the data affected by the current 

Ensure the accuracy of speed through water 

* denotes an absolute value. 

 

3.3 Data correction 

 

The evaluation of ship performance in calm seas requires the data collected to those in calm seas. The 

OCTARVIA model applies Extended Power Method (EPM, STRASSER et al, (2015)) to the corrections 

of engine revolution and power for wind and waves.  

 

Prior to the correction, the data within 5% range of the representative displacement is extracted. For the 

extracted data, ship speed through water is corrected to the speed at the representative displacement 

according to Eq.(1).  
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
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


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voyrep VV         (1) 

 

V is the ship speed through water and  the displacement. Subscripts ‘voy’ and ‘rep’ denote the value 

in voyage and representative displacement, respectively. The representative displacement can be 

determined arbitrarily and for example provided with the design full condition. 

 

Flowchart of correction of engine revolution and power for wind and waves is show in Fig.4. Added 

resistance in wind is calculated by the method based on the regression formula in which the added 

resistance coefficient is expressed by superstructure parameters such as lateral projected area above 

waterline, Fujiwara et al. (2006). Added resistance in waves is calculated by the theoretical method 

with simplified tank tests in short waves or empirical formula which can estimate the added resistance 

in any wave direction, Tsujimoto et al. (2015). The methods for calculating added resistance in wind 

and waves were discussed and validated by ITTC specialist committee and consequently concluded to 

be most accurate, ITTC (2014). 

 

Using the measured ship speed through water, engine revolution and power, the propeller working point 

in actual seas can be calculated. In conjunction with propeller open characteristics and self-propulsion 

factors, total resistance in actual seas can be calculated. Subtracting the added resistance R from the 

calculated total resistance Rms gives ship resistance in calm seas Rid as shown in Eq. (2). 

 

RRR
msid

−=          (2) 



23 

 
Fig.4: Flowchart of correction of engine revolution and power 

 

Based on the propeller open characteristics and self-propulsion factors and the obtained resistance in 

calm seas, the propeller working point in calm seas can be calculated and the engine revolution and 

power in calm seas is obtained. 

 

3.4 Data filtering by apparent slip ratio 

 

The corrected data which is provided for evaluating ship performance in calm seas often scatter due to 

lack of accuracy of collected data. For the accurate evaluation of the ship performance, the collected 

data should not scatter and the data set with low scattering should be prepared. In this regard, the 

OCTARVIA model introduced the filtering by apparent slip ratio. It is reported that applying the 

filtering by apparent slip ratio can reduce the extent of data scattering, Sogihara et al. (2020). 

 

3.5 Evaluation by increase rate of added resistance 

 

Conventional methods set criteria on ambient conditions such as wind speed to extract the data which 

can be deemed to be in calm seas. For example, ISO19013 (2016) suggests that the data in calm seas 

should be those in less Beaufort 4. The OCTARVIA model introduces increase rate of added resistance 

R in order to consider that the extent of ambient conditions depends on ship size. The increase rate is 

defined by Eq. (3). 
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The detail of the evaluation method using R is described in Sogihara et al. (2020) and here briefly 

explained. The evaluation method, which is called “Resistance Criteria Method (RCM)”, contains the 

process of ‘two-way’ evaluation involving R. The outline of RCM is shown in Fig.5. 

 

 
Fig.5: Outline of evaluation by increase rate of added resistance  

 

On the first way, the data measured in the condition where waves and winds are negligible are extracted 

by much smaller R (Reval in Fig.5) such as 5%. These data are used for the evaluation of the 

performance curve, which named ‘evaluation data’. 

 

On the second way, the data are extracted by large R (Rfit in Fig.5) such as 100% for estimating the 

performance curve in wide range of engine output which is required for the performance evaluation in 

lower output. These data are used for the curve fitting, which named ‘fitting data’. Obtaining the fitting 

data yields the performance curve based on Eqs. (4) and (5), which is called “fitting curve”. 

 

Snv VdN =          (4) 

nb

n NaP =          (5) 

 

where VS, N, and P is ship speed through water, engine revolution and power, respectively. an, bn, and 

dnv are coefficients for the fittings. After the two ways above, the fitting curve is evaluated in 

conjunction with the evaluation data. This evaluation is based on the data deviation around the fitting 

curve. The data deviation is expressed as DPCVP which is defined by Eq. (6) using the number of the 

evaluation data Neval and nominal distance dnorm (i) between the evaluation data and the fitting curve in 

the relationship between ship speed and engine output, Sogihara et al. (2021). 
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If DPCVP is lower than the criteria, the fitting curve is recognized as the resultant performance curve of 

the OCTARVIA model. The criteria for DPCVP are given 2.0. If DPCVP exceeds the criteria, it is 

necessary to return to the second way with less Rfit. The fitting data is re-extracted with the Rfit, which 

provides new fitting curve and evaluated by the evaluation data. This process is iteratively conducted 

till DPCVP does not exceed the criteria. If DPCVP does not satisfy the criteria even after the iteration, 

the fitting curve obtained by the initial fitting data is output as the resultant performance curve. 

 

4. Application to Ships in Service – Validation of Level-1 

 

The OCTARVIA project phase 2 selected 14 ships for validating the effectiveness of Level-1 model as 

an equivalent model to Level-2 model. The selected ships are listed in Table III. 
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Table III: Selected ships in OCTARVIA project phase 2 

Area Ship ID Remarks 

Domestic Cargo ship DCS Instantaneous data is used for the validation. Engine 

power is calculated based on FOC. 

 Cement carrier DCC Some items which are not collected in the onboard 

monitoring system are obtained from AIS data. 

Oceangoing Container ship 1 CS1  

 Container ship 2 CS2  

 Container ship 3 CS3  

 Container ship 3a CS3a Sister ship of CS3 

 Container ship 3b CS3b Sister ship of CS3 

 Pure car carrier1 PCC1  

 Pure car carrier2 PCC2  

 Bulk carrier 1 BC1 Panamax bulk carrier 

 Bulk carrier 2 BC2 Panamax bulk carrier 

 Bulk carrier 3 BC3 Cape-size bulk carrier 

 Bulk carrier 4 BC4 Supramax bulk carrier 

 Very large crude 

oil carrier 

VLCC  

 

In the validation, ship performance curve in calm seas is evaluated according to the Level-1 model and 

Level-2 model, using onboard monitoring data collected in one year period. The result of the correction 

for wind and waves described in section 3.3 for PCC1 and BC3 is shown in Figs.6 and 7, respectively. 

These figures indicate that whether Level-1 or Level-2 is applied does not significantly influence on the 

correction. In other words, the correction based on Level-1 is equivalent to that based on Level-2. 

 

The collected engine revolution and power is provided for evaluating ship performance in calm seas 

based on RCM. The evaluated performance curve (PC) in calm seas of PCC1 and BC3 is shown in Fig.8 

and Fig.9, respectively. It is noted that, in Figs.8 and 9 Vdes, NMCR, and MCR denotes ship speed at design 

condition, engine revolution at maximum continuous rate, engine output at maximum continuous rate, 

respectively, and that “Evaluated PC” means the resultant performance curve of the OCTARVIA model. 

In this validation, the evaluation data is extracted with R = 10% from the corrected data after the 

filtering by apparent slip ratio. Similarly, the fitting data for drawing the fitting curve is extracted with 

R = 50% from the corrected data. Figs.8 and 9 show that, for both Level-1 and Level-2, extracting the 

evaluation and fitting data enables drawing the performance curve while it is difficult to obtain the 

performance curve based on all the collected data. 

 

The engine revolution difference Ndes and engine power difference Pdes at Vdes between Level-1 and 

Level-2 model is calculated by Eq. (7). 

 

11
2

1

2

1 −=−=
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P
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N

N
N desdes        (7) 

 

where N1 and N2 is engine revolution at Vdes evaluated by Level-1 and Level-2, respectively, 

           P1 and P2 is engine power at Vdes evaluated by Level-1 and Level-2, respectively. 

 

Fig.10 shows the difference between the results of Level-1 and Level-2 model evaluation. Except for 

DCS, PCC2, VLCC, absolute value of Ndes and Pdes is less than 2.0%. This indicates that, as long as 

ship performance evaluation complies with the OCTARVIA model, Level-1 and Level-2 model can 

provide equivalent results.   
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Fig.6 Correction of engine revolution and power. (PCC1, upper: Level-1, lower: Level-2) 

 

 
Fig.7: Correction of engine revolution and power. (BC3, upper: Level-1, lower: Level-2) 
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Fig.8 Result of evaluation of ship performance in calm seas. (PCC1, upper: Level-1, lower: Level-2) 

 

 
Fig.9: Result of evaluation of ship performance in calm seas. (BC3, upper: Level-1, lower: Level-2) 
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Fig.10: Difference between the results of Level-1 and Level-2 model evaluation 

 

The large difference between Level-1 model and Level-2 model is observed for DCS, PCC2, VLCC. 

To make the OCTARVIA model robust, from what the differences are derived should be clarified. For 

DCS, the monitoring system provided instantaneous value, not mean value in a certain period, which 

gives dataset scattering in wide range. A use of instantaneous value can involve the effect of a 

fluctuation in time history. For evaluating performance of ships in steady condition, mean value should 

be used. In addition, DCS is not provided with shaft sensor, therefore engine power is calculated based 

on fuel oil consumption, which may bring engine power data with low accuracy.  

 

Fig.11 shows DPCVP; the deviation of the evaluation data around the resultant performance curve in the 

relationship between ship speed and engine power for the subject ships. While DPCVP of Level-2 is 

about 2.5, DPCVP of Level-1 is 3.3 which is much larger than that of Level-2. This implies that using 

instantaneous value as onboard monitoring data can bring poorly accurate results of the Level-1 

evaluation. On the other hand, Level-2 evaluation is reliable approach even though the instantaneous 

value is used.  

 

 
Fig.11: Data deviation DPCVP for Level-1 and Level-2 

 

Let us discuss on the difference in PCC2. In general, pure car carrier is strongly influenced on by wind. 

We tried to introduce the added resistance in wind of Level-2 evaluation in Level-1 evaluation, which 

indicated a good agreement between the models. This means that 5.3% difference in engine power is 

derived from the accuracy of the added resistance in wind, originated from superstructure parameters 

estimated in Level-1. Further, Fig.11 shows that DPCVP of Level-1 is much larger than that of Level-2, 

which supposes that the larger data deviation results from the lack of the accuracy of the added 

resistance. 
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For VLCC, we conclude that the estimation of POC is insufficient for tanker. We also found that using 

POC of Level-2 in Level-1 evaluation indicates good agreement between the models. This implies that 

POC is not estimated accurately, and that, the inflow to propeller is not sufficiently obtained. Concisely 

speaking, self-propulsion factors is not estimated for tanker. The self-propulsion factors are calculated 

by the ship principal particulars in Level-1 using empirical formula based on model tests. We speculate 

that the subject VLCC is extrapolation of the model tests, which lead to poor estimation of the self-

propulsion factors. 

 

Although large differences between Level-1 and Level-2 model were obtained in three ships, Level-1 

can be concluded to be equivalent to Level-2. The absolute difference in engine power at design speed 

is given averagely 2.0% for 14 ships and 0.9% for 11 ships other than DCS, PCC2, VLCC. Except the 

three ships, the data deviation DPCVP of Level-1 model almost agrees with that of Level-2 model, which 

means that both the models can provide equivalent results of ship performance in calm seas. 

 

5. Concluding Remarks 

 

This paper introduces the ship performance evaluation model based on onboard monitoring data and 

two kinds of model: “Level-1 model” as a simplified model and “Level-2 model” as an accurate model. 

This paper also shows the comparison on the evaluation of ship performance in calm seas between 

Level-1 and Level-2 models for 14 ships in service. As a result, although low-accuracy appears in three 

ships, it is indicated that Level-1 model can evaluate the ship performance with equivalent accuracy to 

Level-2 model. The difference of the evaluated engine power at the design speed is averagely 2.0% for 

the subject ships. This means that a slightly incorrect estimation of the required parameters such as self-

propulsion factors (specifically described in section 2) has little effect on the correction for wind and 

waves on the onboard monitoring data. 

 

Using Level-1 model, ship owners or makers in shipping sectors (e.g., paint maker) can evaluate the 

ship performance with the equivalent accuracy as shipyards evaluate the ship performance. They can 

cooperate with shipyards in R&D for the reduction of GHG emissions from ships in accordance with 

the evaluation of the ship performance based on onboard monitoring data.  
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Abstract 

 

The most important question in deciding whether to perform a hull cleaning is “how much 

performance gain hull cleaning will bring?”. In this paper, the performance of a ship before and after 

a hull cleaning and propeller polishing is compared. ISO 15016:2015 based method is used to 

analyse and compare the ship’s performance at different environment. Then the difference in the 

ship’s performance is quantified using ISO19030 performance values and indicators. The case study 

results will be used as a basis to build a model that predict the degradation during operation and 

performance gain after a hull cleaning and propeller. 

 

1. Introduction 

 

The performance of a ship, after being built, steadily decline during operation. After a period of 

service, for regulation requirements or a special need, it is dry docked for inspection and new painting 

to regain most its original performance. In between dry dockings, when there is a need to improve 

degraded performance, hull cleaning and propeller polishing are used. While the dry docking restores 

a ship’s performance nearly to its original performance after being built, hull cleaning and propeller 

polishing can only restore a limited amount of the ship’s performance.  

 

The decision to perform hull cleaning and/or propeller polishing are made in several ways. The usual 

practice is to have an underwater inspection when a degradation of performance is noticed by the ship 

operator and if significant fouling is found, hull cleaning and/or propeller polishing are performed. 

There are also cases when hull cleaning is periodically performed or whenever after a ship is anchored 

for a significant period of time. A more optimal decision-making process will be by cost benefit 

assessment with cost of the hull cleaning versus expected decrease in cost by hull cleaning. However, 

there is not much quantitative data on the benefit of hull cleaning in terms of the ship performance. 

Adland et al. (2018) reported from a study of 8 aframax-size tankers that the reductions in fuel 

consumption are approximately 9% from hull cleaning and 17% from dry docking. This value will 

vary from ship to ship and environmental conditions in which the ship operates. Therefore, the 

decision for hull cleaning is still made based on experience rather than data.  

 

In this paper, a method to compare the ship’s performance before and after the hull cleaning is 

proposed with case studies of three vessels. The ship’s performance is analysed by subtracting 

environmental effects due to wind, waves and difference in seawater density from measure power. 

The added resistance from wind, waves and difference in seawater density is calculated by method 

defined in ISO15016:2015, ISO (2015), which is the standard method for estimating additional 

resistance during the speed trial of newly built ships. By subtracting added resistance, a ship’s calm 

water performance is obtained and can be compared between before and after hull cleaning. In order 

to quantify the difference in a ship’s performance, the concept of performance values and 

performance indicator in ISO19030-2:2016, ISO (2016) are used. 

 

 

mailto:bjpark@kriso.re.kr
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2. Performance Analysis Method 

 

The performance analysis method is based on ISO15016:2015. First, un-processable data, such as 

when the ship changes direction or moving in shallow water, are removed by filtering. Then increases 

in resistance due to environmental forces are estimated by the method defined in ISO15016:2015. 

Then, these resistance increases are used to correct power using the direct power method as defined in 

ISO15016:2015. For the purpose of comparison, the analysis results are further corrected to standard 

displacement. The overall analysis procedure is summarised in Fig.1. 

 

 
Fig.1: Performance analysis procedure 

 

The purpose of filtering is to remove any extreme measurements to obtain data during steady cruising 

state. The filtering used in this paper is as follows: 

 

• Remove when speeds are too low. Usually, the speed range in the model test is used as a 

reference and any data with the speed outside the range is discarded. 

• Remove data when rudder angle is larger than 5° to remove when changing direction. 

• Remove data when the ship is operating in shallow water. 

 

Resistance increase due to wind, waves and differences in water density are estimated with the same 

method as used in ISO15016:2015. For wind resistance, ISO15016:2015 use the method as described 

in Annex C of ISO15016:2015. For wave resistance, typically there are no measurement data 

available. However, there exist publicly available wave data from sources such as the National 

Oceanic and Atmospheric Administration (NOAA). In this paper, STAWAVE II method in Annex D 

of ISO15016:2015 is used on NOAA data to calculate added resistance due to waves. Lee et al. (2019) 

has conducted validity study on the use of NOAA data against wave radar measurements and 

concluded that NOAA data provide enough accuracy. As this method can only applied for waves 

within ±45° of the ship’s heading, other measured data points were automatically discarded. An 

increase in resistance due to differences in sea water density is calculated as detailed in Annex E of 

ISO15016:2015 from the water temperature, which is also available from weather services even if the 

ship is not equipped to record such data. 

 

Once all resistance increases are estimated, they are used to correct the measured power value. The required 

correction for power is calculated using Eq.(1).  

 

∆𝑃 =
∆𝑅∙𝑉𝑠

𝜂𝐷𝑖𝑑
+ 𝑃𝐷𝑚𝑠 (1 −

𝜂𝐷𝑚𝑠

𝜂𝐷𝑖𝑑
)      (1) 
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Wind

Wave

Water density

Power correction

Displacement correction
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where:  ∆𝑃 is the required correction for power [W]; 

∆𝑅 is the total resistance increase in [N]; 

𝑉𝑠 is the ship’s speed through the water [m/s]; 

𝑃𝐷𝑚𝑠 is the measured delivered power in the operating condition [W]; 

𝜂𝐷𝑚𝑠 is the propulsive efficiency coefficient in the operating condition; 

𝜂𝐷𝑖𝑑 is the propulsive efficiency coefficient in the ideal condition. 

 

ISO15016:2015 uses a load variation test to identify the ratio between the propulsive efficiency coefficient in 

the operating condition and in the ideal condition. However, as most ships does not perform a load variation test 

during a model test, if the results of the load variation test are non-existent, then ratio can be set to 1. 

 

The corrected power is calculated by Eq.(2). 

 

𝑃𝐷𝑖𝑑 = 𝑃𝐷𝑚𝑠 − ∆𝑃                (2) 

 

Where 𝑃𝐷𝑖𝑑  is the corrected delivered power in the ideal condition. 

 

Each leg of the journey of an operating ship has different displacements, and to compare the analysis 

results, the difference in displacements must be considered. This is achieved by first defining standard 

displacements for typical loading conditions such as laden and ballast for bulk carriers and 80% or 

90% displacements for container carriers. Then displacement difference between standard displace-

ments and the actual displacements are corrected using the displacement correction method in 

ISO15016:2015. After displacement correction, analysis results can be compared with each other if 

they are the same loading conditions and even with the model test or sea trial results, if such data is 

available for the same loading conditions. 

 

Analysis method and the software implementation are described in more detail in Park et al. (2019). 

 

3. Quantification of Performance Analysis Results 

 

The performance analysis method in 2 results in a set of data points. While scatter plot of these points 

can give general idea of current ship’s performance, a quantified value that represent the ship’s 

performance is ideal. In this paper, the concept of performance values in ISO19030-2:2016 are used. 

For each data point, percentage speed loss is calculated by Eq.(3) 

 

𝑉𝑑 = 100 ∙
𝑉𝑚−𝑉𝑒

𝑉𝑒
       (3) 

 

where: 𝑉𝑑 is the percentage speed loss; 

𝑉𝑚 is the measured vessel speed through the water; 

𝑉𝑒 is an expected speed through the water. 

 

The expected speed through water is obtained from a speed-power reference curve at the corrected 

delivered power. A speed-power reference curve can be obtained from either model test results or sea 

trial results. 

 

The quantified performance of a set of data points then can be expressed as a simple average of 

performance values similar to performance indicators in ISO19030-2:2016. 

 

4. Case Study 

 

Three vessels are used for case study in this paper as summarised in Table I. The vessels are selected 

as their operation profile includes relatively long period of steady cruising and are susceptible to long 

term anchoring, which often result in performance degradation necessitating hull cleaning. 
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Table I: Vessels used for case study 

Vessel Ship type Size 

A Tanker 110K DWT 

B Container Carrier 11000 TEU 

C VLOC 325K DWT 

 

Table II describes data used with its source. The data used for performance analysis is readily 

available to most ships as they are typically measured during the ship operation except wave related 

data, which is not readily available to most ships. In this paper, wave data is obtained from publicly 

available NOAA data as described in section 2. 

 

Table II: Data used for performance analysis 

Data category Data items Source 

Speed Speed through water 

Speed over ground 

Speed of shaft revolution 

Speed log 

GPS 

Shaft power meter 

Heading Gyro heading 

GPS heading 

Gyro 

GPS 

Power Shaft power 

Brake power 

Delivered power 

Shaft power meter 

Calculated from fuel flow meter 

Wind Wind speed 

Wind direction 

Anemometer 

Wave Wind wave height 

Wind wave period 

Wind wave direction 

Swell height 

Swell period 

Swell direction 

Wave radar 

Weather service provider 

Temperature Air temperature 

Water temperature 

Thermometer 

 

In the case study, the operational data for three vessels are collected. All three vessels experienced 

some measure of hull cleaning and/or propeller polishing during operation. Using performance 

analysis method described in section 3, operational data before and after hull cleaning or propeller 

polishing are analysed. The results are compared with each other to identify if performance analysis 

can be used in analysing the effects of hull cleaning or propeller polishing.  

 

 
Fig.2: Performance analysis results of vessel A before and after hull cleaning and propeller polishing 

in ballast loading condition 
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In case of vessel A, a 110K DWT tanker, the operational data before and after hull cleaning and 

propeller polishing is used for the case study. As the performance analysis results clearly indicate in 

Fig.2, there are noticeable performance gain. The difference seems significant and in averaged percent 

speed loss, as shown in Table III is 6.78%. Hull cleaning and propeller polishing in this case is highly 

adequate. 
 

In case of vessel B, a 11000TEU container carrier, hull cleaning and propeller polishing has been 

performed. As seen in Fig.3, there are also noticeable difference in performance between before and 

after hull cleaning and propeller polishing. However, the difference in performance seems smaller 

than in vessel A. The gain in averaged percent speed loss from hull cleaning and propeller polishing is 

2.32% in design condition and 1.52% in eastbound condition. There are about 10% container load 

difference the two loading conditions, with the eastbound condition heavier of the two loading 

conditions.  

 

  
(a) Design loading condition (b) Eastbound loading condition 

Fig.3: Performance analysis results of vessel B before and after propeller polishing 

 

Smaller gain that other vessels can be explained by the condition of the hull before cleaning. As 

shown in Fig.4, the condition of hull before cleaning is good with only some slime/sea grass present 

in most part of the hull. Therefore, the effect of hull cleaning is minimal. If it had not been for high-

speed nature of container carrier, full hull cleaning may not have been done.  

 

   
(a) starboard side plate (b) port side plate (c) bottom plate 

Fig.4: Vessel B hull condition before cleaning 

 

In case of vessel C, a 325K DWT bulk carrier, hull cleaning and propeller polishing has been 

performed. Fig.5 shows the difference in performance before and after hull cleaning. In terms of 

averaged percent speed loss gain from hull cleaning, vessel B has the highest gain of three case 

studies with 8.17% gain for ballast condition and 5.39% for laden condition.  
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One noticeable fact is that the gain in ballast condition seems higher than in laden condition. This is 

also observed in case of vessel B in smaller scale as well. This is expected as heavier loading 

condition and more submerged underwater area and relatively smaller area of hull fouling compared 

to ballast condition. 
 

  
(a) Ballast loading condition (b) Laden loading condition 

Fig.5: Performance analysis results of vessel C before and after hull cleaning and propeller polishing 

 

Table III: Quantified gain from hull cleaning and/or propeller polishing 

Vessel Loading Condition 
Averaged Percentage Speed Loss 

Before After Gain 

A Ballast -0.59% 6.19% 6.78% 

B 
Design -4.40% -2.08% 2.32% 

Eastbound -2.50% -0.98% 1.52% 

C 
Ballast -13.72% -5.55% 8.17% 

Laden -15.57% -10.18% 5.39% 

 

In all three case studies, performance analysis method used in this paper was able to show the 

effectiveness of hull cleaning or propeller polishing. However, this case studies are not enough to 

draw conclusions on the expected effects of hull cleaning or propeller polishing. As in vessel B, the 

effects of such measures are likely to be more dependent on the condition of hull and propeller before 

such measures are applied, and the results after their application. Therefore, in order to accurately 

analyse and predict the effect of hull cleaning and propeller polishing, other variables, such as the 

extent of hull fouling, should also be included for analysis.  

 

5. Conclusions 

 

In this paper, a performance analysis method based on ISO15016:2015 is presented and it is applied to 

three vessels to identify the performance gain from hull cleaning and propeller polishing. Performance 

analysis results are then quantified with averaged percent speed loss based on ISO19030-2:2016. The 

results shows clearly that the performance analysis method can be used to analyse the effects of hull 

cleaning and/or propeller polishing. 

 

While this paper only presents three case studies, research is ongoing to investigate the relationship 

between hull conditions before hull cleaning or propeller polishing and the expected effects of hull 

cleaning or propeller polishing based on the performance analysis results. With more data available in 

the future, a model to estimate the effects of hull cleaning or propeller polishing can be built to aid in 

making decision on when and how often hull cleaning should be applied for optimal ship operation.  
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Abstract 

 

This paper summaries three years of technical development and research in close collaboration with 

several major shipping companies. Besides the technical AI-based decision support systems, the project 

has focused on soft values, how the support systems become efficient support for real, both ashore and 

onboard. It is important to create knowledge among technical-, commercial- and operation- 

departments within the organisations on how to implement new methods. Different types of vessels 

operate under vastly different commercial realities that impact the performance and energy 

effectiveness. Technical systems must be adapted to each actor's reality to achieve a change and drive 

more climate-friendly transportation. The Arctic Tern shows fuel savings of 2-14%.  
 

1. Introduction 

 

This is not the first time a new and innovative tool within "Weather routing" is introduced. AI is an 

impressive and efficient technique to handle large amount of data, but it is neither the first nor the last. 

For instance, wave models were introduced in the early 1990s, with a significant impact on what became 

possible at that time. This was followed by naval architect-based ship models that relied on noon reports 

and could calculate the impact of winds, waves, and currents on ships in the 1990s and early 2000s, 

using the best technology available at that time. When new models and systems for calculating ship 

movements and parametric roll were introduced around the same time, many in the industry believed 

this would revolutionise the market. 

 

The advancements in weather and ocean current forecasts over the past 30 years, where the accuracy of 

long-term forecasts has greatly improved, have been crucial for enabling today's applications that rely 

not only on current but also future winds, waves, ocean currents, ship movements, and more. However, 

despite these advancements, the perception persists, even in academia in 2023, that forecasts beyond 

+72 hours are hardly considered useful. 

 

10-20 years ago, client-based onboard systems for route planning gained widespread popularity. Now, 

these systems are partially being replaced by many even better online-based apps and other 

functionalities that offer high-quality (sometimes even free) weather forecasts. The visualisation of 

weather forecasts has also played a significant role. This proliferation has contributed to the increased 

trust in the forecasts among users onboard ships who have access to these modern systems today. 

Rightfully so. 

 

In the 2020s, AI-based systems are being introduced to better optimise short and long sea passages for 

individual vessels and entire fleets. Ship models based on ANN (Artificial Neural Networks) and 

supervised machine learning are utilised. These models which rely on robust sensor data from the ship, 

collected every minute or even every 10 seconds. This has proven to be a groundbreaking development, 

surpassing previous methods in terms of accuracy and efficiency. 

 

However, introducing new tools is not just about technical aspects. It also involves building trust and 

understanding of what the new tools actually can do and what they cannot. A broader understanding is 

needed throughout the organisation or the entire chain of actors who are all affected. Users of these now 

transparent systems come from different departments with different roles and expertise, both within 

their own organisation and others. These soft values and communication certainly involve the onboard 

team, the navigational and the engineering officers. But also includes the entire technical, operational, 

and commercial departments of the shore organisation, sometimes with watertight compartments in 
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between, as well as additional actors in the customer or logistics chain. No longer is it solely the Master's 

responsibility to find the silver bullet for this issue. Even within traditional shipowner and charterer 

organisations, it is common for technological advancements to not immediately resonate with all 

individuals or the entire organisation. Both technology and people may need time to adapt to the change. 

Timing is crucial. 

 

Ten years ago, there were approximately 10 service providers in the traditional weather 

routing/optimisation field. Around 5 of these were more prominent in bidding processes with major 

shipping companies. Today, there are hundreds of system providers that, in one way or another, 

"optimise" what is considered best, often using AI, today's state-of-the-art technology. Soon to be 

replaced by something new and more advanced. 

 

Notably, several of these early prominent traditional service providers in weather optimisation at sea 

seem to struggle with building something new. Likely because innovation takes a lot of time and effort 

while maintaining and operating the existing 24/7 service is a heavy daily workload. It is much easier 

for start-ups to emerge and deliver. However, when today's start-up companies grow and eventually 

face a major technological generational shift, they are likely to encounter the same challenge. Many 

have experienced this journey, and more will undoubtedly follow. 

 

Introducing new technologies on the global maritime market is one of NoorCares' core business. By 

actively exploring and testing new ideas and methods from a pragmatic perspective, NoorCare identify 

what works. Being receptive and understanding even the unspoken needs, regularly engaging with our 

valuable network of +60 shipowners/operators in Europe and Asia, as well as partners and competitors, 

is the key. This approach has been our practice for over 30 years. Additionally, contributing to the 

education of new captains and engineers by showcasing the latest market developments and gaining a 

better understanding of what the next generation of seafarers truly needs and expects allows further 

contribution to the future of maritime industry. It is an iterative process, and NoorCare are certainly still 

learning. 

 

2. Background 

 

For three years, the research and development project, The Arctic Tern, (Swe: Tärna) has been focusing 

on route optimisation using Artificial Intelligence. The project has been carried out by a consortium 

consisting of NoorCare AB, Möller Data Workflow Systems AB (Molflow), Linnaeus University, and 

the Swedish Maritime Administration. The consortium has extensive experience in sea voyage 

optimisation, both in theory and practice, from the perspectives of both the ships and the shore 

organisations. 

 

Four reputable shipping companies, headquartered in Europe and Asia, took active part with vessels in 

the project. Three of these companies have fleets of 50 ships or more and operate both short and long 

sea passages across the world's oceans, representing both liner service and tramp shipping. 

 

Molflow´s route planning tool, Slipstream, were set up and run by the shipping companies and Linnaeus 

University. Slipstream utilises multiple neural networks to estimate the vessel's performance. The 

networks are trained on ship data logs in combination with state-of-the-art Met-Ocean data that is 

collected multiple times every day. Slipstream continuously monitors the vessel's condition, including 

hull condition, and provides updated and precise status information. It has global coverage and 

considers factors such as tidal currents and water depths. The system includes Digital Twins for each 

vessel, accessible to users through a graphical user interface or via API. The optimisation tool also 

incorporates performance monitoring, including biofouling. 

 

Energy efficiency and reduced environmental impact of shipping is a fundamental part of our shared 

responsibility to contribute to a better life on our planet for future generations for a long time to come. 

The optimisation tool Slipstream is based on machine learning and unique solutions that can use 

significantly more details and parameters compared to the traditionally available tools that dominate 
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the market. This enables a new way to frequently be updated on the optimal result of any operation or 

machine settings that is the best considering all small and large changes that occur during the voyage. 

This is especially important for shorter sea passages where the traditional and less precise tools are 

rarely useful or relevant.  

 

Alongside with the technical development of the AI-based support system, a large part of the project 

has been focused on soft values and the challenges the traditional and commercial drivers in 

international shipping meet. The focus has been on ensuring that users understand how the new 

precision tools should be used, preferably in combination with other already existing systems. Within 

the Arctic Tern project NoorCare has trained both the teams on commercial ships and the land 

organisation on how to better use new data. People with long practical experience. The Arctic Tern 

project has also carried out practical experiments for aspiring ship officers to become better equipped 

for the increasing demand of energy efficient sea transport before they start their professional career. 

The Arctic Tern project shows how a transparent and precise tool can be used for the whole organisation 

to obtain energy-efficient sea transports, for shorter as well as longer voyages, with a reduced 

environmental impact. The NoorCare Advicory concept shows results of fuel savings/reduced 

emissions between 2-14%. 

 

Table I: Fuel savings indicated in the The Arctic Tern project 

Type of vessel 

 

Sea passage 

length 

Fuel 

saving 

Liner service 1-2 days 10-13% 

Liner service 2-6 days 2-4% 

Liner service 10-14 days 10-14% 

Crude oil tankers +20 days 3-5% 

Students experiments at The Maritime Academy (Liner service) 10-12 days 12-25% 

 
3. Soft Values – Our strength in combination with AI 

 
One of the most crucial aspects of succeeding in energy efficiency can be summarised as attitude and 

willingness. Add perseverance and you may reach or even exceed your goals. This applies not only to 

the personnel onboard but also to the entire shore organisation within a shipping company and the 

surrounding maritime cluster that influences the vessel's chartering and port logistics. 

 
3.1.  Introducing Innovation to the Maritime Industry - The devil is in the details 

 

Artificial Neural Networks (ANN) with supervised deep learning, including a naval architect ship 

model, are, truth be told, a black box where it is not always clear why the results turn out as they do. 

You may accept the result, but not always fully understand. In some situations, you may understand 

more afterwards. That’s learning. With old technique, it was necessary to filter out a significant amount 

of data points before plotting a graph based on a few points only. Assuming a robust flow of data from 

sensors, AI can handle a large amount of data with multiple precision and efficiency, which is 

remarkable. Even so, it is crucial to understand the bigger picture and be able to distinguish significant 

information from trivial - from the customer´s perspective. 

 

For a larger high consuming vessel on shorter sea passages, minor unplanned deviations, such as a half-

hour engine stop, can easily disrupt the optimisation of a smooth shaft power and completely negate the 

intended fuel savings since they are of the same magnitude as what is needed to compensate for the lost 

half-hour or so. Similarly, a delay due to unexpected traffic congestion in a busy area like the Singapore 

Strait can have the same impact on the energy consumption. Also, such details as a large vessel requires 

time for acceleration and deceleration at the beginning and end of the sea passage will affect the detailed 

setting of the system. The squat effect in shallow water, all examples of things that were never an issue 

during longer deep-sea passages, can suddenly become highly relevant and sometimes decisive. On a 

longer sea passage, there is often enough time for things to even out before the vessel reaches its 
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destination. This can also apply to the end of a long voyage when regular or daily monitoring requires 

more details towards the end of the passage to be accurate. It is a different perspective to consider more 

details and have the ambition to reduce unnecessary margins when appropriate. The handling of modern 

precision tools, therefore, differs from what many have learned over the years. 

 

So even though with the new tools, decimals are handled to diligently save fuel and reduce emissions, 

suddenly something bigger can disrupt everything, such as a very poor weather forecast or diversion to 

a new destination. Or just a modified piece of information about when the berth that is being aimed for 

will be available. 

 

3.2. Learning by Doing - Towards more Climate-Smart operations 

 

Personnel onboard and ashore that use the result from an AI-based tool like Slipstream must be given 

the opportunity to understand the tool and critically review the results. They should be allowed to use 

it sensibly, experiment, and sometimes fail in order to learn. They should be able to feel involved in a 

larger process with a common direction. As a next step, based on the new experiences and conclusions, 

new Standard Operating Procedures (SOPs) can be established with the aim of finding the efficient 

method that best suits the specific organisation. 

 

In the Artic Tern project, experienced captains occasionally discovered and questioned the results of 

Slipstream. For example, before a voyage with unusual draft/trim, Slipstream had never been trained 

on such extreme loading data and simply did not know how the ship would behave, despite being based 

on supervised deep learning and having a ship model in the background. On another occasion, a 

completely different ship was going to round South Africa for the first time. The digital twin, the model 

for this particular ship was not trained on the very long and high swell from abeam, resulting in the 

output not matching reality. In practice, the ship rolled more than what the untrained Slipstream had 

calculated, and the speed was consequently lower. In both cases, the model learned quickly after the 

first passage and new data from the sensors automatically trained the ANN. However, it was important 

for the project to prevent similar mistakes from happening again for any other ship at any other time. 

And there are some good methods to ensure that this never happens. But the truth is that the more 

reliable data you have, the better the results will be. The amount of reliable data is crucial.  

 

But AI and machine learning can be so beautiful when they provide new detailed explanations and 

insights. For example, when the model helps discover and explain details in a specific ship's behaviour 

in varying wind and sea conditions from the stern. Behaviours that both the captain and an experienced 

marine meteorologist previously attributed to "perhaps some minor variation in the ocean current," due 

to a lack of better explanations. Or the example where it's finally possible to measure/quantify 

biofouling in a way that traditional methods based on noon reports and old-school mathematics have 

never quite succeeded in despite more than 20 years of work. But with good AI tools and reliable high-

frequency data, this is suddenly achievable. 

 

These and many other examples build genuine and solid trust in new detailed AI-based tools like 

Slipstream. When users gain trust in how the new precision tool works, they can more easily reduce 

their margins in a different and improved way compared to before. By transparently sharing this 

information throughout the organisation, the risk is distributed, whether it's either some excessive fuel 

saving or the just-in-time performance not being entirely perfect. In an encouraging and tolerant 

corporate culture, it becomes natural for the Master not to bear the entire responsibility alone. As is 

often still the case today. 

 
3.3. The NoorCare Advisory concept 

 

The NoorCare Advisory concept has been demonstrated and “tested” at numerous shipping companies, 

with the ambition to encourage more shipowners and charterers to find methods for operating in a more 

environmentally friendly manner that suit their specific needs. It is striking how significant the 

differences are between different shipping companies with the same types of ships and similar operating 
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methods, depending on where they are in the process. Often, the realisation is that robust high-frequency 

data must first be generated before moving on to the next step. The International Maritime 

Organisation's latest global regulations regarding EEXI and CII, as well as the European Union's new 

ETS (Emission Trading System), which will be implemented in 2024, are all in line with the current 

transformative process for the entire industry. All opportunities and contributions that help society move 

towards even better energy efficiency and completely ceasing the release of carbon dioxide into the 

atmosphere are welcome. The expectations for the industry to deliver are increasing. 

 

There are today thousands of vessels that still rely on traditional suppliers in weather routing. Many of 

them do so out of tradition, even though they often need only a small portion of the traditional and 

partly outdated concept. Many shipowners and charterers are also in a transition period, where they 

realise they would benefit from an upgrade of at least some of their used methods/ algorithms/ systems. 

But time is a valuable asset, and the market offers a wide range of options, and it is now harder than 

ever to distinguish between excellent and subpar providers and solutions. 

 

3.4. The Shipping Industry’s future decision-makers 

 

Within the Arctic Tern project, three cohorts of students in the maritime captaincy program have been 

able to use Slipstream during a real-time project voyage between Gothenburg/Sweden and New 

York/US, during winter season. 

 

It can be summarised that the system has provided good decision support on how to set the speed 

considering the current weather, forecasts, and the required ETA given to the students. 

 

The students who frequently performed updated optimisations achieved the lowest fuel consumption 

and minimised environmental impact. It was also noted that the students who used Slipstream instead 

of solely relying on conventional methods based on available weather data were able to carry out the 

project voyage in a significantly more energy-efficient manner. 

 

4. Conclusions 

 
AI-based route optimisation systems with ANN and supervised machine learning for ships that have 

robust and high-frequency sensor data are a prerequisite for more detailed calculations/ optimisations 

of set values for speed and machinery.  

 

These modern and much more precise tools for faster and easier decision-making regarding speed and 

engine settings for a particular vessel on a specific route with an unique loading condition are highly 

significant for the ability to operate ships more energy-efficiently and in a climate-smart manner on a 

broad scale. 

 

Introducing these AI-based decision systems into shipping has significant similarities to the introduction 

of previous groundbreaking technologies over the past thirty years, primarily targeting the ship's 

captain. 

 

The similarity lies in the fact that it takes time to build trust and understanding among users regarding 

what the new optimisation system can or cannot do. People need time to adjust. 

 

The difference in introducing AI in the 2020s is that there are more people involved in the onshore 

organisation, and the systems today are more complex. Small changes during the sea passage can have 

a greater impact on the results when current margins and tolerances are streamlined. 

 

The Arctic Tern project deliberately selected some vessels/companies that have commercial conditions 

that make it significantly more challenging to save fuel compared to many others. 
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1. Large container ships in liner service, on short sea passages of 2-6 days, in a part of the world where 

it is practically almost impossible to obtain a reliable berth slot time closer than 1-2 days in advance. 

During the same sea passage, the required ETA and thus speed can vary anywhere between 

maximum and min/eco speed, sometimes multiple times. 

2. Crude oil tankers on the spot market, on long voyages for several weeks across the world's oceans, 

where the commercial aspect requires that speed and fuel consumption on a 24-hour basis are within 

very tight ranges. Therefore, it is almost never possible to optimise the entire sea passage. 

 

Both examples illustrate different instances of "Hurry up and wait" behaviour deeply ingrained in the 

shipping companies because it is the best way to make money. At least it has been so far. Despite this, 

the project demonstrates fuel savings. Of course, the savings would have been even greater without 

these commercial realities. 

 

Knowing when the berth at the destination port will become available already at commence of the sea 

passage (1) and replacing the outdated Charter Party contract system with a more transparent and 

reliable system that creates sufficient trust for both shipowners and charterers (2) are two things with 

enormous potential for significant energy efficiency improvements in maritime transportation. 

 

It is also desirable to introduce more industry standards and common regulations that facilitate all 

service providers in creating and encouraging “proper behaviour" regarding overall energy efficiency 

and smoother traffic flow. This can facilitate better interaction between different systems and thereby 

reduce the number of stand-alone systems. It may involve the format of route exchange, class-approved 

methods for calculating ships' expected impacts on weather and traffic situations, common standards 

for acceptable safety levels or risks at sea, in the ports, and at the terminals etc. This may help ensure 

that the Safety-Environment-Economy requirements within the maritime and transportation sectors 

develop in a harmonious balance between feasibility and desirability. 

 

Calculating and optimising a single sea passage and thereby contributing to smoothing out the traffic 

flow between Port A and Port B is relatively straightforward in this context, especially now in 2023 

with systems based on the latest technology, including AI, Artificial Intelligence. 
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Abstract 

 

This paper shares experience obtained from many retrofit processes to support shipping companies on 

their journey towards an ideal ship operation. IMO emission regulations and high fuel prices encourage 

shipping companies to optimize ship efficiency. Luckily several retrofit technologies are available to 

make the best out of a ship. Usually, model basin tests or CFD techniques are used to determine the 

impact on the EEXI and estimate the savings. While in operation deviations between expectations and 

actuals can still occur. This paper points out things one should be aware of when planning Hull & 

Propeller Improvements. Furthermore, guidance is given to assess the impact of the technologies 

successfully over time.  

 

1. Introduction 

 

1.1. Background 

 

The recent developments in the global and regional regulatory frameworks, such as the IMO emission 

regulations and the EU ETS, as well as the societal pressures for environmental sustainability, have and 

will continue to increase the cost of energy. To keep their fuel cost under control, shipping companies 

are reconsidering their vessel efficiencies through operational change and vessel upgrades. More 

broadly, improving vessel efficiency is a key strategy to comply with the greenhouse gas emissions 

regulations, and achieve one’s decarbonization goals. 

 

Although Maritime transportation is already one of the most efficient modes of transport it remains that 

its contribution to the global GHG emission is large while opportunities for improvement are readily 

available. As shipping company engage in ever larger vessel upgrade projects, their ability to accurately 

define the benefits of these projects is key to provide the necessary transparency for future investment 

decision and ultimately allow for the IMO target to be met. 

 

1.2. Why the opportunities for improvement are large 

 

Several factors have led to the relatively large optimization potential of vessels:  
 

• Operation different from intended design point: Vessels are designed to run at a given main 

engine power, but due to the fuel efficiency measures of the last decade they are often running 

on significantly lower engine loads. Sailing on higher loads is nowadays also no longer an 

option as compliance to the new Energy Efficiency Existing Ship Index (EEXI) is achieved 

frequently by an Engine Power limitation (EPL) or a Shaft Power Limitation (ShaPoLi). While 

vessels operating at lower power level certainly limit their fuel consumption, these off-design 

conditions create inefficiencies that can be addressed. 

• General development of existing technologies: Improvements have been made concerning the 

main engine and propeller efficiency within the last decade. Apart from many smaller measures 

the main engine efficiency was improved through higher bore vs. stroke ratio. Lower RPMs 

and Computation of Fluid Dynamics (CFD) have allowed propeller makers to improve their 

designs and reach higher propulsion efficiencies.  

• New technologies: The recent advances in maritime engineering have led to the emergence of 

several innovative technologies that have transitioned from theoretical concepts to practical 

applications. One such technology is the air lubrication system, which employs air bubbles at 

the flat bottom of the ship to reduce frictional losses and enhance fuel efficiency. Another 
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example is the revival of wind power as an alternative energy source, facilitated by devices that 

require minimal operational effort. 

 

1.3 Defining your approach 

 

IMO has set up through the Glomeep project a website, https://glomeep.imo.org/technology-groups/, 

where one can learn more about Energy saving Devices (ESDs) available on the market. Beside this, 

many marine societies like the Baltic and International Maritime Council (BIMCO) or the Maritime 

Cluster Northern Germany (MCN) have issued guideline documents concerning different energy 

efficiency technologies available to the industry. These guidelines can give shipping companies a first 

overview of technology options available to them. 

 

When ship operators decide upon retrofits, they will usually heavily rely on the fuel consumption 

reduction as a basis for ESD benefit evaluation. Other side benefits derived from vessel retrofitting 

(maintenance, manoeuvring, equipment lifespan, etc.) are typically assessed qualitatively only. Apart 

from the pressure imposed by GHG regulations, the requirements of sound business cases to justify 

investment in ESDs remain. These and the promised savings should however always be reviewed with 

some care and more, Bertram (2020).  

 

2.  Know the condition of the vessel 

 

2.1. Sea Trial vs. actual performance 

 

Knowing the current vessel performance and the propeller light running margin is important before the 

propulsion setup is modified as this will have an impact on the retrofit design and saving potential. The 

EEXI is related to the Sea Trial performance of the vessel. ESDs often proven through CFD calculations 

and their impact and this can be considered in the EEXI calculations. It is usually expected that the 

same impact will be found on the operated vessel. However, vessels often operate at different engine 

load conditions compared to when the vessel was built and went on sea trial. This is due to both hull 

and propeller fouling and the natural aging process of the hull and propeller, such as wear and tear of 

the structure of the vessel due to sea impact over time. Even when the impact of fouling can be reduced 

through the application of a new paint, there should not be an expectation that the vessel would be back 

to her sea trial condition after a dry-docking. 

 

 
Fig.1: Main engine diagram with operational data and Design Propeller curve (before & after 

installing a pre-swirl device) 

https://glomeep.imo.org/technology-groups/
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Fig.1 shows the main engine diagram of a vessel in Ballast condition. Operational data before the retrofit 

(yellow round dots) and after the retrofit of a pre-swirl device (orange dots) is shown. The black dashed 

line shows the propeller curve at Sea Trial condition. 

 

One can observe that the vessel was running far from the propeller curve before the retrofit and the 

installation of the pre swirl device has increased this issue. In general, heavy running conditions of the 

main engine and propeller should be avoided due to a worse specific fuel oil consumptions and worse 

propulsion efficiencies. Overall, one should not expect fuel savings when the vessel operation has 

changed as shown in Fig.1. 

 

Replacing the propeller, changing the pitch of the existing propeller or changing its diameter can fix 

heavy running issues and ensure that the engine and propeller run in healthy conditions. The cost of 

these solutions varies and should be considered prior to a vessel upgrade as part of a complete propul-

sion system optimisation. 

 

2.2. Consider the Service Margin of the vessel 

 

During the design phase of a vessel, the effects of hull fouling and added weather on the vessel propul-

sion are considered through the Service Margin, also known as Sea Margin. This margin is typically an 

arbitrary value of 15 % of the installed main engine power, MAN (2023). It can also be set higher 

depending on various factors like the sailing region, the dry-docking intervals and the type of vessel 

operation, Ghose and Gokam (2004). 

 

The general approach of using 15% can lead to differences between vessel types when considering how 

much Service Margin remains under normal operation. Table I lists the additional weather power re-

quirements for BF 4 head weather, computed according to ISO 15016. The resulting actual Service 

Margin is compared between a handy bulk carrier and a container vessel of a similar size. 

 

Table I: Service margin according to ISO 15016 for container vessel and bulk carrier of similar size 

 
 

The predicted propulsion power to overcome the weather forces is somewhat similar between the ves-

sels, whereas the installed main engine power of the container vessel is much higher than at the bulk 

carrier. As a result, the bulk carrier has less additional power to overcome weather impacts. Noting that 

the biofouling likelihood is also higher for slow vessels with long idle periods, typical of bulk carrier 

operation, the likelihood that such vessels operate in heavy running conditions is high. 

 

The Service Margin and the corresponding Light Running Margin of the engine and propeller are im-

portant factors that ship owners must quantify and compare with historical data. This requires the 

Vessel & resistance details contianer vessel bulk carrier

LOA 177.6 m 180.0 m

LPP 167.6 m 173.0 m

Breath 27.0 m 29.8 m

DesignSpeed 16.9 kn 14.5 kn

BF4 Rwind Head 63.6 kN 47.4 kN

Seastate 4 - RWaveHead 46.1 kN 68.2 kN

Pweather (etaD = 0.7) 1362 kW 1232 kW

Comparision of Service Margin container vessel bulk carrier

Installed ME Power 12600 kW 6780 kW

Service Margin of 15% 1890 kW 1017 kW

Percentage of Service Margin used at BF 4 72.1% 121.1%
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availability of quality data since the last dry-docking. In the absence of valid data, the decision should 

rely on the current ratio of rpm to torque of the main engine and its deviation from the sea trial condi-

tions. 

 

Operating condition exhibiting excessively high torque demands may require creating a new reference 

period of the propulsion performance after resolving this issue, typically with a new paint and poten-

tially postponing the decision concerning ESDs until the outcome of the dry-docking about the actual 

operation condition of the vessels hull and propeller is understood. 

 

2.3 High impact of paint performance 

 

The biggest impact on the hull & propeller performance is usually imposed by the paint and antifouling 

condition. The paint performance is dependent on various factors and can vary enormously considering 

the fouling likelihoods of different operational profiles. Knowing the paint condition and how the paint 

performance has developed over time matters. Different paint types will show different performance 

characteristics within a dry-docking cycle. 

 

After a dry-docking, some paint technologies require a certain time span before reaching their top 

performance whereas other paint technologies have their peak performance right from the beginning. 

Fig.2 shows a comparison of different paint models, i.e. technologies, over time and the performance 

indicator Excess Power percentage. Paint 1 has a high polishing effect and needs in this graph more 

than a year before reaching its top performance. Paint 2 has a low polishing effect but, overall, worse 

performance than Paint 1. Paint 3 does not have this polishing effect. The shown sample vessel had a 

polishing paint similar to paint 1and is currently performing quite well.  

  

 
Fig.2: Comparison of different paint models and a sample vessel 

 

A hull and propeller retrofit is mostly done during a dry-docking with a new paint implemented as well. 

So in this section a dry-docking event is understood to include a new paint application. When 

considering an ESD installation outside of the dry-docking cycle, on should be aware that the 

development of the paint performance can overrule the impact of a retrofit. At the sample vessel in    

Fig.2, for instance, it is not advisable to conduct an early dry-docking simply as the current paint 

performance is very good. Applying a new paint and installing a retrofit with a marginal propulsion 

improvement could lead to overall higher fuel consumption as the new paint may take time before 

reaching the same performance levels. 
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Shipping companies and paint providers should cooperate and analyse how far the vessel is deviating 

from the expected performance before decisions upon ESD installations outside of the dry-docking 

Cycle are made. Poor performing vessels can then be cleaned or receive a new paint along with the ESD 

installation. Whereas well performing vessels should only be retrofitted outside of the dry-docking 

Cycle at cases where the expected level of improvement through the ESDs is significant. 

 

3. Measure with care 

 

3.1. What can be measured considering the levels of accuracies 

 

If specific Energy Saving Device claim benefits above single digits fuel reduction, most remain well 

below 5% of the total vessel consumption. In addition, to what can often be considered marginal im-

provement, the commercial cases for these investments are often hanging on the balance for a fraction 

of those claimed benefits. 

 

In that context, it is important to remain realistic about our ability to measure fuel savings as such. From 

noon report to modern high-frequency data collection system, the ability and the required timeframe 

requirements to evaluate ESD varies greatly. The accuracy levels of the measurements and the tracking 

capabilities of shipping companies in general are often not in line with the accuracy expectations of the 

investors and decision makers. 

 

Noon reporting systems are widespread in the maritime industry and provide snapshots of the vessel 

parameters on 24-hour intervals. These systems enable long term review of the vessel performance and 

fuel consumption. Provided that the noon report data is entered with care and subject to validations and 

reviews, effects on propulsion efficiency of about 5% and more can usually be tracked in these systems. 

ISO 19030 indicates 4.57% accuracy for noon reports based on observed speed and power derived from 

fuel consumption (95% confidence interval and for a 6-month evaluation period), ISO (2016). 

 

A challenge is that it takes long time to get sufficient analysis data, based on which further decisions 

could be made. The 24-hour sampling rate also does not allow the review of transient ESD such as wind 

assisted propulsion systems, or generally any device affected by external factors such as environmental 

conditions that vary in much shorter timeframe.  

 

On the other hand, a continuous high frequency data monitoring system is by no mean a silver bullet, 

as such systems have their own challenges, such as reliability of sensors and the requirement to develop 

skillset not traditionally present within a shipping company. Still, as per ISO 19030, high-frequency 

monitoring allows much better accuracy and significantly better granularity The effect of certain ESDs 

simply cannot be tracked without having a high-frequency monitoring system. 

 

According to ISO 19030, the average error is 0.37% for such system based on measurement of speed 

through water and engine torque (95% confidence interval and for a 6-month evaluation period). 

However, these accuracy figures assume that all is working well. In reality, this is not always the case. 

In practice, propulsion efficiency improvement can hardly be tracked with an accuracy of ±1%. 

 

3.2. Using performance indicators 

 

When assessing the impact of an ESD, using the milage of the vessel as it is done at the Carbon Intensity 

Indicator (CII) is not appropriate. An average milage assumes a linear relationship between the speed 

and fuel consumption, physically this is not the case.  

 

The objective of any retrofit benefit tracking process is to conduct a fair comparison between the pre-

retrofit and post-retrofit conditions. This necessitates the availability of quality data for both periods, as 

well as the proper application of propulsion performance indicators.  
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A hull performance indicator is a measure that compares a filtered and corrected observation with a 

baseline. For example, ISO 19030 uses Percentage Speed Loss as a hull performance indicator, but 

there are other methods or indicators that can also track the changes in Hull and Propeller Performance 

over time. Each of these indicators has its own advantages and disadvantages. 

 

Table II lists different performance indicators we have seen in practice. The selection of performance 

indicator depends usually on vessel type, measurement equipment, operational model, and ESD to be 

evaluated. 

 

Table II: Performance indicators with advantages and disadvantages 
Performance  

indicator Description  Advantages  Disadvantages  

Percentage Speed 

Loss 

Used in the ISO 19030 standard. The 

vessels speed is compared to the theo-

retical speed of the baseline model. 
Zero percent would mean that the ves-

sel performs as the baseline model. 

- Well documented. 
- At vessels operate on constant 

power or cons. RPM, it makes 

sense to look at speed change. 

- Speed differences cannot be 

converted directly into 
power/fuel/USD 

Speed Percentage 

In essence this is the same method as 
"Percentage Speed loss", the differ-

ence is that not 0% is the baseline, but 

100% 

- Same as percentage speed loss - Same as percentage speed loss 

Excess Power  

Percentage 

The propulsion power of the observa-

tion and the baseline are compared. 

The percentage expresses the excess 
amount of propulsion power. 

- Usually torsion meters are 

more accurate than fuel meters. 
- Percentage can be translated 

easily into Fuel Consumption 

&  USD 

- Can be more scattered when 
vessels operate on constant 

power than speed percentage. 

Excess Consump-

tion Percentage 

The propulsion related fuel consump-

tion, so most often the main engine 
fuel consumption of the observation 

and the baseline are compared. The 

percentage expresses the excess 
amount. 

- Can be translated very easily 

into financial impact (USD) 

- Fuel meters are often not very 
accurate. 

- No separation of main engine 

and propulsion performance 

Added Resistance  

Percentage 

The measured propulsion power is 

converted into frictional resistance. 
This value is then compared to the 

frictional resistance value of the base-

line model. 

- Physically hull fouling effects 

the frictional resistance. This is 
physically more correct, when 

focusing on biofouling reviews 

of hull and propeller. 

- Requires high quality baseline 

models. 
- Vessel specific conversion 

needed to relate to fuel con-

sumption & USD 

Consumption 

equivalent 

at a given Speed 

The idea behind this performance in-

dicator is to use the excess consump-

tion percentage to estimate what the 
fuel at a given speed would be. Then 

this fuel consumption in t/24h is plot-

ted over time. 

- Charterers and owners can di-

rectly see how far away they 
are from the charter contract 

terms. 

- Same as Excess Consumption 
Percentage 

- This value does not quantify 

how far away from optimum 
the vessel is. 

Apparent Propeller 

Slip 

Apparent Slip = RPM * Pitch - Speed-

Through Water, so it is the difference 
between the measured engine distance 

and the speed through water. 

- No baseline model required. 

- RPM measurement available 

on the most vessels. 

- Hardly possible to convert to 

Fuel Consumption & USD 

- Only works for 1 draught  
- No weather corrections 

- Only the relative value over 

time should be used. 

Admiralty constant 

In the admiralty formula the ratio be-

tween power and speed is assumed to 
be cubical and between power and 

draught to have an exponent of 0.666. 

With these assumptions the admiralty 

constant can be determined for each 

observation. 

- No baseline model required. 

- This value does not quantify 
how far away from optimum 

the vessel is. 

- Rough reference model. Often 

too far from reality. 
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3.3. Selecting the right reference periods 

 

The evaluation of the achieved improvements is impacted by the reference period used to analyze and 

quantify the previous vessel operation condition. How the reference period needs to be chosen depends 

on the several factors:  

 

• Type: What kind of retrofit should be tracked? (Hull and propeller retrofit including paint or 

excluding paint? Can the retrofit be turned on and off?)  
 

• Data validity: Have the measurement methods (sensors, reports) or reference models 

changed? Is there a need to consider other effects?   
 

• Sufficient data: Is the reference data statistically sufficient to draw a conclusion?  
 

• Operation: How have the operation conditions and the sailing area changed? 

 

When selecting the reference period one must avoid that the change of the vessel fouling condition 

overrules the performance analysis outcome. ISO 19030 suggests comparing the average performance 

indicators post previous dry-docking to post retrofit dry-docking. This is a feasible approach, when the 

vessel was painted along with the retrofit installation and the expected overall paint characteristics are 

similar. Fig.3 shows the data periods that should be compared in such a situation. 

 

 
Fig.3: Dry-docking (DD) (or berth) to dry-docking  

 

The challenge with this approach is the availability of valid data after the previous dry-docking as that 

data must have been gathered 5 years ago. Collecting, integrating, pre-processing and storing data for 

performance monitoring purposes on existing vessels is not trivial, Baur (2016). Furthermore vessels 

may change their owners within a period of 5 years and the operational data is not always transferred 

to the new owner.  

 

If data after the previous dry-docking is not available, then using the data after the last hull and propeller 

cleaning should be considered. By this one would at least compare clean vessels and mitigate the paint 

effects to a certain extent. In cases where such data is also not available or where the vessel was not 

painted, the data just prior to the dry-docking needs to be taken. Either way how and why the reference 

period was chosen impacts the computed saving and shall be communicated clearly between all 

stakeholders. 

 

3.4. Expect that only one retrofit can be assessed per event 

 

ESDs concerning the hull and propeller performance can typically be installed only during the vessel’s 

dry-docking events. For this reason, these ESDs are often installed in combination with a new paint 

when the vessel is docked. Since Paint performance models discussed in chapter 2.3 are yet too 
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inaccurate to allow a separation of the benefits, the saving cannot be separated between the new paint 

and the new propeller and only the combined saving can be tracked. This also applies when multiple 

ESDs are deployed during a single dry-docking. 

 

This rule does not apply for ESDs which can be switched on and off. These are for instance wind 

assistance devices or air lubrication systems. One can turn the systems on and off and compute the 

difference in performance.  

 

3.5. Review the dependencies of the chosen performance indicator 

 

The operational profile of a vessel can change drastically depending on market condition and associated 

vessel income potential. Fig.4 shows the operational profile of a large container vessel after previous 

dry-docking and after the retrofit dry-docking. A noticeable difference in the sailing speeds and 

draughts of the vessel can be observed between the reference period and the period after the retrofit.  
 

 
Fig.4: Operational profile of a large container vessel before retrofit (left) and after retrofit (right)  

 
Fig.5 shows the performance indicator, Speed Percentage, over draught for a sample data set of a 

container vessel. A light draught dependency of the Speed Percentage can be observed. The Speed 

Percentage is computed slightly higher for lower draughts. Such dependencies mean, that the 

performance indicator becomes less reliable as an assessment metric. Propulsion power baseline models 

which are not ideal will have speed or draught dependencies of the performance indicator. Apart from 

the baseline model this has to do with the used weather correction models, Schmode et al. (2018). 

 

 
Fig.5: Speed Percentage value over draught to analyze the draught dependency 

 

The significant change of operational profile together with a speed and draught dependent performance 

indicator led at the sample container vessel of Fig.4 to a lower saving outcome than it was initially 
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expected. In this particular case the reason was however not that the ESD was underperforming. The 

vessels baseline model was incorrect and after correcting for speed and draught dependencies a saving 

similar to the expectation could be computed.  

 

Most performance baseline models are based on Sea Trial observations and, as the Sea Trial has a very 

limited operation band, extensive extrapolation is done to create the reference model. There is a need 

to review with data how far the set reference model is reflecting the propulsion performance of the 

actual vessel for different sailing conditions, Marioth and Raj (2021). Poor models may lead to mis-

interpretation of the results. 

 

3.6. Demonstrating success – Time matters 

 

In the context of a ship upgrade investment, it is important to achieve alignment within the various 

stakeholders on the ability to demonstrate the improvement benefits claimed. The time it takes to gain 

certainty on a retrofit success is often underestimated. The achievable levels of accuracies are well 

described in ISO 19030 considering different type of measurement technics. Beyond that the following 

points should be considered when setting expectation: 

 

• The technical refinement required for measurement:  

Some devices like Mewis duct or PBCF do not require device specific measurements, but most 

advanced ESDs influence multiple aspects of the vessel energetic ecosystem. As an illustration, 

an air lubrification system will both increase the auxiliary engine load to operate and reduce 

the propulsion fuel consumption. When data is collected from multiple sources, it should be 

expected that the relative time to get to a suitable of accuracy is increased as the data signals 

from all sources need to be valid and a tracking scheme needs to be put in place. 

 

• The variation in vessel operating profile:  

Even when using proper performance indicators, it remains that a vessel operating on specific 

route at fairly constant loading condition will provide a more constant basis to assess the benefit 

of an ESD against. In contrast to this a more varied operating profile will require further inves-

tigations and this often leads to a longer period of review to reach a conclusion. 

 

• The transient nature of the savings:  

Where a traditional ESD such as a duct may provide a constant improvement in propulsion 

efficiency for a given operating speed and therefore fuel saving, a wind assisted propulsion 

contribution will vary over time. This will again increase the period of evaluation required to 

meet a given level of accuracy. 

 

Efforts should be made to create awareness within the organization that it takes time until reliable con-

clusions can be drawn, in particular when the measurement frequency is as low as in a noon reporting 

system. 

 

4. Review your expectations 

 

4.1. Review the expected savings considering the actual operation profile 

 

Any business case is created with a certain expectation about the financial impact to the business. For 

ship operation this means that one needs to make an estimate of the fuel consumptions that the vessel 

will have as well as the operational profile of the future. After the installation of the retrofit the vessel 

will be operated depending on the new market conditions, which can lead to a different operational 

profile. This simple fact is visualized in Fig.6. When a saving is not reflecting the expectations then 

either the impact on the propulsion performance was estimated incorrectly or the operational profile 

itself has changed. It is recommended to review the business case of a technology by computing the 
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expected savings considering the actual operational profile and compare this to the original business 

case before a conclusion is made on how well a technology deliver on its promises. 

 
Fig.6: Business case vs. Actual saving  

 

4.2. Do not underestimate the crew’s contribution 

 

One of the key factors for the successful implementation of ESDs on a ship is the human factor. The 

crew members are the ones who operate and maintain the ship and its equipment, and their actions and 

attitudes can have a significant impact on the performance of the ESDs. It is essential to train the crew 

in order to ensure that the ESDs installed delivers on their energy improvement promises. 

 

Beyond training, developing crew engagement also requires taking their feedback and addressing any 

potential barriers or challenges that may hinder their acceptance or adoption of ESDs, such as: 

 

• Lack of trust: The crew may not trust the ESDs reliability or their suppliers, especially if they 

have had negative experiences with similar devices in the past or when it leads to other com-

plications. 

 

• Change of work patterns: The crew may be reluctant to change their work patterns or routines, 

especially when they perceive that an ESD may lead to additional resource pressure. 

 

• Fear of losing control: The crew may feel that the ESDs reduce their autonomy or authority 

over the ship, especially if they perceive them as intrusive or restrictive. 

 

By training, introducing feedback sessions and engaging the crew, the shipowner can ensure that the 

ESDs installed on the ship are used optimally and effectively, and that they continue to provide con-

sistent and sustainable energy savings over time. 

 

4.3. Leverage additional savings by reviewing the operation 

 

In general, it is assumed that a vessel will be operated with the same operational profile and operational 

speeds, no matter how efficient it is. This is a simplification, as ship operators often have processes in 

place to optimize the operational earnings of their vessels.  

 

The retrofitted vessel will be subject to an optimization process as well, depending on how ship 

operators balance emissions vs. commercial operations, either the financial savings are slightly higher, 

but the emission improvements are not as good as predicted or the savings are lesser and the emissions 

are even better. More efficient vessels have an overall higher level of flexibility when operating. 
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5. Conclusion 

 

This paper aims to provide some insights on how to leverage vessel data to guide a vessel retrofit process 

and measure its outcome. The skillset underlying the points outlined in this document are not 

traditionally present in vessel operators’ teams. This can lead to both an over reliance on ESDs suppliers 

provided information and some difficulty in undertaking a thorough assessment of the benefits provided 

by such equipment.  

 

In addition, as the maritime industry sets itself ambitious decarbonisation target, the need to integrate 

the constraints associated with vessel upgrade good practice to well established vessel life cycle should 

not be underestimated.  

 

Decisions upon ESD installations needs to be made taking the actual condition of the vessel into 

consideration. This can be done by analysing and sharing valid operational data of the hull and propeller 

with the ESD suppliers and ensuring that the propulsion condition of the vessel is understood 

sufficiently by all parties. After that a decision upon the best modification of a vessel can be made. 

 

Acknowledging the limits of our ability to measure and prove the savings of ESDs after installation it 

remains that with finite investment capability our industry needs to give itself the means to make 

decision based on established facts. In this regard shipowners should evaluate whether experience and 

data can be shared beyond a case-to-case basis amongst each other. This will help to identify 

technologies that provided the most significant benefits and operate the fleets most efficiently. 
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Abstract 

 

In this paper we present a simple hierarchical approach for modeling the fuel consumption of vessels 

in different weather and operational conditions. Our model is fitted on fuel consumption data collected 

from a pool of vessels in the Wärtsilä database, and vessel-specific sub-models can be derived from this 

underlying generic model based on the vessels’ characteristics only. In other words, fuel consumption 

can be modelled even for vessels with no fuel consumption measurements. We validate the approach 

using vessel specific data collected by Wärtsilä and show that even though the fuel consumption pre-

dictions for a single vessel in absolute terms will not be as accurate as they would for a corresponding 

data full model, the relative impact of different external conditions can still be reasonably well cap-

tured. Moreover, the accuracy of fuel consumption predictions increases when aggregating predictions 

over multiple vessels. For these reasons, the model can be useful for leg performance analysis or 

weather optimization, but also for fleet fuel consumption or emissions estimation based on AIS data for 

example.

 

1. Introduction 

 

A vessel's fuel consumption depends mainly on its speed through water but also on various weather 

conditions such as wind speed and waves and operational conditions such as draft or stabilizer usage. 

To analyze the performance or optimize the operation of a vessel during a leg, we need a model that is 

able to take into account all these relevant factors. Typically fuel consumption data either in the form 

of (high frequency) measurements or via noon reports is required for the vessel in question to build such 

a model. Unfortunately, this type of data may not always be available. 

 

Modelling vessel fuel consumption based on a combination of high frequency data and noon reports 

has been considered in Antola et al. (2017) and Deymier et al. (2021). Here we first employ a similar 

methodology to build fuel consumption models for a large sample of vessels. Then, we combine this 

ensemble of individual models with corresponding data on vessel characteristics and generalize this 

information to create a single generic fuel consumption model that can be applied even for vessels 

outside the original sample. In this sense, our approach takes after the hierarchical propulsion power 

model introduced in Solonen at al. (2021), however, it does not admit to the Bayesian formulation.  

 

The main benefit of the hierarchical approach, also known as multilevel modeling, is that the resulting 

generic model can be used to predict fuel consumption without any fuel consumption data from the 

vessel to be modelled. Instead, we just need the vessel’s characteristics, that are typically available from 

different online databases or even from the shipowner directly. In this sense the model can be called 

data-free. Input data includes the vessel speed information (that can be obtained from the AIS signal), 

weather information (from forecast), depth information for the squat effect and information on possible 

operational choices like draft and stabilizer usage. 

 

It is evident that different types of vessels have different speed-fuel curves, and they also react to the 

various external conditions differently. Including more of the vessel specific information in our model 

allows us to account for these differences more accurately. On the other hand, we may also improve on 

the model accuracy simply by increasing the number of external conditions that we account for. In other 

words, when tuning the accuracy for our generic fuel consumption model, we have two dimensions we 

can play with: the selection of vessel characteristics and the relevant external effects. Experimenting 

mailto:mikael.saarikangas@wartsila.com
mailto:matti.antola@wartsila.com
mailto:jonne.haapalainen@wartsila.com
mailto:chengheng.wong@wartsila.com
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with different choices we may try to find the most relevant factors in each dimension and the right 

balance between these two dimensions. 

 

We note that in general we cannot expect the same degree of accuracy from a data-free model as we 

would from a corresponding data-full model (i.e., one fitted on the vessel’s own fuel consumption data). 

For instance, hull fouling alone has a significant impact on the fuel consumption that is hard to capture 

based on observable characteristics only. Nevertheless, a data-free model may still be sufficient for the 

purposes of leg performance analysis or weather optimization, where the relative impact of different 

external conditions matters more than the overall fuel consumption in absolute terms. Moreover, if the 

sample used to train the data-free model is representative of a larger population of vessels, then the 

prediction accuracy should improve when aggregating predictions over multiple vessels. Hence, we 

may use the model to estimate fuel consumption or emissions of an entire fleet. 

 

2. The generic fuel consumption model 

 

Here we present the hierarchical vessel fuel consumption model. Instead of following the Bayesian 

formulation in Solonen at al. (2021), we merely employ simple statistical relationships to describe the 

dependence of the model parameters on vessel characteristics. 

 

2.1. General framework 

 

Let us consider a generic fuel flow model that for an individual vessel 𝑖 takes the form 

 

𝑓𝑖 = 𝑓(𝒗, 𝒙, 𝜽𝑖) + 𝜀𝑖, (1) 

 

where 𝑓𝑖 is the fuel flow of the ship, 𝒗 is the velocity through water, 𝒙 is a vector containing information 

about all other relevant external conditions (such as current, wind, sea state, water depth, draft, and 

number of stabilizers out), 𝜽𝑖 is a vector of vessel specific parameters and 𝜀𝑖 denotes the modelling 

error. Many existing models such as the STEAM2 model in Jalkanen et al. (2012) or the fuel flow 

model considered in Antola et al. (2017) fit into this framework. 

 

When specific fuel consumption data for vessel 𝑖 is available, the model parameters 𝜽𝑖 (1) can be di-

rectly estimated via statistical regression. However, when such data is not available, we need to resort 

to alternative means. In white box models, such as STEAM2, the parameters are evaluated from explicit 

formulas. Here we take an alternative approach and estimate the parameters based on fuel consumption 

data collected from a large pool of other vessels. The underlying assumption is that the parameter values 

are close to each other for vessels that are similar in terms of a given set of observable characteristics 

𝒄𝑖. In other words, the parameter vector can be estimated as 

 

𝜽𝑖 = 𝜽(𝒄𝑖) + 𝛈, (2) 

 

where the estimation error 𝛈 is reasonably small. The goal is now to find such a function 𝜽 using indi-

vidual fuel consumption measurements from a large enough number of vessels. The set of observable 

characteristics 𝒄𝑖 can include for instance vessel dimension, vessel type, gross tonnage, construction 

year or information about the engines or propulsion and auxiliary systems. 

 

Once the relationship 𝜽 is known, we obtain the final fuel flow model for the vessel 𝑖 simply by com-

bining the Eqs.(1) and (2). The predicted fuel flow 𝑓𝑖 is then given by 

 

𝑓𝑖 = 𝑓(𝒗, 𝒙, 𝜽̂𝑖)

𝜽̂𝑖 = 𝜽(𝒄𝑖).
  (3) 
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2.2. Example: Fitting a simple model 

 

In the following we use high frequency data collected over a two-month period from a total of 𝑁 = 98 

cruise vessels and aggregated to 15-minute frequency. The mass flow rates have been measured with 

flowmeters installed onboard and then normalized with respect to the calorific value of the fuel type 

being used. For speed through water, we have used values obtained by adding the sea current forecast 

(provided by Tidetech) to the speed over ground measured by GPS. 

 

As an illustrative example, we consider a very simple fuel model of the form 

 

𝑓𝑖 = 𝑎𝑖𝑣
3 + 𝑏𝑖 + 𝜀𝑖, 𝑖 = 1,… ,𝑁. (4) 

 

We first estimate the parameters 𝑎𝑖 and 𝑏𝑖 for each vessel separately with simple linear regression for 

the Eq.(4). We then examine the relationship between the obtained estimates and the vessel length (be-

tween perpendiculars) 𝑙. In Fig.1 we have plotted the estimated values for the parameters 𝑎𝑖 and 𝑏𝑖 as a 

function of 𝑙𝑖
𝑘, where 𝑘 =

3

2
. From these plots we obtain the relationships 

 

𝑎𝑖 = 𝛼𝑙𝑖
𝑘

𝑏𝑖 = 𝛽𝑙𝑖
𝑘 .

 (5) 

 

From the plots we have filtered out some outliers where the vessel specific fits are unrealistic (fuel flow 

has no dependence on 𝑣). Using the generic model, we can find somewhat sensible values for these 

vessels as well.  

 

 
Fig.1: Parameters 𝑎𝑖 (intercept) and 𝑏𝑖 (slope) estimated from Eqs.(5) and plotted against vessel length 

to the power 𝑘 =
3

2
 for a sample of 𝑁 = 98 cruise vessels. 

 

In Fig.2 we have presented LOWESS plots of the model residuals. We note that apart from a couple of 

vessels, the residuals as a function speed through water seem reasonably balanced. Moreover, there 

seems to be no obvious dependence on vessel length in the average residual data. 

 

Note that even though we have used measurement data with 15-minute frequency in this example, the 

model could equally well be fitted using low frequency data (e.g., noon reports). In this case we can 

eliminate aggregation error by combining the low frequency fuel flow data with high frequency inputs 

like SOG and sea current forecasts as was done in Antola et al. 2017 and Schmode et al 2020. This 

might be necessary when building models for many non-cruise vessel types (such as tankers, bulkers, 

cargo vessels and the like) where dedicated fuel flow meters have been installed less often. 
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Fig.2: Left: LOWESS plots of the model residuals as a function of speed through water for each of the 

N=98 vessels. Right: The average model residual for each vessel as a function of vessel length. 

 

2.3. Characteristics vs effects 

 

In our study, we begin by dividing our set of N=98 cruise vessels into two samples: a training sample 

and a test sample, each consisting of 49 vessels. Using the 15-minute frequency data we then fit several 

models that include a different number of terms to model the external effects and a different number of 

vessel characteristics. Every one of these models includes at least a term for the speed through water 

cubed and an intercept to model the service power consumption similarly to the simple model in Section 

2.2. However, we also add additional terms one-by-one, to account for engine idle consumption, wind 

resistance, stabilizer resistance, wave resistance and squat effect. Similarly, one-by-one we add addi-

tional characteristics that the model parameters depend on. For the characteristics we use vessel length, 

deadweight tonnage, breadth, and the days since last drydock, however, we apply simple transfor-

mations and scaling for each of the variables to reduce intercorrelation. We then compare the perfor-

mance of these various models against each other. 

 

Table I: The RMSE values (tons per day) for different data free models evaluated on the test data. The 

number external effects included in the model increases when going to the right and the number of 

vessel characteristics included in the model increases when going down. More precisely, each column 

corresponds to a model that includes a term for the effect in that column plus terms for every effect in 

the columns to the left plus an intercept term. Each row corresponds to a model that includes a depend-

ency on the characteristic in that row plus dependencies for all characteristics in all the rows above. 

 

Speed 

through 

water 

Engine idle 

consump-

tion 

Wind re-

sistance Stabilizers 

Wave re-

sistance Squat 

Length 18.79 16.63 15.77 15.74 16.02 15.96 

Deadweight 
tonnage 

17.60 15.21 14.16 13.41 13.44 13.47 

Days since 
drydock 

17.04 14.72 13.67 13.06 13.19 13.22 

Breadth 17.40 15.37 14.38 13.87 14.07 14.10 

 

The root mean square error (RMSE) values evaluated from the test data for the obtained ensemble of 

different models are presented in Table I. We note that generally speaking, the values decrease both 

when moving down and moving to the right. In other words, the model becomes increasingly more 

accurate the more effects and the more vessel characteristics we include in it. 
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In general, significant improvements to the data free model's accuracy are hard to achieve, and already 

a simple model can predict the actual fuel consumption reasonably well. 

 

2.4. Estimating prediction accuracy for a full model 

 

The evaluation of the model's accuracy, considering all six effects and four characteristics from Table 

1, is conducted using test data. When comparing the modeled data to the actual measurements, the 

RMSE in fuel flow for vessels sailing at speeds over 5 knots was determined to be 14%. The measure-

ment vs. model prediction and relative model residuals are presented in Fig.3. 

 

 
Fig.3: Left: Measured vs modeled consumption of 1000 randomly sampled data points with STW over 

5 kn from test data set. Right: Relative residual of fuel consumption as a function of vessel speed. 

 

3. Applications 

 

Data-free models have many applications, ranging from optimization and verification to predictive anal-

ysis etc. These models enable evaluation of alternative routes, the estimation of fuel consumption for 

different vessel configurations, and the comparison of performance across multiple vessels. In this sec-

tion we present two different applications for the data free model introduced in Section 2. 

 

3.1. Leg performance analysis 

 

Data-free models provide the means to optimize and analyze leg performance, enabling speed optimi-

zation at various stages of the voyage, including planning, execution, or post-voyage. Fig.4 presents an 

example where an actual speed profile from a 6200 nautical mile route was obtained, and its corre-

sponding fuel flow rate was simulated. The simulation resulted in a fuel mass estimate of 1558 tons for 

the route. Subsequently, the same model was employed to optimize the voyage, resulting in a simulated 

fuel mass of 1515 tons after optimization, representing a fuel savings of 3%. 
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Fig.4: Simulated and optimized fuel flow rate 

 

3.2. Fleet emissions estimation 

 

To estimate fleet emissions, EU MRV data was utilized. Specifically, emission data and AIS tracks 

from 2021 were acquired for 107 passenger ships. Among these vessels, 20 were identified as exclu-

sively sailing in Europe, thereby providing comprehensive MRV reports for the entire year. The mod-

eled CO₂ emissions were calculated through a three-step process. Firstly, AIS tracks with a 1-hour res-

olution were downloaded for each vessel. Secondly, weather data for each point in the AIS tracks was 

obtained from a database. Lastly, vessel characteristics for each ship were downloaded from Clarkson. 

By combining the data gathered in steps 1-3, the fuel flow and CO₂ emissions of the vessels were sim-

ulated for the year 2021. The results of this simulation are presented in Fig.5. Notably, the figure clearly 

demonstrates an overestimation of CO₂ emissions by the model, which can likely be attributed to dis-

crepancies in the vessel's fuel consumption during port periods. This can be for example due to differ-

ence in the amount of service power consumption in the ships that are sailing only in Europe. 

 

 
Fig.5: Reported vs. simulated CO₂ –emissions for year 2021 for 20 vessels. 
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4. Discussion 

 

In this paper we have presented a simple hierarchical vessel fuel consumption model fitted on high 

frequency data collected from cruise vessels. Compared to the Bayesian hierarchical model in Solonen 

at al. (2021) the model presented in this paper is easier to fit and takes into account more of the vessel’s 

characteristics. Based on our analysis it also gives reasonably accurate predictions. However, our model 

does not fit into the Bayesian framework and without additional safeguards, might result in unphysical 

model parameters in some extreme cases. 

 

We note that cruise vessels are in general hard to model without dedicated fuel flow measurements. 

This is because a significant amount of the total fuel consumption is related to service power consump-

tion, which can differ a lot from vessel to vessel and is driven also by many factors that are unmeasur-

able in practice, and because hull fouling is expected to have bigger effect for cruise vessels that spend 

relatively long time periods at port compared to many other vessel types. Fitting a similar type of model 

for other types of vessels might therefore yield even more accurate results. 
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Data Recording on Board – Are We Getting it Wrong from the Start? 
 

Falko Fritz, Albis Marine Performance, Hamburg/Germany, falko.fritz@albis-mp.com 

 

Abstract 

 

This paper discusses data acquisition strategies in performance monitoring, moving beyond the black-

and-white discussion on manual vs automatic recording. The benefits and drawbacks of both 

approaches are shortly recapitulated, before presenting a mixed strategy for high data quality at 

reasonable effort. Using high frequency sensor data only where required and improving the noon report 

data quality for everything else, is often a more sustainable approach to vessel performance manage-

ment than trying to replace all manual data entries with sensors. 

 

1. Introduction 

 

Increasing fuel costs and stricter regulations on CO2 emissions push the shipping industry to take a 

closer look on vessel efficiency. More and more companies invest in professional solutions to measure 

performance parameters on board, process and evaluate them, and implement the results in their 

decision-making processes. 

 

Good quality results rely on good quality data evaluation methods, which in turn require good quality 

raw data from the vessels, Fig.1. 

 

 
Fig.1: Typical information chain for vessel performance monitoring 

 

However, while the data processing algorithms using advanced statistical methods, machine learning 

or other suitable solutions is widely discussed and promoted by the analysis service providers, the 

collecting of raw data on the vessels themselves is often overlooked. Much of the quality of the essential 

information is actually defined long before the first dataset is recorded. The designing of an adequate 

data acquisition solution is an important additional first step to reach reliable results at the end of the 

information chain, Fig.2. 

 

 
Fig.2: Information chain with added data acquisition planning 

 

This paper looks at different data collecting methods and puts them in perspective with the most relevant 

questions the data are eventually supposed to answer. 

 

Data collection 
on board 

Evaluation in on-
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2. High Frequency Sensor Data vs. Noon Reports 

 

The mandatory submission and verification of vessel consumption data by the IMO DCS and EU MRV 

processes has made the shipping industry more aware of inconsistent or inaccurate fuel recordings. 

Tank soundings and manual reporting processes are often considered inadequate for the future demands 

of ship modelling. Studies have shown an inherent uncertainty in noon report data (1) and many shipping 

companies consider switching to automatic sensors as their primary source of vessel consumption 

information. 

 

 
Fig.3: Speed and consumption data from noon reports, exemplary three-month period 

 

 
Fig.4: Speed and consumption data from sensors, 10 minutes intervals, same three-month period 

 

In addition to working without manual entering of numbers in a form, automatic sensors also have the 

benefit of delivering readings in almost any desired frequency, e.g., 1 minute or 10 minutes intervals 

? 

✓ 
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instead of just one speed and consumption entry per day in a traditional noon report. The graphs shown 

in Fig.3 and Fig.4 illustrate the difference, using a vessel consumption curve as an example. 

 

It becomes obvious that the data in the noon reports are not sufficient to derive a consumption curve 

reliably, Fig.3. The majority of data points cluster at the operation speed of the vessel and the scatter of 

data at slower speeds is large. The sensor-based diagram on the other hand makes it very easy to 

determine the shape and position of an approximation curve, Fig.4, so that data points taken at various 

speeds can easily be normalized to a defined reference speed (15 kn in this example). In addition, when 

ambient conditions are also available for each point, the higher measuring frequency significantly 

enhances the informational content of the data and makes them accessible to further analytics and 

advanced statistical methods. For this purpose, the sensor data have some obvious benefits.  

 

3. Equipping a Vessel for Automatic IMO DCS Data Collection 

 

Regarding at the requirements for IMO DCS and EU MRV reporting, though, main engine (abbreviated 

M/E hereafter) consumption and ship speed are not the only necessary inputs. In order to collect all data 

with automatic sensors, all consumers must be equipped accordingly. Including an additional shaft 

power meter and a wind anemometer for further analytics, the sensory equipment layout of the vessel 

could look something like the example shown in Fig.5. 

 

The measuring devices are connected to signal converters which feed their data to the ship’s Ethernet 

system and the subsequent IT infrastructure on board. On a cargo vessel with vibrations from the M/E, 

each cable, coupling, and the devices themselves are potential points of failure. 

 

 
 

Fig.5: Multiple electronic devices and connections create a large number of potential points of failure 

 

If one of the signals fails, this is usually detected by automatic data checking processes down the line. 

Finding the technical reason for the error, though, can be a challenge. Firewall settings, IT system 

updates, hardware issues, etc., can all be the potential culprits. Ship crews understandably often lack 

the experience to identify the problem reliably and quickly. Assistance from experts at the office by 

remote access may be time consuming as well. Consequently, and especially when new hardware is 

needed, it can take several days, weeks or even months until the complete system is fully restored. 
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Missing data for a limited period of time are no big issue for evaluations like hull condition monitoring. 

Hydrodynamic analyses require the ship to be moving, so while it is in port or on anchorage, there is a 

gap in the useable data anyways. The evaluation will just be resumed as soon as the vessel is back in 

service. 

 

For calculating the Annual Emission Ratio (AER) and CII rating, though, missing data are a problem. 

A total, yearly sum of CO2 emissions cannot be calculated if some of the fuel consumption data is 

missing. So, when that happens, the responsible companies have to resort to noon reports as a backup. 

This implies that even when sensors have been installed, these documents still need to carry all the 

required information, if only as a redundancy. Furthermore, present and future correction factors in the 

CII guidelines require to not only record the amount and type of fuel that was consumed, but also the 

purpose for which it was used, IMO (2022). This added differentiation is difficult to realize with sensors. 

Consequently, manual entries in noon reports will still be a relevant source of information for many 

years to come. 

 

4. Designing an Efficient Data Acquisition to Meet the Requirements 

 

As the previous chapters already suggest, vessel efficiency evaluations and the IMO / MRV data 

collection schemes have some very different requirements regarding the data acquisition. This becomes 

even more evident when comparing the two purposes systematically, Table I. 

 

Table I: Requirements of data acquisition for hull condition monitoring and IMO DCS / EU MRV 

 
 

Hull Condition Monitoring IMO DCS / EU MRV 

Required data Ship speed through water, 
Propulsion power and/or M/E 
fuel consumption rate, 
Wind conditions, 
Ship speed over ground, 
Vessel draft, 
Further vessel and ambient 
conditions like trim, swell, water 
temperature and depth, rudder 
angle, etc. 

Distance run, 
M/E fuel consumption, 
A/E fuel consumption, 
Boiler fuel consumption, 
Other fuel consumption, 
Fuel types used, 
(Purpose of fuel use, if 
applicable) 

Required recording 
frequency 

Preferably 1/h or higher Per voyage 

Required 
continuity 

Moderate importance, 
interruptions lead to a 
temporary lack of evaluation 

Crucial, interruptions lead to 
incomplete yearly sums 

 

 

There is almost no overlap between the two columns, neither regarding the recorded parameters nor in 

the required frequency or the implications of temporary data gaps. The only data that have a direct 

accordance are the speed over ground (abbreviated SOG hereafter) / distance run and the M/E fuel 

consumption rate in case it is used to reference the propulsion power for hull condition monitoring. 

 

Since the M/E is also the largest fuel consumer on cargo vessels, this is where the investment in 

measuring devices also makes the most sense financially. Monitoring the primary parameters vessel 

speed and propulsion energy both accurately and in a higher frequency is beneficial for multiple 

purposes. Professional hull condition monitoring allows to react quicker and take better informed 

decisions, helping to keep the vessels in good condition, reducing fuel costs and emissions, but also 

avoiding pre-emptive hull cleanings that might wear the hull coating down for no good reason. 
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Understanding the vessel propulsion properly and improving the vessel efficiency has a short return on 

investment. Adding further sensors merely for the sake of automizing the IMO DCS data acquisition 

process does not have a comparable savings potential. The amount of fuel that can be reduced by 

optimizing the use of generators and boilers is typically small compared the effects from optimizing 

propulsion. This leads to a situation of diminishing returns as shown in Fig.6. 

 

 
Fig.6: Diminishing returns of adding further sensors 

 

In addition, the plausibility checks and other methods used to verify the incoming sensor data can also 

be applied to noon report inputs. One reason for the data uncertainty found in the 2013 study, Aldous et 

al. (2013), certainly is that people are more careless when they feel that the values they fill in are not 

really used for anything important anyways. Based on the experiences of Albis Marine Performance, 

the quality of manual entries can be improved significantly if the crews also receive the vessel 

performance results as feedback. 

 

5. Measuring Propulsion Energy and Speed Through Water Accurately 

 

Delivered power to the propeller and ship speed through water (abbreviated STW hereafter) are the two 

primary parameters in ISO 19030, Measurement of changes in hull and propeller performance, ISO 

(2016). Along with SOG and wind conditions, they are the two variables that are most important to be 

recorded accurately and in a sufficiently high frequency. 

 

5.1. Delivered Power vs. M/E Fuel Consumption Rate 

 

Torque meters are typically used to measure the shaft power of vessels. The manufacturers of the 

devices often specify that a zero setting or recalibration should be conducted every 6 months, 

https://www.danelec.com/products/ship-performance-monitoring/kyma-shaft-power-meter/. However, 

even when this is not done, the output data are often taken at face value. Experiences with different 

power meters and measuring principles have shown that some types have a significant lack of accuracy 

particularly in slow steaming conditions when the M/E load is comparatively low, e.g., by systemati-

cally overstating the delivered power in this range. Cylinder pressure measurements can be used to 

verify torque meter readings periodically, but these are normally done at 85% MCR and would not 

detect implausible data at lower loads. If the primary raw data are affected by errors like this, all further 

calculations down the information chain are compromised. Statistical methods may return misleading 

results, AI methods trained with skewed data will not detect these errors either, etc. 
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To mitigate this, Coriolis mass flow meters can be employed. They have become more and more 

common on cargo vessels during the past decade, and for good reason. They have no moving parts, do 

not require additional bypass piping or fuel filters and are generally very reliable, based on practical 

experience. Furthermore, they have a unique advantage over torque meters when installed as a 

differential measurement in the M/E booster circulation. 

 

In this configuration, an inlet flow meter in front of the M/E measures the fuel flow to the motor and a 

second outlet flow meter records the fuel flow back to the day tank. The difference of fuel mass in 

minus fuel mass out is the fuel mass consumed by the M/E. But this also means that every time the M/E 

is switched off, but the booster pumps are still feeding fuel through the circulation lines, both flow 

meters measure the exact same fuel flow and the difference between them should be zero. If it is not, 

there is something wrong with one of the devices and attention is required. 

 

 
Fig.7: Exemplary vessel data showing when the correct functioning of the fuel meters can be checked 

 

Fig.7 shows data curves as an example. Every time the vessel stops its M/E, both the inlet and the outlet 

flow meters still record a fuel flow (1st diagram), the shaft revolutions drop to zero when the engine is 

stopped (2nd diagram) and the fuel consumption rate also shows zero (3rd diagram). This is a highly 

valuable method to validate the fuel meter data continuously. They can then either be used to control 

the plausibility of the shaft power meter or to replace it entirely and provide the M/E fuel consumption 

rate instead of the delivered power as primary propulsion energy variable for performance evaluations. 

 

5.2. Acquiring Accurate Speed Through Water Data 

 

Last but not least, the STW data have a significant influence on the quality of vessel performance 

analyses. The power demand of a ship rises to the cube of ship speed, more or less. For instance, a 

power increase of e.g., 5% only speeds the vessel up by 1.5%. At 12 kn speed, that is an increase of less 

than 0.2 kn. As a consequence, this means that the ability to measure 12 kn STW precisely to ±0.2 kn 

has the same influence on the overall result as measuring the propulsion power or fuel consumption to 

±5% accuracy. This basic dependency illustrates the importance of the STW variable. 
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But while SOG is very easy to measure highly accurately by GPS, STW is harder to tackle. Due to 

ocean currents, tidal effects or other types of flow, SOG and STW typically differ by 0.1 to 1 kn in most 

waters, but even up to 3 kn in some waters with strong currents. Two methods to determine the precise 

STW are widely used: 

 

1. recording SOG and correcting it for currents using data from a weather service provider,  

2. using the ship speed log on board to measure STW in high frequency. 

 

Both methods have their benefits and drawbacks. The main benefit of using weather data to calculate a 

ship’s STW is that all required data can be sourced on land without requiring sensors on the vessel or a 

data connection to it. The vessel position and SOG can be taken from the AIS signal and surface current 

data can be bought from weather service providers. However, there are two major drawbacks. First, the 

data from the weather services have a low resolution both in time and space. New data are typically 

available every 6h for a grid with many miles between each point. But ocean currents flow in turbulent 

eddies that break down into smaller eddies, which shift and move constantly. Ships can easily travel in 

and out of several of these eddies within a few hours, making it impossible to obtain the exact surface 

currents for any precise position and time from weather data. Second, the surface currents offered by 

weather services are mainly calculated from satellite data which only observe the surface of the water. 

Wind influences the currents near the surface, so that their speed and direction differ from currents 

deeper down in the water. On many vessels, more than 50% of the hull friction happen many meters 

below the surface, and satellites cannot assess the currents at that depth, Fig.8. 

 

 
Fig.8: Measuring ship speed through water where hull friction is most relevant 

 

The major benefit of recording the STW data from the ship speed log directly is that they are measured 

where most of the hull friction occurs, namely at the depth of the bottom of the vessel. On the downside, 

ship speed logs are known to be slightly inaccurate and subjected to fouling influences. The sensors are 

installed on the bottom of the ship and marine growth near the sensor may influence the fluid dynamics 

in that particular area enough to offset the reading by some percent. In small ranges like ±0.2 kn, this 

offset cannot be distinguished from an actual current just by analysing the sensor data alone. To mitigate 

the measuring inaccuracy, correction functions that take SOG and weather data into account can be 

employed. For instance, the influences of the turbulent eddies in ocean currents average out over time, 

which improves the accuracy of the correction function. 

 

6. Conclusion 

 

Shipping is a competitive business in which fuel consumption and emissions become more and more 

important. The IMO has embarked on a mission to reduce the net CO2 emissions to zero by 2050 and 
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the regulations to reach this goal are developing quickly. Consumption data that were previously entered 

in noon reports are measured by sensors more and more. However, more electronic equipment on board 

also results in more potential points of failure and data gaps lead to incomplete yearly sums in the IMO 

DCS documentation. 

 

High frequency data are particularly useful for the evaluation of vessel efficiency, like e.g., hull 

condition monitoring. For this purpose, only the M/E needs to be equipped with sensors. As a result, 

investing in fewer sensors where it matters the most and improving the quality of noon reports 

everywhere else can be the most reasonable and cost-effective way to reach good quality analysis results 

and consistent inputs for IMO DCS and EU MRV. 
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Abstract

 

This paper deals with a machine learning methodology for decomposing hull and propeller 

performance. This is facilitated by an ensemble approach predicting both propeller revolutions and 

shaft power under consistent simulated reference conditions. The derived performance estimates are 

compared to ISO 19030 and a semi-empirical framework aimed at isolating propeller performance. 

The case ship is a >300 m cruise vessel sailing in the Caribbean Sea. The auto-logged sensor data 

covers seven years with three dry-docking intervals and numerous in-water cleaning events. It is 

concluded that the separation of propeller performance is subject to multiple uncertainty sources and 

can thus not be reliably assessed. The practical relevance and potential shortcomings of the method 

are discussed. 

 

1. Introduction 

 

The adoption of the revised IMO Greenhouse Gas (GHG) strategy is a crucial milestone for adhering 

to the Paris Agreement, however, at the same time, it increases pressure felt by various stakeholders in 

the maritime industry. In addition to the volatility of fuel prices and freight rates, international 

regulations such as the entry into force of the Carbon Intensity Indicator (CII) or the upcoming EU 

Emissions Trading System (ETS) incentivize shipping companies to further streamline their operations. 

IMO (2022) attributes significant potential for reducing carbon emissions by optimizing ship operations, 

e.g. up to 75% can be achievable through extensive speed optimization and up to 25% through 

biofouling management. In this particular survey, operational saving potentials show a similar order of 

magnitude as ship design measures. For instance, shape optimization of the hull and superstructure may 

lead to a reduction in fuel consumption of up to 20%, (IMO, 2022). In addition, synthetic and carbon-

neutral E-fuels may show issues regarding upscaling and retrofitting to existing vessels, which 

potentially disqualifies them as a short-term measure. Hence, IMO puts the main focus of the present 

decade on enhancing vessel operation for minimizing the carbon intensity of the existing world fleet. 

 

Marine growth is plaguing the operation of ships ever since and does not only lead to higher fuel 

consumption due to an added frictional resistance but also to the spreading of aquatic invasive species. 

Therefore, after the introduction of IMO regulations on ballast water treatment, it was the next logical 

step to establish a joint project with a focus on biofouling and its mitigation. For this reason, the 

GloFouling initiative has been launched by several intergovernmental bodies, GloFouling (2022). As a 

response, the 80th session of the Marine Environment Protection Committee (MEPC) released several 

recommended guidelines for in-water inspections and the quantitative assessment of fouling as well as 

coating conditions, IMO (2023). Stressing the significance of marine growth on energy efficiency, a 

review from I-Tech found that 44% of the entire world fleet shows hard fouling of 10%, which in turn 

corresponds to a 36% increase in required propulsion power, I-Tech (2020). Thus, the importance of 

ship performance monitoring has been amplified through the recently stipulated international 

regulations.  

 

In most studies, including the industry standard ISO 19030, an aggregated performance indicator is 

provided, i.e. considering both hull and propeller. However, for predictive maintenance, i.e. proper 

scheduling of propeller and/or hull cleaning, the decomposition of both contributions is a prerequisite. 

Carlton (2018) postulates that the performance of the hull and propeller are of similar importance due 

to the decrease of the propulsive efficiency caused by biofouling, erosion due to cavitation, and other 

mechanical damages of the propeller blades. In fact, propellers show all fouling types seen on ship hulls, 
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except extensive weed fouling. Farkas et al. (2021) underline that the propeller surface per unit area 

shows even greater importance on vessel performance than the hull surface. Obviously, both 

components are highly interrelated complicating the separation of hull and propeller performance due 

to inherent interaction terms. Generally, the investigations of the effect of increased propeller roughness 

can be split into two categories: Simulation-based and data-driven studies.  

 

In open-water conditions, Sezen et al. (2021) found in a Computational Fluid Dynamics (CFD) study 

that an increase in propeller roughness leads to a decrease in tip vortex cavitation and thus underwater 

radiated noise. Regarding propeller efficiency, Farkas et al. (2021) examined the influence of 

increasing surface roughness on three benchmark propellers using CFD and in the case of heavy 

calcareous fouling an efficiency decrease of around 20% was reported. Based on in-service data, the 

cleaning effect of polishing a heavily fouled propeller (i.e. heavy slime and barnacle fouling) on a large 

tanker was with ca. 8% in a similar order of magnitude (personal communication M.H. Schmidt, June 

2023).  

 

In an early data-driven study, Andersen et al. (2005) used 2 years of noon-reported data of two sister 

vessels for determining a ca. 4% increase in propulsive efficiency when using a KAPPEL propeller in 

comparison to using a conventional propeller. Based on high-frequency sensor data, Paereli et al. 

(2016) investigate the impact of a propeller polishing as well as the retrofitting of propeller boss cap 

fins on the hydrodynamic performance of a tanker. The overall decomposition problem is discussed and 

challenges are outlined. Similarly, Ballegooijen and Helsloot (2019) utilize approximately 1 year of 

sensor data acquired aboard a passenger vessel for determining the individual components of hull and 

propeller performance. Both mentioned studies rely on the availability of torque and thrust 

measurements but still show considerable uncertainty. The only known machine learning approach for 

decomposing hull and propeller performance has been proposed by Park et al. (2018). The presented 

methodology builds upon an ensemble approach, where the relationships between ship speed and 

propeller revolutions and between propeller revolutions and shaft power are modeled by two separate 

estimators. Several theoretical considerations are presented using synthetic data and a forecasting model 

is presented, which is claimed to be capable of extrapolating vessel performance into the future.  

 

In Mittendorf et al. (2022a) it was shown that ship monitoring data is subject to distributional shifts or 

rather concept drift, which results from the attachment and removal of biofouling or changes in the 

operational profile. Hence, vital statistical assumptions of machine learning are violated and an 

incremental learning paradigm is necessary for capturing these effects. The present case study – 

considering a larger cruise vessel – is subject to higher biofouling pressure due to its operational area 

and profile. Due to the twin-screw arrangement and the 6-bladed propellers, i.e. a larger wetted propeller 

surface susceptible to fouling, the dedicated monitoring of propeller performance seems appealing for 

scheduling propeller cleanings or inspections. For this reason, the approach of Park et al. (2018) will 

be implemented into the adaptive method proposed by Mittendorf et al. (2022a). In contrast to Park et 

al. (2018), there will be a larger focus on actual in-service data and the comparison to other benchmark 

methods for checking the validity of the methodology. Similar to Mittendorf et al. (2022a), the 

aggregated performance estimate is compared to the results of the ISO 19030 standard, whereas the 

isolated propeller performance will be validated against the results of a semi-empirical framework, 

which relies on the Wageningen B propeller series. It is stressed that the dataset does not comprise 

thrust measurements and therefore it is assumed that the delivered propeller thrust is unaffected by the 

surface roughness. In fact, this assumption can be supported by the experimental study of Mosaad 

(1986). In the final part, individual uncertainty sources and shortcomings of this study are elaborated 

on.  

 

2. Dataset 

 

The case ship is a >300 m cruise vessel (>100,000 GT), which predominantly operates in the Caribbean 

Sea. In general, cruise ships are exposed to relatively high biofouling pressure due to service in areas 

with a higher water temperature and an operational profile dominated by frequent port calls. In fact, the 

present case ship shows an average activity level, i.e. instances with notable forward speed, of slightly 
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more than 60%. The operating area is characterized by significant sun exposure, higher salinity in open 

sea conditions, and a higher density of nutrients and chlorophyll in coastal regions. All of the above are 

crucial driving factors for marine growth. In addition, Carlton (2018) underlines that the viscous 

resistance component of cruise ships makes up around 66% percent of the calm water resistance, i.e. 

the increased surface roughness due to biofouling has a high impact on the ship’s total resistance. Other 

complexities of cruise vessels include the large windage area and the balconies, which severely affect 

the wind resistance as well as the drift of the ship in adverse weather conditions. Typically for cruise 

vessels, the case ship is equipped with two propellers with a fixed pitch and shaft brackets. The twin-

screw arrangement leads to a relatively low wake fraction, i.e. a lower interaction of hull and propeller 

flow, which may benefit the decomposition of the related performance components. Moreover, cruise 

ships sail under similar draft conditions, eliminating the draft dependency of the performance indicator.  

 

The present dataset encompasses 7 years of auto-logged sensor data and includes 2 dry dockings with 

full blasts. The considered shipping company maintains the hydrodynamic performance of the ship 

through numerous in-water cleanings. Additionally, silicone-based fouling release coatings (FRC) are 

applied to the hull in case of all three dry-docking intervals. Another interesting aspect of this dataset 

is the abrupt change in the operational profile (as well as biofouling) due to the restrictions imposed 

due to the spread of the COVID-19 pandemic in early 2020. This not only led to a decrease in activity 

but also in forward speed, which can be seen in Fig.1, where the distribution of the non-dimensional 

forward speed (Fn) is depicted. As can be inferred, the distribution of the advance speed is multimodal, 

whereby it is understood that the peak around Fn=0.09 only results from sailing during the COVID-19 

period.  

 

 
Fig.1: Histogram of the non-dimensional ship speed Fn based on the filtered dataset (left) and filtering 

for steady sailing conditions shown for the non-dimensional shaft power PD in early 2020 (right) 

 

The initial dataset has a sample size of approximately 6.2˟106, but the data is resampled to 10-minute 

window-wise averages. Moreover, outliers and instationary samples are disregarded by a rigorous 

filtering methodology, with details presented in Mittendorf et al. (2023a). In short, samples where GPS 

and log speed are below 5 kts are dropped and shallow water instances were filtered by dismissing 

samples with a depth Froude number FnH>0.5. Unsteady conditions were identified based on the 

relative variance of several sensor readings, e.g. heading, shaft power, etc. A sample result of the 

filtering procedure is shown in Fig.1 on the left-hand side. It is noted that the tilde indicates 

normalization – in this case by the maximum of the measured shaft power. It is appreciated that 

acceleration phases and port stays are filtered out by the applied procedure. Moreover, the bathymetry 

data and the sea surface temperature are taken from a known hindcast provider for the reason of 

robustness. In the present case, sea state information is not considered since the case ship has slender 

hull lines, i.e. is less affected by added-wave resistance, and also due to the extensive use of weather 

routing by the respective shipping company.  
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3. Methodology 

 
In the present section, both the machine learning approach and the semi-empirical framework are 

elucidated. After an initial study, it was decided to provide an aggregated propeller performance score 

for both portside and starboard propellers. In addition, both methods provide the relative added power 

(or power increase) ∆P̃D as a key performance indicator (KPI), which is defined in the following. 

 
The indexes t and t0 denote the running time index and the baseline (or origin), respectively. In order to 

keep consistency with the work of Park et al. (2018) the power increase was chosen over the speed 

deviation, which is seen as the default KPI in the ISO 19030 standard. In addition, it is emphasized that 

both methods rely on the assumption that the propeller thrust is not a function of the surface roughness. 

 

3.1. Machine learning approach  
 

Incremental learning pertains to the field of continual learning, which comprises several advanced 

learning paradigms mimicking the sequential way of human learning. In fact, adaptability is a key 

characteristic of a digital twin according to Kritzinger et al. (2019): (1) A digital model can be seen as 

a simulation model, e.g. CFD, since there is no feedback from the actual physical asset. (2) A digital 

shadow has a one-way data flow to the physical asset, e.g. a static machine learning model, (3) whereas 

a digital twin has a two-way data flow, i.e. the model is continuously updated and deployed to the 

physical object. Thus, the presented adaptive methodology can be considered a digital twin.  

 

The underlying regression model is a multilayer perceptron consisting of 4 hidden layers. The 

considered features include speed through water STW, draft T, trim ΔT, sea surface temperature SST, 

and the vector components of the relative wind (Vr,x and Vr,y). As mentioned, no baseline data is available 

and therefore the model has to derive a baseline from in-service data obtained during the first 3 months 

considered. The so-called warm-up period is used for training the entire network, whereas at times after 

only the parameters of the last two layers were adapted based on a subsample taken from the time 

interval. Following the findings of Mittendorf et al (2023b), layer freezing is applied for maintaining 

the knowledge of prior training instances. Moreover, the training methodology is conducted window-

wise, i.e. a 3-month window is shifted roughly every month (i.e. 40 days). It is noted that this leads to 

a smoothing effect but may also introduce a lagging behavior of the performance estimate. The 

calculations were performed on an Intel Core i7-8565U CPU, 1.80GHz with 16 GB physical memory 

(RAM), and the used deep learning library is TensorFlow 2.6, Abadi et al. (2015). 

 

In contrast to other papers, the degree of concept drift (or biofouling) is determined implicitly. The 

individual performance contributions are assessed under the same simulated reference conditions for 

maintaining consistency. The enforced conditions roughly reflect sea trial conditions, i.e. a moderate 

seaway with 5 m/s headwind. Additionally, the mean of the advance speed, draft, and trim are 

considered. According to Park et al. (2018), it is assumed that hull fouling leads to speed reduction at 

constant propeller rpm, which is caused by an increase in frictional resistance. In other words, hull 

fouling results under constant speed in an rpm increase due to the required thrust increase. The propeller 

fouling component on the other hand leads at constant propeller rpm to a torque (and thus power) 

increase. Trivially, the total ship performance is the sum of these two subcomponents. This is illustrated 

in Fig.2, where two rpm-power curves are shown for both baseline and actual conditions. The ensemble 

approach is carried out in a sequential manner. Initially, for a given ship speed, the rpm for baseline 

(rpm0) and actual conditions (rpm1) are determined, where the latter is taken from the adaptive model. 

In the second step, the required engine power at points a, b, and c in Fig.2 are calculated based on the 

previously obtained rpm values. For this reason, a separate model is needed, which maps the 

relationship between propeller revolutions and required shaft power for different environmental and 

operational conditions. This presented sequential approach has the disadvantages of being 

computationally less efficient and the possible propagation of errors.  
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Fig.2: Contribution of hull and propeller performance for two different conditions considering shaft 

rpm vs. shaft power, according to Park et al. (2018)  

 

3.2 Semi-empirical approach  

 

The presented data-driven approaches in the literature review in Sec. 1 rely on thrust measurements. 

However, these can be unreliable, as shown by Hansen (2012) using data from a Post-Panamax 

container vessel. Additionally, thrust meters are rarely installed onboard vessels – including the 

considered case ship. Interestingly, Paereli et al. (2016) outline a methodology for isolating propeller 

performance without the need for thrust meters, and the following method points in a similar direction.  

 

Due to the lack of sea trial and propeller curves, a semi-empirical framework is set up. The case ship is 

a twin-screw vessel and is equipped with two fixed-pitch propellers (FPP) with a blade number of Z=6. 

The diameter D is known, but the open-water propeller curves are unavailable. The calm water 

resistance is calculated following the procedure presented in Hollenbach (1998), a 20% sea margin is 

applied, and the approximate propeller is optimized for a design speed of 22.5 kts. The propulsive 

coefficients are calculated according to Heckscher, cf. Bertram and Schneekluth (1998), and the 

propeller curves are determined from the polynomials of the Wageningen B series, Oosterveld and van 

Oossanen (1975). The open-water propeller curves of the obtained propeller design are shown in Fig.3 

together with its geometric parameters in the caption. For the extrapolation to full scale, the Reynolds 

number correction presented in the ITTC’78 performance prediction method is applied, ITTC (2017). 

 

 

Fig.3: Full-scale open-water propeller curves according to the Wageningen B series for an FPP with 

D=5.8m, AE/A0=1.05, P/D=1.1 and Z=6. AE/A0 is the expanded blade area ratio and P/D the pitch 

diameter ratio. Only public-domain information about the vessel was used. 
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In Fig.3, J is the advance ratio, η0 is the open-water propeller efficiency, KT is the thrust coefficient and 

KQ is the torque coefficient. For the sake of clarity, T is the propeller thrust and Q is the propeller torque.  

 
In the above equations, ρ denotes the water density, n indicates the propeller revolutions in Hz, whereas 

U is the ship speed and w the wake fraction coefficient. In particular, the latter two quantities are of 

great uncertainty. In the present context, w is calculated following Heckscher, cf. Bertram and 

Schneekluth (1998) and STW is taken as the ship reference speed. Even though the data quality of speed 

logs can be questionable, as shown by Ikonomakis et al. (2021). The starting point of the methodology 

is to determine J based on STW and the measured propeller revolutions. Afterward, the theoretical (or 

baseline) KQ can be interpolated from the propeller curves (cf. Fig.3), and the baseline power is obtained 

through PD=2πnQ. Lastly, the power increase can be calculated when using the measured shaft power.  

 

The presented methodology can only provide indicative results caused by the underlying assumptions 

and the approximate propeller curves in particular. Furthermore, it is assumed herein that the wake 

fraction coefficient is constant, which may be satisfactory in the early design stages, for which the 

Heckscher formulae were developed. In actual ship operation, however, it is important to stress that w 

is a function of several quantities, such as speed, draft, and environmental parameters. Hence, the same 

filtering procedure recommended in ISO 19030 is applied in this context. Moreover, only instances in 

the proximity of the design speed, i.e. in the range of ±3 kts from mean speed are considered. Additional 

uncertainties include the full-scale extrapolation of the propeller curves and the impact of hull roughness 

on the wake fraction.  

 

4. Results and discussion 

 

In this section, the obtained results will be presented and discussed. Initially, the aggregated as well as 

the hull performance indicator obtained by machine learning are shown in comparison with ISO 19030 

estimates. Schmode et al. (2018) point out several drawbacks of this standard, e.g. the draconian weather 

threshold. Secondly, the isolated propeller performance will be addressed, and the machine learning 

results are shown in parallel with the estimates from the proposed semi-empirical framework. In the 

final part, several uncertainty sources and limitations of this work are presented. 

 

4.1.  Hull performance evaluation  

 

In Fig.4, the result of the ISO 19030 analysis is shown with the power increase as KPI, and the sea 

surface temperature is shown as a color code as a proxy variable for the biofouling potential. 

 

 
Fig.4: Power increase according to the ISO 19030 procedure with sea surface temperature (SST) in the 

colorbar and a 30-day rolling mean in red 
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For the determination of the required speed-power baseline for the ISO analysis, the method according 

to Hollenbach (1998) and the open-water propeller curves shown in Fig.3 are utilized. Numerous 

cleaning events are indicated by vertical lines in Fig.4, but only the 2 dry dockings (with full blast) lead 

to a notable cleaning effect considering the monthly rolling mean. In addition, the sudden shift in 

operational profile due to the COVID-19 lockdown and the subsequent idling (and thus increased 

attachment of fouling) is appreciated. In fact, the performance deterioration is somewhat exaggerated 

due to the change in the speed profile, which complicates the assessment of performance for the entire 

timespan. For these reasons, the reliability of the performance estimates is reduced during the COVID 

period. Overall, the individual FRC lead to relatively stable performance plateaus, except after the end 

of 2018, where a minor gradient in the power increase can be seen. Obviously, this may not only be a 

result of biofouling but also sensor drift. As a side note, no clear dependency of the KPI on the sea 

surface temperature, which acts as a proxy variable for biofouling potential, can be seen.  

 

In Fig.5, two photographs from inspections of the ship hull are presented. It is noted that no similar 

images are available for the propellers and hence this type of analysis is limited to the hull performance 

Subsec. 4.1. On the left-hand side of Fig.5, the bulbous bow and a bow thruster are shown after entering 

the dry dock in Feb./Mar. 2017. The efficacy of the silicone FRC stands out, as only slime conditions 

can be seen, but no seaweed or calcareous fouling after a dry docking interval of more than 4.5 years. 

In addition, the typical mechanical damages on the bulbous bow caused by the anchor chains are visible. 

 

 

Fig.5: Visual appearance of the bulbous bow in February 2017 after almost 5 years since the last dry-

docking (left) and effect of the robotic in-water cleaning on a vertical wall in early 2021 (right) 

 

On the right-hand side of Fig.5, a photo taken during the in-water robotic hull cleaning is presented 

showing the difference between a cleaned (right) and fouled (left) part of a vertical wall. This hull 

cleaning was conducted after the initial phase of COVID-19 in early 2021 and the fouling type is 

considered heavy slime conditions despite the prior elongated idling periods, which again underlines 

the performance of the applied FRC.  

 

In the following, the machine learning-based results are compared to the ISO 19030 benchmark data. 

However, only a qualitative study is possible in this context, since the machine learning model uses the 

first 3 months as its baseline, i.e. conditions similar to the ones shown in Fig.5 (right). This leads to a 

consistent offset between ISO 19030 and machine learning results. Hence, both are depicted on 

individual axes in Fig.6. An initial observation is that the machine learning indicators are characterized 

by more variance than the rolling mean of the ISO analysis, which could be due to considering also 

severe sea states (Vw>7.9 m/s) in the training datasets. Still, in comparison to Mittendorf et al. (2022a), 

a lower variance of the machine learning-derived KPI is observed and hence no linear regression is 

necessary.  

 

Overall, the model is able to reproduce the aggregated long-term performance decay satisfactorily. 

Moreover, it is appreciated that hull performance takes up a major proportion of the total ship 

performance, which is expected due to the larger wetted surface area. Nevertheless, the propellers or 

other niche areas, such as rudders, gratings, etc., have their relevance when maintaining the 

hydrodynamic performance of a vessel. The ratio of hull and propeller performance appears physically 

plausible and is also in rough (qualitative) agreement with the results presented by Park et al. (2018), 

even though it is a different case study. The machine learning method provides performance estimates 
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in a 40-day interval but requires a subset length of 1000 samples, and hence no estimates can be 

provided during the COVID-19 period. The change in operational profile, the increased attachment of 

fouling, and the lower data availability increase uncertainty and impede drawing any firm conclusions 

in this time period. The speed log adjustment in late 2019 has apparently had no effect on the KPI, but 

peculiarly the propeller component seems to be larger after the log adjustment.  

 

 
Fig.6: Comparison of the model estimates of the power increase (primary axis) to ISO 19030 results in 

transparent grey color (secondary axis) 

 

4.2. Propeller performance evaluation 

 

Similar to the previous subsection, the results of the semi-empirical method are initially shown in 

isolation and are afterward compared to the machine learning results. In contrast to the hull, no 

photographs of the propellers made during inspections are available. In Fig.7, the relative added power 

based on the semi-empirical framework is shown and it is noted that a bias correction was applied. As 

an initial observation, the propeller fouling has a seasonality and depends on the sea surface 

temperature. As opposed to ISO 19030, temperature-dependent seawater properties were used in the 

semi-empirical framework. In Fig.7, samples with STW>5kts are considered and a peculiar and 

unphysical performance increase is visible in the COVID-19 period, which is caused by the assumption 

of a speed-independent wake fraction coefficient and the decrease in service speed in that period. 

 

 
Fig.7: Result of semi-empirical framework including the sea surface temperature in the colorbar and a 

30-day rolling mean in red. It is noted that no filtering thresholds are applied to the forward speed. 

 

The seasonality of the KPI could be a result of fluctuations in the bias of the speed log, but this was not 

observed in the rolling ratio of SOG/STW. It stands out that a peak in relative added power coincides 
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with a peak in water temperature in mid-2019. However, it is unclear whether the observed seasonality 

can be exclusively attributed to marine growth. The overall magnitude of the propeller performance is 

relatively small and takes both positive and negative values despite the bias correction. 

 

In Fig.8, the results of the semi-empirical method (SEM) and the machine learning approach are 

compared. Thereby it is understood that only samples with speeds within a range of ±3 kts around the 

mean speed are shown. This in turn leads to unavailable data during the COVID-19 period due to 

reduced operating speeds. However, the previously observed seasonality can be still identified in Fig.8. 

 

 
Fig.8: Isolated power increase caused by propeller fouling obtained through machine learning (primary 

axis) and the results of the semi-empirical framework in transparent grey color (secondary axis) 

 

In view of Fig.8, it is stated that the machine learning-based propeller performance shows a profound 

correlation with the hull performance (cf. Fig.6). In contrast to the semi-empirical estimates, the 

cleaning effects of the individual dry dockings are visible in Fig.8. However, the variance of the 

machine learning KPI is too large for stating the same for the in-water cleaning events. Broadly 

speaking, both estimates show rough quantitative agreement in the first two dry-docking intervals, but 

a clear offset becomes apparent in the third interval, which may be caused by the speed log adjustment 

leading to a change in the relationship of the individual predictors and the target(s). Moreover, a larger 

predicted propeller contribution to the total ship performance is visible, as observed in Fig.6.  

 

Based on the semi-empirical framework described in Sec. 3.2, it was calculated that a propeller 

roughness of kP=150μm and kP=300μm led to a relative added power of 3.7% and 5.6%, respectively. 

It is noted that these two roughness values reflect medium and heavy slime conditions, i.e. those 

conditions, which were observed (on the hull) in Fig.5. The order of magnitude of the theoretical values 

can also be observed in Fig.8. However, the average contribution of the propeller performance to the 

total performance appears to be relatively high in case of the machine learning results with 18.1%. The 

theoretical relative contribution of the propeller performance for the two mentioned roughness scenarios 

is 12.8% and 17.9%, respectively. Hence, the propeller contribution appears as relatively high in the 

case of the machine learning approach due to the frequent propeller polishings resulting in less fouling.  

 

4.3. Discussion  

 

The uncertainty and possible inaccuracies of the two benchmark methods have been pointed out 

previously and thus the uncertainty of the machine learning approach is of interest in this section. 

Uncertainty is commonly split into two categories: (1) ‘Epistemic’ or systematic uncertainty is due to 

limited data availability and reduces, as additional data is acquired. (2) ‘Aleatoric’ or statistical 

uncertainty, however, is an inherent part of the data and reflects the noise and variance within the data. 

Hence, the latter is unaffected by increasing data availability. Even though the case ship shows relatively 

good data quality, the sensor noise, i.e. aleatoric uncertainty, affects the obtained results. As shown by 

Ikonomakis et al. (2021), the speed log for measuring STW is very error-prone and can show significant 
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sensor drift. Similarly, Mittendorf et al. (2023a) showed that wind anemometers may show also a lower 

data quality including a bias depending on the wind direction due to turbulence and shielding effects 

due to, e.g. superstructures. Regarding epistemic uncertainty, there is a lack of reliable reference data, 

such as sea trial curves, but it remains unclear whether the performance decomposition via machine 

learning would increase in accuracy when having accurate baseline data. Moreover, no sensor data 

regarding the fin stabilizers were available and also the sea state is not considered in the present 

analyses. However, the ship sails in an area, which is known for hurricanes, and hence the sea state and 

the added wave resistance are crucial for performance monitoring in general. Crucially, the lack of any 

wake field information complicated the study of the isolated propeller performance in both cases.  

 

A major drawback of machine learning approaches is opaqueness and, herein, it is attempted to provide 

a 90% prediction interval following the work of Mittendorf et al (2022b). For this reason, the Monte 

Carlo (MC) dropout method, which is proposed by Gal and Ghahramani (2016), is implemented in the 

presented machine learning framework. In short, dropout is a regularization technique, which randomly 

switches off certain neurons during training. MC dropout builds on keeping the regularization technique 

during testing and multiple stochastic forward passes provide ensemble predictions, which reflect model 

uncertainty. One major advantage of the MC dropout method is the straightforward implementation into 

an existing model, as it does not require a special training procedure. MC Dropout is a practical 

approximation of Bayesian inference in deep learning models and can be seen as a deep Gaussian 

process. The uncertainty estimate is useful in various applications, such as quantifying prediction 

confidence, identifying out-of-distribution samples, or enabling active learning. In Fig.9, 90% 

prediction intervals are provided for the KPIs of the machine learning model and ISO 19030. It is 

stressed that all machine learning models are subject to the tradeoff between transparency and accuracy. 

In fact, the implementation of MC dropout slightly reduces model capacity, which leads to different 

(less accurate) performance estimates, as compared to Fig.6. 

 

 
Fig.9: Overlay of the individual 90% prediction intervals derived from ISO 19030 (grey) and the 

machine learning framework using MC Dropout (red) 

 

In view of Fig.9, it is stated that both methods still show qualitative agreement, but the performance 

indicator of the machine learning model shows a larger variance in direct comparison to Fig.6. 

Interestingly, the prediction interval of the machine learning model is not as wide as the corresponding 

one of the ISO analysis. This in turn could indicate that the estimator is able to model and correct for 

numerous physical phenomena caused by, e.g. trim or wind. This was also shown by DeKeyser et al. 

(2022), where a machine learning model trained on sensor and metocean data was able to capture severe 

weather conditions sufficiently and seemed to be superior in comparison to empirical corrections, as 

recommended in ISO 15016, ISO (2015). It is stressed that the training data of the machine learning 

model is not filtered based on weather conditions, as opposed to the ISO analysis. Ultimately, the 

uncertainty bounds increase industrial applicability for, e.g. voyage or speed optimization.  
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5. Conclusions  

 

This paper presented a machine learning-based methodology for decomposing vessel performance into 

a hull and propeller component in an adaptive context. For this reason, 7 years of sensor data obtained 

aboard a larger cruise ship were utilized as a data stream. The obtained results were compared to two 

benchmark methods and it is emphasized that validation of a fouling indicator is delicate since it is a 

latent variable. Overall, the total performance indicator was in good qualitative agreement with ISO 

19030 results, but the decomposition results are considered to be indicative at best. Particularly the 

comparison of the propeller performance indicator was not conclusive due to the relatively small 

magnitude of propeller fouling, the well-maintained case ship, and the inherent uncertainties regarding 

several sensor readings, such as STW. As concluded by Paereli et al. (2016), the decomposition of hull 

and propeller performance requires the in-situ wake field for accurate and reliable results, which is up 

until now not feasible. Moreover, it seems promising to apply the shown methodology to a case ship 

with an installed thrust meter. For further extending work, it is appealing not to separate hull and 

propeller fouling, but rather the technical and environmental performance of the ship, which is realized 

by Tvete et al. (2022) with their VTI (Vessel Technical Indicator), which includes a detailed correction 

for environmental conditions, such as wind, waves, and water temperature. Additionally, the speed 

dependency of performance indicators is a well-known problem and hence a similar correction, as 

proposed by Schmode et al. (2018) bears sizable potential. The lack of reliable sea state data introduced 

uncertainty into the presented results, and hence acquiring wave parameters (or even the entire 

directional wave spectrum) directly from a wave radar setup or measured ship accelerations (and a set 

of transfer functions) following the wave buoy analogy (e.g. Nielsen, 2018) is an important aspect of 

future work. 

 

As stated by Farkas et al. (2021), the impact of the propeller surface per unit area is significantly higher 

in comparison to the hull surface. However, in absolute terms, the propeller surface area is very small 

compared to the hull surface. When considering the benchmark vessel KVLCC2, the propeller surface 

is less than 0.5% of the hull’s wetted surface area. The degree of propeller fouling appeared to be of 

less importance compared to hull fouling in the present context and its magnitude as well as the lack of 

reliable reference (and wake) data impeded a dedicated monitoring approach. For all of the above, the 

practical relevance of isolating propeller performance is relatively low. Preventative (and proactive) 

maintenance of the propeller(s) is considered best practice due to the small and robust surface, i.e. it is 

cost-effective and does not damage the surface condition, as compared to hull cleanings. In general, it 

is advisable to conduct a propeller polishing in a quarterly or half-yearly rhythm.  
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Abstract  

 

In this paper we discuss the importance of having digital systems that could predict accurately enough 

the condition of the hull and support a vessel operator in planning inspections and hull cleaning in the 

most efficient way. We also discuss how such predictive systems could be developed and present two 

approaches. Studies have estimated that improved hull performance can reduce fuel consumption and 

CO2 emissions by up to 15%, this represents significant potential reduction in CO2 emissions given 

that the shipping industry is responsible for around 2.8% global greenhouse gas emissions. There are 

several strategies for improving hull performance, the most effective one being protecting the hull with 

special type of coatings which reduce friction and prevent biofouling from attaching into a vessel’s hull. 

Although this approach has been used for many years, sometimes the protection from the coating is not 

enough for various reasons and therefore other measures need to be considered such as inspecting and 

cleaning the hull surface. The drop in hull performance can be attributed to various factors and the 

question of when the right time is to inspect the vessel is important. An inspection early, will lead to 

increased unnecessary costs and too late an inspection will lead to significantly increased cost due to 

an inefficient hull. 

 

1. Introduction 

 

Maritime transportation is an important pillar of the global economy. It is considered to be the most 

efficient mode of transportation per ton of goods and commodities carried, facilitating more than 80% 

of the international trade, UNCTAD (2022). Shipping currently contributes approximately 2.89% to-

wards global anthropogenic emission and is expected to continue the upwards trajectory due to contin-

ued growth of transport demand, IMO (2020). IMO has progressively taken actions with key regulatory 

and implementation support steps since 2011 to combat climate change as part of UN (United Nations) 

Sustainability Development Goal. 

 

One of the key factors leading to increased emissions and loss of vessel efficiency is associated to the 

resistance generated on the ship’s underwater hull caused by marine biofouling growth and accumula-

tion, GloFouling (2022). Marine biofouling is defined as the process of accumulation of aquatic organ-

isms immersed on surfaces in the aquatic environment, IMO (2011). Biofouling growth on underwater 

hull increases resistance, roughness and drag; a function of seawater viscosity, velocity gradients de-

veloped in boundary layer and surface roughness, Swain et al. (2022). The consequences of having a 

drop in hull performance will sequentially affect the operational, economical and carbon efficiency of 

a vessel.  

 

When a vessel experiences speed loss due to fouling at constant power, they will either accept delays 

in schedule and loss of trading days, which will affect operational planning and efficiency, or power up 

to attain original speed to maintain schedule. This action of powering up will incur increased fuel con-

sumption, thereby affecting operational expenditure and economical effectiveness of the business. Ship-

ping bunker cost remains the biggest cost, constituting 50-60% of a ship’s total operating cost, Han and 

Wang (2021). The consequence of increased fuel consumption then results in increased carbon emis-

sions to the air, which affects the efficiency of vessel emission per cargo-carrying capacity and nautical 

mile (CII Rating). 

 

The impact of biofouling on energy efficiency has been well studied, and hull performance optimization 

is vital. Consider the recent study by GloFouling partnerships, a collaboration between IMO, GEF 

mailto:morten.sten.johansen@jotun.com
mailto:ryan.lee@jotun.com
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(Global Environment Facility) and UNDP (United Nations Development Programme). They published 

a technical report in 2022 that highlighted that a layer of 0.5mm slime covering up to 50% of hull 

surface could trigger increase of GHG (greenhouse gases) emissions in the range of 25 to 30%, while 

more severe biofouling conditions like light layer of small calcareous growth could see 60% and me-

dium calcareous for as high as 90%. Another study by Swain et al. (2022) estimated that the global ship 

emission can be reduced by up to 19% if vessels globally maintain smooth and foul free hull. 

 

Marine biofouling has been a perpetual problem throughout history, dating back more than 2000 years, 

Yebra et al. (2003), Myrsini-Dionysia et al. (2023). To overcome the problem of fouling, antifouling 

systems, defined as “a coating, paint, surface treatment, surface or device that is used on ship to control 

or prevent attachment of unwanted organisms”, IMO (2019), have been extensively used. From the 

early Phoenicians and Carthaginians using pitch and possibly copper sheathing in ship’s bottom, wax 

and tars utilized by the ancient Greeks in 300 B.C. Myrsini-Dionysia et al. (2023) to the modern version 

of biocidal self-polishing coatings and foul release coatings, the objective has been the same; to apply 

coatings to prevent the growth of fouling and maintain a clean hull. Today, there are estimated 4,000 

different identified fouling species across the ocean, Yebra et al. (2004), Arai (2009). As foulants indi-

vidually adapt to coexist and live in specific environments, they pose a challenge to select suitable 

antifouling systems designed for pre-defined trade, operational parameters, and in-service intervals. The 

absence of a fixed trading pattern due to open markets (unknown cargo and route ships under manage-

ment), spot trades and dynamic business outlook also increases the challenge for selecting the most 

efficient type of antifouling system, Dekinesh (2018). The misalignment of actual trading parameters 

from design will also compromise the coating efficacy, therefore other measures will need to be con-

sidered such as inspection and cleaning the hull surface to hedge the fouling risk. 

 

Underwater inspection and cleaning is another conventional method to maintain a clean hull. The initial 

cleaning work is performed by workers to remove fouling by hand. Like antifouling technology, in-

spection and cleaning methods have also evolved tools which increase efficiency, safety and reduce 

labor intensity. Remotely Operated Vehicles (ROVs) can conduct inspections as well as cleanings at a 

comparable standard to traditional diving operations, Song and Cui (2020). 

 

With the regulators shifting emission targets from the initial IMO GHG strategy in 2018 of achieving 

70% reduction by 2050 (of 2008 emission) and total annual emission of at least 50%, IMO (2020) to a 

significantly higher target of 20% reduction in emission by 2030, 70% reduction by 2040 (compared to 

2008 levels) with the goal of achieving net-zero emissions “by or around, i.e., close to, 2050”, IMO 

(2023), there will inevitably be challenges, but also opportunities for the industry to find more effective 

and efficient ways to manage fouling risk by exploring beyond conventional solutions. Adoption of 

digitalization and multi-disciplinary approaches to build solutions must be considered to resolve the 

age-old fouling problem. 

 

This paper will discuss the importance of adopting digital systems to accurately predict the condition 

of a hull, hence augmenting the role of antifouling coatings to support vessel operators in planning for 

inspections and hull cleanings that achieve optimized hull performance and meet regulatory demands. 

Challenges of having such systems will also be discussed. 

 

2. Digital era in maritime transportation 

 

Maritime transportation is lagging in the digitalization transformation as compared to other industries 

when assessed against 8 domains of digitalization based on technology trend in 2018-2019: Autono-

mous vehicles and robotics, Artificial intelligence (AI), Big data, Virtual and Augmented Reality, In-

ternet of Things (IoTs), Cloud and Edge Computing, Digital security, and 3D printing, Sanchez-Gon-

zalez et al. (2019), Timimi (2021). The focus on change in the maritime industry has been increasing, 

despite slower adoption. Digitalization is already transforming shipping companies’ operations and 

business strategies through the utility of data to develop novel business logic like decision support sys-

tems with faster processing and higher volume of data for operation optimizations and new business 

models, Lambrou et al. (2019), Gaspar and Fonseca (2020). 
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In the context of marine biofouling, it is important that the digital solution can assist in providing timely 

and quality intelligence through active hull condition monitoring to maintain hull performance. Opti-

mized hull performance will reduce speed loss, over consumption of fuel and unnecessary maintenance 

operations, Coraddu et al. (2019). Hull performance analysis is not new to most vessel owners. The 

accessibility of data collection has paved the way for advancement in analytics. AIS-log files, meteor-

ological data, vessel on-board data, etc. are large data sources available to the shipping industry, which 

can be aggregated and processed using big data analytics, Fruth and Teuteberg (2017). There has been 

a progressive shift from the traditional methods in the early stages, which involved manual data collec-

tion (noon-reporting) with the simplified correlation between ship speed, fuel consumption and other 

parameters, to assess the hull’s performance. The emergence of ISO 19030 – Measurement of changes 

in hull and propeller performance in 2016 have provided a standard for the measurement, monitoring 

and assessment of ship hull and propeller performance with procedures for data collection, analysis, 

and reporting, allowing for consistent and comparable analysis across the industry. There is work still 

to be done to reduce uncertainties in the methodology. Despite them, there is no other typical way except 

monitoring speed to power relationship in service for predicting performance drop due to fouling, Erol 

et al. (2020), and acting when the speed deviation trend drops to a specified level in accordance with 

one of the performances indicators put forth by ISO 19030: maintenance trigger. 

 

The digital transformation on underwater inspection and cleaning will be the utilization of robotics and 

remotely operated vehicles (ROVs) to perform the task of inspection and/or cleaning. The advent of 

ROVs certainly improves the efficiency and effectiveness of inspection and cleaning. Combined with 

proactive measures of frequent periodic cleaning, studies found that this proactive approach is effective 

in maintaining hull performance. Energy efficiency estimation based on fuel consumption before and 

after cleaning of a 5 years old aframax crude oil tanker showed a 9% to 17% reduction in daily fuel 

consumption, Adland et al. (2017). GloFouling (2022) technical paper estimated a savings of $6.5 mil-

lion over a period of 5 years for a 40,000 DWT bulk carrier by adopting similar proactive frequent 

periodic cleanings.  

 

The pertinent question then, for inspection and cleaning, will be on the timing of assessment. Getting 

the right timing to conduct inspection and cleaning is crucial. Inspection or cleaning too early leads to 

increased unnecessary costs while cleaning too late will result in a significant impact on a hull’s per-

formance. Whilst periodic scheduled cleaning sounds intuitive, there are still inherent issues related to 

the frequency of cleaning: what is the basis of spending time to conduct inspection? Is there a real need 

based on intelligence? Nevertheless, this proactiveness does pave the way for the eventual utility of big 

data and the possibility of utilizing real-time data for fouling prediction to provide well timed and high-

quality intelligence to establish evidence-based maintenance regime. 

 

To advance the development of fouling predictive analytics, understanding the fouling construct and its 

primary parameters are of paramount importance. Research has been done in this field, and the primary 

parameters can be categorized under three groups: Physical and chemical properties of water; physical 

and chemical characteristics of hull surface layer and climatic and geographical conditions, Tarelko 

(2015). The success of developing reliable fouling predictive analytics is hinged on the ability to iden-

tify patterns, correlations and assigning the right weightages to the primary parameters since not all 

parameters have similar impact on biofouling growth at any given configuration. 

 

In essence, we can combine conventional fouling protection strategies with digitalization to good effect. 

The combination of suitable antifouling, active hull condition monitoring and inspection with cleaning 

will enhance hull performance. In another words, digitalization of hull performance opens a new world 

of opportunities to move from a reactive state of being to a predictive and proactive phase of maintain-

ing hull performance with tangible benefits as seen from the real-life cases that follow. 

 

2.1. Benefits of a fouling predictive system on a 300,000 DWT Crude Oil Tanker 

 

Jotun performed ISO 19030 hull performance analysis and used an in-house developed fouling risk 

algorithm to assess the impact of such a system. As seen in Fig.1, additional power (%) needed is seen 
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over time. Vessels have received 2 fouling risk alerts with ‘inspection recommendation’ based on foul-

ing risk algorithm. The first period, after the alert, did not appear to have a significant impact on vessel 

performance, and the additional fuel impact due to additional power required was $17,000 USD on 

average as compared to the benchmark at $400 USD per ton. However, the second period, after the 2nd 

alert, saw a significant increase in additional power that resulted in an additional $572,000 in fuel con-

sumption. In retrospect, the first period was the initiation of early stages of fouling which contributed 

negatively to the second period. The accumulated fouling pressure over the course of the first 2 years 

sailing interval coupled with the prevailing high fouling risk exposure in 2nd period trade ultimately 

resulted in the high fuel penalty. The total penalty for the 2 combined periods was an additional 1,472 

tons of fuel and 4,578 tons of CO2. 

 

 
Fig.1: Additional power over time overlapped with suggestions from a predictive fouling risk system 

 

2.2. Benefits of a fouling predictive system on a 300,000 DWT Crude Oil Tanker 

 

Jotun performed ISO 19030 hull performance analysis and utilized Jotun HullKeeper fouling risk algo-

rithm to analyze the predictive alert in time series to assess the impact of period 1 with the benchmark 

period in the graph. 

 

 
Fig.2: Additional power over time overlapped with suggestions from a predictive fouling risk system 
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The vessel received a fouling risk alert with ‘inspection recommendation’ based on the fouling risk 

algorithm. There was a gap of 2 months between the alert and inspection with cleaning. The vessel was 

then continuously evaluated during the first period after inspection and cleaning. The result shows that 

early intervention with the fouling risk algorithm’s inspection recommendation has allowed ship oper-

ator to act with reliable intelligence to maintain hull performance. A marginal statistical improvement 

in performance was also observed. 

 

3. Challenges of a fouling prediction algorithm 

 

All surfaces submerged in seawater will experience, at a certain point in time, fouling of organisms 

such as bacteria, diatoms, algae, mussels, tube worms and barnacles. Marine fouling is the undesirable 

accumulation of microorganisms, algae and animals on structures submerged in seawater. The fouling 

organisms can be divided into microfouling (bacterial and diatomic biofilms) and macrofouling (e.g., 

macroalgae, barnacles, mussels, tubeworms, bryozoans) which live together forming a fouling commu-

nity. In a simplistic overview of the fouling process, the first step is the development of a conditioning 

film where organic molecules adhere to the surface. This happens instantaneously when a surface is 

submerged in seawater. The primary colonizers, the bacteria, and diatoms, will settle within a day. The 

secondary colonizers, spores of macroalgae and protozoa, will settle within a week. Finally, the tertiary 

colonizers, the larvae of macrofouling, will settle within 2-3 weeks. 

 

Fouling prediction algorithms try to mathematically model the presence of fouling (type and extent) on 

submerged surfaces. Predicting a biological phenomenon (accumulation of fouling to a surface) is al-

ways a challenge, as it is a highly complex multidimensional problem with multiple parameters to con-

sider. In this paper we will focus and discuss possible approaches for a fouling prediction algorithm on 

seagoing vessels’ hulls. Most importantly, the submerged surface is not idle, moving at speeds where 

mechanical forces through the flow of water cannot be neglected. This increases the complexity of the 

problem by many degrees. In addition, seagoing vessels are sailing into different geographical areas 

exposing the surface to completely different biodiversity and environmental factors when moving from 

one area to another. Furthermore, a vessel hull is such a big surface with different roughness and cur-

vatures which do not allow for a uniform distribution of fouling accumulation, making the need of 

separating the surfaces into smaller areas necessary. Finally, vessels hulls are protected by special coat-

ings that are carefully designed to prevent microorganism from attaching to the surface and contain 

biocides that kill the ones that attach. These coatings may have a significant influence in the presence 

of fouling and under certain conditions keep a hull clean for a significant period (up to 5 years). 

 

Accumulation of fouling on a surface is influenced by many factors and until now no exact rule can be 

used to determine the fouling growth, even if indications have been found that the theory of opportuni-

ties considering pressure, shear and turbulence can be applied as per Alamsyah et al. (2020). After 

Mullineaux et al. (1993) two main requirements need to be fulfilled for the biofouling attachment in-

stincts to function properly. First, environmental disturbance should be minimum (shear stress, turbu-

lence), and second, the instinct to attach to moving surfaces. Those requirements seem to be in contra-

diction to each other, however a moving surface is preferred over a fully static one, increasing the 

likelihood of sufficient food supply. 

 

For the biofouling growth three main factors are described, the supply of food ingredients, food filtra-

tion mechanisms and food digestion. A hydrodynamic condition supporting the above three processes 

is favorable for growth and will also influence the structure, morphology and distribution of fouling. 

Food supply and food filtration (food filtering and identification most of the time by antennas) will be 

more difficult in a highly turbulent flow, where there are high shear stresses and shorter time for food 

identification and disturbed digestion.  

 

For ships the hydrodynamic condition is highly influenced by speed through water, the hull shape; 

which influences distribution of shear and pressure forces, and the voyage factor. A hydrodynamically 

favorable situation for antifouling growth is a low shear force however with a slowly moving surface 

not faster than 10 kn as per Coutts et al. (2010). Above a velocity of 18 kn, Coutts et al. (2010) showed 



88 

that most of biofouling gets removed if it was not already colonized, encrusted, hard and/or very flexible 

in its morphological characteristics.  

 

As previously mentioned, additional dimensions from the external environment need to be considered 

when developing a fouling prediction algorithm. Today, there are estimated 4,000 different identified 

fouling species across the ocean, Yebra et al. (2004), Arai (2009). Environmental parameters signifi-

cantly affect the presence and the behavior of so many species. More specifically, it was highlighted 

that high sea water temperature increases the rate at which fouling develops. In addition to water tem-

perature, nutrients such as phosphates, nitrates and carbonates are found to be important in the existence 

of fouling species both for plant and animal fouling. Availability of light is also important, as light acts 

as an energy source for plant fouling absorbing light and converting into new organic matter which can 

further be used as source of food for animal fouling. High correlation between distance to shore and 

water depth was also reported. Finally, there are many local variations which play a role in the presence 

of fouling, driven by seasonality, biodiversity, local currents, geography as such, salinity and others, 

which are very hard to consider partly because their exact effects are not known and partly of no avail-

ability of relevant data. As discussed before, the problem becomes even harder as seagoing vessels 

travel to various geographical areas exposing their hulls to multiple fouling species and environmental 

conditions. 

 

Another aspect that should be considered when trying to predict the presence of fouling into a vessel’s 

hull is the actual shape of the hull. The hull is a very big surface with a lot of variability in curvature 

and roughness, both of which can have a significant effect on fouling processes. Curvature, for example, 

can affect fouling by altering the flow patterns and fluid dynamics near the surface. In general, highly 

curved surfaces tend to promote higher fluid velocities and increased turbulence, which can reduce the 

presence of fouling by enhancing the shear forces that hinder fouling deposition. The curvature of the 

hull can also affect the availability of light, which as discussed previously acts as a catalyst to fouling 

growth. Roughness is also another characteristic of the surface that influences fouling. Experimental 

data shows that there is a tendency for smooth surfaces to attract less biofouling than surfaces with more 

substantial roughness. This could be explained because rough areas most probably act as a “shelter” to 

microorganisms in a microscopic level. It is obvious that local characteristics of the hull surface con-

tribute to the presence of fouling, and within the context of a fouling prediction algorithm, one should 

consider developing different predicting models for different parts of the hull. 

 

All the above dimensions that contribute positively or negatively to fouling accumulation play an im-

portant role, but it is difficult to distinguish their importance based on available data. However, it is 

undisputable that specially designed coatings for the underwater part of the hull can be a differentiation 

factor. These coatings are designed to mainly release substances/biocides (in a controlled way) which 

prevent microorganisms from settling/growing. There are multiple technologies and approaches. Gele-

genis (2019) summarizes them in a very good way, but it is very difficult to model how these coating 

work. Their compounds, substances and raw material are not publicly available nor are there actual 

chemical processes/mechanisms that take place when the coating interacts with the sea water. As pre-

viously mentioned, these special coatings can maintain a clean hull for up to five years and can be a 

differentiation factor. A fouling prediction algorithm should try to simulate or model the coating be-

havior. In such an approach, coating manufacturers have an advantage as they have the necessary 

knowledge to model coating mechanisms and the experimental data to validate the latter. One should 

also consider that some of the environmental parameters mentioned above (ex. sea water temperature) 

affect the mechanisms of the coating as such. 

 

Another dimension to consider when developing a foul prediction algorithm is what exactly one should 

try to predict. As previously mentioned, there are two important types of fouling, one is plant based and 

the other is animals and are found to have different impacts on vessel performance, Schultz (2007). 

Therefore, predicting the type of fouling or going one step further and predicting the actual species 

should be of interest, especially now, that most probably new regulations will soon come into force 

regarding biofouling management and the prevention of transfer of non-indigenous species. However, 

it is equally important, or even more important, to predict the extent of fouling (in percentage) of the 
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area(s) of interest. GIA (2022), a project hosted by International Maritime Organization (IMO) pub-

lished a report mentioning that different extent of fouling with the same type of fouling can have an 

impact in Green House Gas Emissions up to 20%. Given the high impact in vessel efficiency and in the 

environment, a fouling prediction algorithm should try to predict both type and extent of fouling which 

increases the complexity by many degrees. It is a bit dependent on the use case and operational needs. 

 

At this stage it is important to highlight and emphasize the importance of the use case. How will this 

algorithm be used and what are the operational needs? Such an algorithm will probably be used as an 

extra input for the right time to do maintenance. Maintenance regarding fouling is either an underwater 

hull cleaning, or a drydock to wash, blast and repaint the vessel hull. There are a lot of operators who 

have a proactive approach whereas some others prefer to do maintenance as soon as they can measure 

significant impact in performance. There is no right or wrong approach, however the approach should 

affect the method, and the parameterization of the fouling prediction algorithm. For example, in a pro-

active approach, the algorithm should be able to accurately predict very early stages of fouling, whereas 

in a more reactive approach the algorithm should be able to accurately predict when the vessel has a 

fouling extent of higher than 20-25%. In a more holistic approach, parameters such as drydocking pe-

riod, lifetime of the vessel and maintenance budget should be included as inputs in the fouling prediction 

algorithm. In such a predictive maintenance approach, the algorithm becomes an optimization problem, 

and the algorithm is tuned to minimize maintenance costs. 

 

One final point of discussion is the problem of dimensionality. Fouling is a physical phenomenon that 

does not occur instantly. It is a physical process the results of which can be observed in a specific 

moment in time, however the observations are the result of accumulation in time and historical opera-

tional parameters. Observations at any given point in time could be the result of what happened in the 

last x days, last x months or from the beginning of the period of interest. Identifying the period that has 

the biggest influence in accumulation of fouling is a very difficult problem and can be a separate study. 

In addition to this, if one thinks in a very simplistic way, a vessel sailing for just 1 year would have 365 

dimensions (the input values for each day would be considered as different dimension). Such highly 

multidimensional problems are not yet easy to solve. Furthermore, most probably, the majority of these 

dimensions would have minimal or no influence at all on the final observation, therefore this approach 

most probably should not be followed. 

 

It is, however, a challenge that should be addressed. Most probably the best way to address the dimen-

sionality problem is to identify the necessary aggregation that would best describe the historical pro-

cesses that have already occurred. For example, one could take the average or median values for the 

period of interest or after feature engineering and domain knowledge identifying periods that are most 

significant and aggregate only on these periods. Another approach could be that accumulation of fouling 

is a result of harsh conditions and failure points (for example failure of coating). If such assumptions 

are true, then maybe 70% or even 90% percentiles could be more appropriate. The challenge remains. 

What is the correct aggregation and what and how long is the correct period to aggregate? 

 

To recapitulate, it should be obvious from all the above that we are discussing about a highly multidi-

mensional problem, with a lot of unknowns and uncertainties of the actual phenomenon and with a lot 

of parameters interacting with each other in a different way given the conditions. In this paper two 

fouling prediction algorithms, using simple approaches will be presented and will be evaluated if simple 

approaches can bring value to the decision making. Going into more advanced approaches (which seems 

obvious, given the complexity of the problem) is out of the scope of this paper, but it could be discussed 

as a continuation of current work. 

 

3.1. The dataset 

 

To develop a fouling prediction algorithm, researchers typically start by collecting data on fouling at 

various locations and under different conditions. This data is then used to train the algorithm to recog-

nize patterns in the data and make accurate predictions. In our case, the available dataset contained 

mainly observations from underwater hull inspection of seagoing vessels. 
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More specifically, the available dataset consisted of 215 seagoing vessels containing tankers, bulkers, 

some containers and car carriers. There were 1222 inspections carried out, unfortunately not evenly 

distributed for each vessel. While some vessels have up to 13 inspection reports in a docking cycle, 

which contributes significantly to understanding accumulation of fouling on the hull over time, most 

vessels have 2 to 4 inspection reports in a docking cycle. These inspection reports were thoroughly 

analyzed by technical advisors and assigned a rating. The rating is based on the type of fouling that has 

accumulated on the hull and the extent of it, which ranges from 0-100%. The 4 categories of fouling 

types used were thin slime, thick slime, short plant, and long plant. Fouling extent and type of fouling 

will be the value that the model should predict. 

 

Predicting two features, such as fouling extent and fouling type increases the complexity of the model. 

To simplify the problem a simplest scale was introduced. The predicted value has been converted to a 

simple value from 1 to 10 called Fouling Factor and the goal was to combine in one scale type of fouling 

and extent in percentage. The conversion was done as seen on Table I, based on US Navy (2006). Doing 

this conversion imposes extra uncertainty, however for the scope of this paper the uncertainty imposed 

is believed to be much less as compared to the complexity that is introduced by predicting extent and 

type of fouling at the same time. 

 

As input to the model there were several parameters available, starting with AIS data. AIS stands for 

Automatic Identification System, and AIS is an automatic tracking system used in the maritime industry 

to enhance the safety and efficiency of vessel operations. AIS data provides information about the po-

sition of the vessel, along with speed, heading and course. Given that the position of the vessel is known, 

further environmental parameters (analyzed further below) can be extracted. AIS data is captured at a 

frequency of 10 minutes on average, but collecting such a high frequency of data would impose com-

putational challenges. To reduce longer processing times for training machine learning models, the raw 

AIS data, with the 10 minutes frequency, was aggregated to a daily frequency. 

 

Table I: Conversion matrix for a simple rating (Fouling Factor) 

Fouling Factor 

Thin 

Slime 

Thick 

Slime  

Short 

Plant  

Long 

Plant 

1 10%       

2 25% 5%     

3 50% 15%     

4   25% 50%   

5   25% 50% 25% 

6   50%   50% 

7   25%   75% 

8   25%   75% 

9       100% 

10       100% 

 

As further input a parameter called fouling pressure (FP), which is an output of a model developed by 

Jotun to quantify the harshness of environmental condition a vessel’s hull faces every 24 hours, was 

added. The model uses a lot of available environmental parameters and tries to combine the impact of 

all these parameters into one value.  

 

It ranges from 0 to 1, where 0 represents low risk seawater conditions in terms of accumulation of 

fouling, while 1 is the other extreme. Accumulated fouling pressure is the FP’s cumulatively being 

added everyday till the day of the inspection and this is the value that was used as input to the model. 

This accumulation resets back to 0 only if a cleaning of the hull has taken place, or the vessel is docked. 
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Another important parameter that needs to be considered and highlighted is the effectiveness of the hull 

cleanings. If a hull cleaning had taken place in-between drydock intervals of a vessel, the quality of the 

hull cleaning should have been reported. This is because hull cleaning affects the protective coating’s 

performance on the hull. If the cleaning process has not been conducted with soft tools, it is likely that 

a layer of protective coating would be polished off or destroyed during the cleaning process, thus de-

creasing the overall thickness, effectiveness, and lifetime of the protective coating. Since the quality of 

cleaning was not reported with the inspection reports, two approaches were tested. First, where the 

cleanings are assumed to be carried out perfectly and second, where all inspection reports after the first 

cleaning are ignored. 

 

Additional environmental parameters extracted from the vessel position at a certain point of time were 

also available as inputs. Sea water temperature (TEMP), distance to shore (DIS), water depth (WD), 

chlorophyll-a concentration (CHL), salinity (SAL). All these parameters as analyzed in previous chap-

ters are known to have some kind of direct or indirect effect in the accumulation of fouling. For sim-

plicity reasons, the mean value between the period from one inspection to another was used for all these 

parameters, however future work for this project could be to evaluate what other aggregated value can 

be used instead of the mean. 

 

As previously mentioned, one of the most important parameters that controls fouling is of course the 

protective coating as such. Since there were more than 100 protective coatings in our dataset it is im-

possible to model the behavior of all these coatings. That is why two parameters called Coating category 

(CC) and a simplification of it called modified coating category (MCC) was introduced. CC ranges 

from A to F whereas A is ultra-premium, and F is a market average protective coating. MCC uses 3 

categories namely low, medium and high. The reason to introduce this parameter is to aggregate all 

these products based on reported performance. Doing this, imposes some extra uncertainty as the cate-

gorization is not based solely on facts and it is somewhat subjective, however and within the scope of 

this paper the benefits in reducing dimensionality most probably overcome the uncertainty imposed 

using this parameter. 

 

Finally, there were some parameters which are derivatives of the available input parameters which are 

believed to have some kind of impact on the accumulation of fouling. Coating age (AGE) is known to 

have an impact as it is generally proven that performance of a protective coating is deteriorating over 

time. Accumulated hours below 6 kn (S-HR), number of stops (NOS) and duration of longest stop 

(DLS) are also parameters that needed to be considered as the risk increases significantly when the 

vessel is idling or moving at very low speeds. 

 

3.2. A simplistic approach as baseline 

 

To be able to check foul prediction results, a simplistic model was constructed to be used as a baseline. 

In addition to this, there was a need to evaluate whether a simplistic approach could already bring value 

to the operator. In order to come up with a simplistic model we decided to use a decision tree. As per 

https://en.wikipedia.org/wiki/Decision_tree, a decision tree is a decision support hierarchical model that 

uses tree-like model of decisions and their possible consequences. It is one way to display an algorithm 

that only contains conditional control statements. 

 

In that decision tree it was decided that the first important parameter is the coating age. There was a 

strong correlation between coating age and fouling factor and from the dataset available it seemed like 

performance was dropping after the 3rd year of the drydocking cycle. In addition, the coating category 

was selected as the second most important parameter and finally the number of days idle. The decision 

tree can be seen in Fig.3. If a vessel with a certain coating age and a certain coating category was 

exceeding a certain threshold of idle days, the vessel should be inspected. In any other scenario the 

vessel’s hull was considered to be in good condition. The reason why this approach was selected is that 

it simulates a simple reasoning that was used for many years by operators for decision making in mainte-

nance of the hull. 

 

https://en.wikipedia.org/wiki/Decision_tree
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The model was evaluated based on fouling factor. Under the assumption that any vessel rated higher or 

equal to 3 in fouling factor should be inspected, it was very simple to compare the results of the model 

against the actual results. Out of 1222 inspections, 697 were found to be like reality and this is an 

accuracy of 57%. This is slightly better performance from a model selecting randomly whether a vessel 

should be inspected or not and obviously not a good approach for a fouling predictive system. 

 

3.3. A machine learning approach 

 

As an alternative approach to the decision tree, more advanced machine learning algorithms (ML) were 

chosen. In a typical data science project, multiple combinations of the available parameters are tested, 

and the models created compete among each other based on evaluation metrices. In these numerous 

combinations of the parameters mentioned in chapter 3.1 were used as training datasets, to predict Foul-

ing Factor, for machine learning (ML) models. Two famous machine learning algorithms were chosen 

to serve this purpose: XGBoost and Artificial Neural Networks (ANN). 

 

XGBoost stands for “Extreme Gradient Boosting” and it has become one of the most popular and widely 

used ML algorithms due to its ability to handle large datasets and its ability to achieve state-of-the-art 

performance in many ML tasks such as classification and regression, https://www.geeksforgeeks.org/

xgboost/. XGBoost has built-in support for parallel processing, making it possible to train multiple 

models in a reasonable amount of time, https://www.geeksforgeeks.org/xgboost/. What gives XGBoost 

its ‘X-factor’ is its ability to provide insights into feature importance, allowing researchers to understand 

which features contribute the most to the predictions. This assists in feature selection and understanding 

the underlying relationships in the training dataset. 

 

Artificial Neural Networks (ANNs) are computational models inspired by the structure and function of 

the human brain. They are composed of numerous interconnected processing nodes, or artificial neu-

rons, that can learn to recognize patterns in data, https://www.aiforanyone.org/glossary/artificial-neu-

ral-network. ANNs can be trained on large datasets and can implicitly detect complex nonlinear rela-

tionships between dependent and independent variables, https://www.researchgate.net/post/What-are-

the-advantages-of-using-Artificial-Neural-Network-compared-to-other-approaches. 

 

 
Fig.3: Decision tree for inspection recommendation 

 

XGBoost and ANN ML approaches were used to create numerous models with different sets of training 

parameters. However, both algorithms are strongly dependent on some parameters called hyper-param-

eters. Hyperparameter tuning is a know0n challenge in data science. It refers to the process of selecting 

optimal values for the parameters of an ML model. These parameters are not learnt from the data but 

set before the training process. They control the behavior of the learning algorithms and influence how 

the model is trained and how it generalizes to unseen data. Finding the optimal combination of hyperpa-

rameters can lead to improved accuracy, better generalization, and more robust models. It allows the 

model to better capture the underlying patterns in the data and avoid overfitting or underfitting. 

https://www.geeksforgeeks.org/xgboost/
https://www.geeksforgeeks.org/xgboost/
https://www.geeksforgeeks.org/xgboost/
https://www.aiforanyone.org/glossary/artificial-neural-network
https://www.aiforanyone.org/glossary/artificial-neural-network
https://www.researchgate.net/post/What-are-the-advantages-of-using-Artificial-Neural-Network-compared-to-other-approaches
https://www.researchgate.net/post/What-are-the-advantages-of-using-Artificial-Neural-Network-compared-to-other-approaches
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Hyperparameter tuning was also implemented on the ML models to improve their accuracies. For every 

1000 tunings of XGBoost models, 50 ANN models were tuned. This was solely done because of the 

shorter training times of the XGBoost models. 

 

 Table II: Results of top 5 best performing ML models 

 Data included after cleaning Data removed after first cleaning 

Model and Input Parameters XGBoost 

(RMSE) 

ANN 

(RMSE) 

XGBoost 

(RMSE) 

ANN (RMSE) 

M1: FP, AGE, CC 1.63 1.70 1.68 1.78 

M2: CC, AGE, S_HR, TEMP, CHL, 

WD, DIS 

1.63 1.88 1.62 1.96 

M3: CC, AGE, S-HR, TEMP, CHL, 

WD, DIS 

1.61 1.73 1.66 1.85 

M4: MCC, AGE, S-HR, TEMP, 

CHL, WD, DIS 

1.60 1.71 1.66 1.84 

M5: FP, AGE, CC 1.66 1.66 1.75 1.75 

 

On Table II, top 5 in terms of predicting results ML Models with both algorithms are presented. The 

metric to evaluate the models that were created was Root Mean Square Error. The standard process of 

any machine learning approach was followed where the dataset was split into 80% training set and the 

results were evaluated against the 20% test set. As seen from the table all top 5 models show no signif-

icant difference in their accuracy and in terms of Mean Absolute Error these results are roughly in the 

range of 1.4 as mean absolute error in fouling factor. 

 

Other general observations from the tests are that XGBoost models generally outperformed ANN mod-

els in terms of accuracy. This could maybe be explained by the fact that XGBoost models take signifi-

cantly less time to train, so more combinations of hyperparameters were used for optimization. It was 

also observed that including inspection reports after cleaning, even if the quality of cleaning is unknown, 

into the training dataset improved the accuracy of the models. 

 

The same evaluation as the decision tree approach was followed using the best performing model. Using 

only the Test set, this time consisting of 241 inspections and under the assumption that any vessel with 

foul rating higher or equal to 3 should be inspected, 159 were found to be accurate. This is an accuracy 

level of 66%. This is a better result than the decision tree approach. 

 

3.4. Conclusion 

 

The main scope of the paper is to identify whether a simplistic approach or a machine learning approach 

is good enough to support decisions regarding maintenance events, mainly inspections and eventually 

cleaning if needed. As mentioned earlier, the decision tree approach achieved an accuracy of 57%. In 

the ML approach, the accuracy achieved was 66%. 

 

At this stage, cost is becoming a very important factor and due to lack of data in that area, this type of 

analysis exceeds the scope of this paper. However, one should consider adding cost parameters into the 

models and change the approach to optimize the model for cost minimization. In such approaches, there 

are many other parameters related to vessel operations that should be considered and analyzed. 

 

One more thing to note is that there were several combinations that were tested and the difference of 

RMSE was varying from 1.6 being the best to 1.89 being the worst for XGBoost. The range in RMSE 

regarding ANN models was very similar. The small range in errors regardless of the input is an indica-

tion that it is possible that the problem (of fouling prediction) cannot be solved with the existing para-

meters. In such cases, one may need to consider additional parameters of factors that could affect the 

outcome. It might be necessary to gather more data, conduct further research, or explore alternative 
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approaches to gain a better understanding of the problem and potentially find a solution. Additionally, 

if the problem is complex or poorly understood, it could indicate the need for more advanced or sophis-

ticated models, techniques, or methodologies to address it effectively.  
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Abstract 

 

The MEPC Res. 355 (78) provides the application of correction factors in the determination of the 

Carbon Intensity Indicator (CII), with the intention to substitute energy-intensive cargo such as frozen 

food products and liquified gases from CII calculation. This paper elaborates on the prerequisites in 

terms of the energy data acquisition technology required, which at the same time provides the technical 

basis for a holistic optimisation of the vessel’s operation. 

 

1. Important Milestones of IMO Greenhouse Gas Strategy Regulatory Framework in a nutshell 

 

With the global drive for decarbonization the shipping industry is facing the challenge to comply with 

more stringent regulations related to greenhouse gas emissions (GHG). At the 80th session of the Marine 

Environment Protection Committee the previous in 2018 released targets have been tightened 

significantly. While the former regulation has defined a greenhouse gas reduction by 50% of 2050 

compared with the level of 2008, MEPC 304 (72) (imo.org), the latest amendment, MEPC 377 (80) 

(imo.org), calls for a reduction relative to 2008 of: 

 

• 20% and striving for 30% by 2030  

• 70% and striving for 80% by 2040 

• 0% by 2050  

 

 
Fig.1: Well-to-wake GHG emissions pathways implied by the revised (2023) strategy compared to the 

initial (2018) strategy, the emissions in 2008, and business-as-usual (BAU) emissions, source: 

Comer and Carvalho (2023) 

 

Most important milestones for the implementation of GHG targets in the past were the introduction of 

the Energy Efficiency Design Index (EEDI), and the Ship Energy Efficiency Management Plan 

(SEEMP) resolved in 2011, MEPC.203 (62) (imo.org), and entered into force on 1st of January 2013. 

This was followed by the introduction of Energy Efficiency Existing Ship Index (EEXI), EEXI and CII 

(imo.org), resolved in 2018 and set into force on 1st of November 2022. EEDI and EEXI are measures 

of the energy efficiency of the design of a vessel and technology on board, and do not indicate how the 

vessel is being operated. These indicators just represent the expected CO2 emissions per cargo ton and 

mile based on the vessel’s engine power, cargo capacity and speed. 

mailto:h.hendricks@hoppe-marine.com
mailto:h.hendricks@hoppe-marine.com
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.304(72).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/Resolution%20MEPC.377(80).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/Resolution%20MEPC.377(80).pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Technical%20and%20Operational%20Measures/Resolution%20MEPC.203%2862%29.pdf
https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx
https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx
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2. CII – Carbon Intensity Indicator, Correction Factors and Voyage Adjustments  

 

Different from the previously mentioned measures, an assessment of the operational carbon intensity of 

ships was considered for the first time in MEPC Resolution 339 (76) in June 2021 by introducing the 

Carbon Intensity Rating (CII). The first year of the attained annual operational CII verification will be 

2024 for the operation in calendar year 2023. Fuel consumption data, which is mandatory to be reported 

for vessels of 5,000 GT analogue to the IMO Data Collection System (DCS), IMO Data Collection 

System (DCS), since beginning of 2019 shall serve the data basis this.  

 

The data is evaluated in an assessment and depending on the specific type of the vessel, an environmental 

rating of the CO2 emissions according to grades A (major superior) to D (minor inferior) is assigned. 

The thresholds for classification will become increasingly stringent over time until 2030. 

 

 
Fig.2: Required annual operational CII, CII - Carbon Intensity Indicator - DNV 

 

The attained annual operational CII (Grams CO2 per cargo capacity and nautical mile) and the related 

environmental rating (A to E), MEPC 354 78 (imo.org), will be noted on the DCS Statement of 

Compliance (SoC) and must be kept on board for five years and must be kept on board for a compulsory 

five years. Poorly rated vessels, this includes a D-rating for three consecutive years, or a one-time E-

rating will result in the submission of a corrective action plan before the SoC can be issued. The 

corrective action plan should consist of an analysis of why the required CII was not achieved and include 

a revised implementation plan. 

 

3.  CII – Carbon Intensity Indicator, Correction Factors and Voyage Adjustments  

 

The formula for calculating the attained CII was extended within the framework of MEPC 35 (78) 

incorporating correction factors and voyage adjustments. This means that for certain ship types and 

operations a “correction” to the CII may be given, either by removing a certain period of the vessels 

operation or by reducing the CII according to criteria explained below. Required annual operational CII, 

MEPC 354 78 (imo.org): 

 

𝐶𝐼𝐼Ship≙
Σ 𝐶𝐹𝑗 ⋅ {𝐹𝐶𝑗 - (𝐹𝐶voyage,j + 𝑇𝐹𝑗 + (0.75 - 0.03𝑦𝑖 ) ∙ ( 𝐹𝐶electrical,j+𝐹𝐶boiler,j+𝐹𝐶others,j))}

fi ⋅ fm ⋅ fc ⋅ 𝑓𝑖vse ⋅ Capacity ⋅ (𝐷𝑡 - 𝐷𝑥)
  

(1) 

 

The motivation for introducing these corrections in the CII calculation mainly relates to the exclusion 

of competitive disadvantages due to energy-intensive cargo, special, energy-intensive ship operation 

due to short routes and cargo handling exclusively using onboard energy supply (e.g. generators and 

boilers). The corrections applied in the formula above can be divided into three sections:  

 

https://www.imo.org/en/ourwork/environment/pages/data-collection-system.aspx
https://www.imo.org/en/ourwork/environment/pages/data-collection-system.aspx
https://www.dnv.com/maritime/insights/topics/CII-carbon-intensity-indicator/index.html
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.354(78).pdf
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.354(78).pdf
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a. Voyage Adjustments – FCVoyage,j: 

▪ Securing the safety of a ship or saving life at sea (applicable for all vessels) 

▪ Sailing in ice conditions (applicable for ice-classed vessels) 

 

b. Correction Factors: 

▪ AFTankerSTS  – oil tankers engaged in STS voyages 

▪ AFTankerShuttle  – shuttle tankers equipped with dynamic positioning 

▪ FCelectrical  – cargo-related electrical consumers (reefers, refrigeration plants, el. pumps) 

▪ FCboiler  – cargo-related fuel mass for boilers (heating, steam pumps) 

▪ FCothers  – fuel mass for e.g. for pumps driven by combustion engines  

 

c. Correction factors adopted from EEDI and EEXI calculation: 

▪ 𝑓𝑖  – capacity correction factor for ice-classed ships 

▪ 𝑓𝑚  – ships having ice classes IA Super and IA 

▪ 𝑓𝑐  – cubic capacity correction factors for chemical tankers 

▪ 𝑓𝑖,𝑉𝑆𝐸  – correction factor for ship-specific voluntary structural enhancement 

 

While the items mentioned under a. result from environmental and weather conditions, section c. 

considers exclusively fix factors derived from the EEDI/EEXI calculation considering the design 

characteristics of the ship. The subsequent consideration shall focus on the correction factors mentioned 

under c. FCelectrical, FCboiler, and FCothers. 

 

The IMO assumes that the total fuel quantity of the ship is recorded for the calculation of the CII. This 

includes main engines, auxiliary engines, gas turbines, boilers and for each type of fuel oil consumed, 

regardless of whether a ship is sailing or at anchor. For the collection of consumption data itself, different 

methods are specified: 

 

a. Bunker delivery note (BDN) 

b. Bunker fuel oil monitoring 

c. Flow meters (according to vessels data collection plan) 

d. LNG / alternative fuel tank monitoring 

 

The determination of the CII based on a. - bunker delivery note only, although satisfying the basic 

requirements, is the least sophisticated method, on the one hand due to inaccuracies of the bunker 

procedure itself, on the other hand this method does not allow to focus on fuel oil consumption on a 

certain leg of a route and the aforementioned CII correction factors can only be taken into account to a 

very limited extent. At present, a substitute value for energy consumption is only envisaged for 

refrigerated containers if these are operated with on-board energy. Otherwise, it is crucial to install 

suitable and reliable measuring systems and sensors for automated data acquisition and storage in order 

to differentiate between the various energy consumers on board being able to deduct cargo related energy 

from the CII-calculation. Examples include the energy-intensive transport of liquefied gases due to the 

cooling and liquefaction plants installed on board. Tankers, especially heavy oil tankers, can deduct 

energy required for cargo heating and transport, e.g. for steam-driven pumps, from the CII calculation. 

Additional electrical consumers related to cargo handling may be calculated with an approximation of 

the Specific Fuel Consumption. SFOC in g/kWh associated with the relevant source of electrical power 

as per the EEDI/EEXI Technical File or NOx Technical File. In the case of ships without a Technical 

File, a default value of 175 g/kWh for 2 stroke engines and 200 g/kWh for 4 stroke engines shall be 

applied.  

 

4. Market impact - vessels affected  

 

The CII rating in general will in future affect ship owner and charterer in the same manner, not least 

impending penalties and rising fuel prices will force and motivate to monitor and optimize the vessels 

operation. Focussing on IMO´s approach to deducting cargo-related energy consumption a 36% share 

could benefit from applying that. The potential reduction strongly depends on the respective operating 
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profile of the ship and the cargo to be transported. The greatest saving is considered on gas tankers, 

trading on short distances, due to extensive energy consumption for required pressure reduction during 

the first days on sailing after loading the vessel. 

 

 
Fig.3: World Merchant Fleet Distribution, equasis.org 

 

5. Technical Requirements for On-board Energy Monitoring  

 

As already stated in chapter 3, the IMO authorises the vessel operator within the regulatory framework 

of SEEMP Part II to submit a vessels Data Collection Plan, in which is specifies how individual energy 

mass flows relevant for CII calculation in the form of fuel or electrical power shall be monitored and 

recorded, MEPC 346 78 (imo.org). Also self-diagnostic algorithms, maintenance and device-calibration 

intervals must be defined within this document.  

 

The system itself must consist of at least of an iPC for data acquisition, fuel flow meters for main engine, 

auxiliary engine and boiler as well as electric power meters for generator and cargo related switchboards, 

e.g. for reefer containers or handling/conditioning units on oil or gas tankers. Navigation data (vessels 

position, speed, rudder angle, wind speed, etc.) can be read out and transmitted from the wheelhouse via 

interface.   

 
Fig.4: System Requirements for CII-related energy data acquisition and vessel optimization  

  

Optionally, the system can also be equipped with further components such as draught measurement 

(dynamic trim), shaft power meter (plausibility check of the fuel consumption of the main engines 

iPC for Data Acquisition, 

Signal Coding and Processing 

https://www.equasis.org/Fichiers/Statistique/MOA/Documents%20availables%20on%20statistics%20of%20Equasis/Equasis%20Statistics%20-%20The%20world%20fleet%202020.pdf
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.346(78).pdf
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depending on the engine condition or hull condition), loading computer, etc., which enhance the 

database in its capability as instrument for holistic ship optimisation. 

 

6. Added Value trough digitalisation and MIoT© 

 

The connection of a Vessels Performance Monitoring System – even if only focused on CII-relevant 

data - is predestined for digital connection technologies, not least to generate transparency of the vessels 

status on both, crews and owners / ship operators perspective. Hand in hand, ship and fleet operations 

can be sustainably optimised from an operational and strategic point of view in terms of costs and 

greenhouse gas emissions. 

 

• Ship to Shore infrastructure: A vessel performance monitoring system in its function as a data 

logger or IoT device offers the possibility to build a proper (stable, low bandwidth, cyber-secure, 

etc.) ship-to-shore infrastructure. It will be possible to monitor all essential parameters of the 

performance monitoring system and connect additional data sources without major effort. With the 

data collected and stored in the cloud, it will be possible to analyze and evaluate the data over a 

long period of time. With the high-quality data stored over a long period of time, it is in turn possible 

to improve the performance of the vessel and investigate minor and major issues. 

 
Fig.5: Ship to Shore Data Highway 

 

 

• Data sharing and collaboration: Modern cloud solutions allow easy integration between 

suppliers, ship-owners, charters etc. Web Application programming interfaces (APIs) have been 

adopted within the industry. Testing and identifying the benefit of a new application on a set of 

high-quality high-frequency data has never been as easy as it is today. Decision support tools for 

hull-cleaning, weather routing, engine maintenance are much easier to integrate nowadays. Barriers 

for collaboration can be reduced and time for integration is lowered. 

 

• Remote Updates and support: With the establishment of a permanent ship-to-shore connection 

remote updates and services will be available. A reduction of service attendances and improvement 

of mean time to recovery has been identified within remote-enabled systems within Hoppe 

products. In additional travel requirements are reduced, helping to reduce the general carbon 

footprint. Future outlook: Integration of self-diagnostic algorithms to empower the system avoiding 

downtimes by forwarding health data to crew and ship management (predictive maintenance). 

 

7. Conclusion 

 

The decarbonisation targets set by the IMO for the reduction of greenhouse gases are progressing 

rapidly, as can be seen from the conclusions of the 80th MEPC meeting in early July 2023. The resulting 

measures concern both the short-term optimisation of ship operations and the long-term technical design 

of ships, propulsion units and energy resources used. 
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With the mandatory introduction of CII monitoring based on fuel consumption data, the acquisition of 

the energy demand of the individual consumers on board the ship is at least mandatory when considering 

deductible energy expenditures caused by cargo handling and thermal conditioning (cooling / heating) 

that can be deducted from over-all energy requirement of the vessel’s operation.  

 

The technical environment such as data acquisition / processing unit, sensors and interfaces to the offers 

even more - namely the data basis for a holistic optimisation of the ship's operation and, last but not 

least, increases transparency for efficiency and health state of the vessel’s technical infrastructure. As a 

result, a sustainable and cost-efficient fleet operation can be realized with these Performance Monitoring 

Systems in a straightforward way, with joint cooperation by digital connection between vessels technical 

management and crew. 
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Abstract

 

Precise modelling of vessels' dynamic behaviour based on high-frequency data is more crucial than 

ever in the shipping industry. Data-driven and deep learning techniques are increasingly popular due 

to their impartial estimations of a vessel's dynamics and the reduced deployment time and effort 

compared to traditional methods. However, purely data-driven methods can face data scarcity and may 

not perform equally well under different conditions. One approach to solving these problems is transfer 

learning, where a similar vessel is used to assist in the learning process of a target vessel with fewer or 

incomplete data. Although transfer learning is a proven approach, it can be challenging to implement 

in practical settings as it requires a careful selection of a similar vessel's model to be used in the 

adaptation phase. In this study, we introduce a novel method that eliminates the need to match sister 

vessel models with target vessels in transfer learning scenarios. Using a representation learning 

approach, we train a single model in a multiple-vessel dataset with the aim to capture and disentangle 

the dynamics of any vessel type while still being flexible enough to match and adapt to the available 

data of any target vessel. We demonstrate empirically that this single model can comprehend the 

dynamics of any vessel type, including their response to any weather condition while remaining 

adaptable using only a small amount of data, thereby completely solving the problem of matching 

models between vessels in transfer learning settings. 

 

1. Introduction 

 

The field of Machine Learning (ML) and Artificial Intelligence (AI) has witnessed astounding progress, 

thanks to many independent factors including algorithmic improvements, big data availability, and 

computing power increases. These advancements keep redefining the state-of-the-art (SOTA) making 

ML and AI the go-to solution for addressing critical challenges across diverse domains. Notably, 

domains such as computer vision, Krizhevsky et al. (2012), speech recognition, Hinton et al. (2012), 

natural language processing, Mikolov et al. (2013), and bioinformatics, Alipanahi et al. (2015), Zhou 

and Troyanskaya (2015), Ramsundar et al. (2015), have benefited significantly from these 

breakthroughs. In the past year, the successes of generative AI, including image synthesis from textual 

description, Ramesh et al. (2021), and dialogue systems like ChatGPT seem to pave the way for another 

cycle of major ML innovation. However, the proliferation of practical production-level autonomous 

decision systems, including those found in finance, medicine, autonomous vehicles, and shipping, 

Coraddu et al. (2019), poses high-stakes outcomes for their users. 

 

Unlike traditional methods that heavily rely on expert prior knowledge and computationally intensive 

inference processes, ML methods prioritise offline training with ample computational resources. As 

datasets and computational resources continue to expand, the future of ML in the shipping domain 

appears promising. Although numerous ML methods exist, each with their own strengths and 

weaknesses, deep neural networks (DNNs) currently dominate the field, particularly for tasks involving 

vast amounts of unstructured data. 

 

In recent years, interest for applications of machine learning in various aspects of the shipping industry 

has been steadily increasing, with a large and increasing number of scientific studies, Coraddu et al. 

(2019), Papandreou and Ziakopoulos (2022), Tsompopoulou et al. (2022), as well as novel products 

and services being developed. Maybe the most widely researched problem in the subfield is power or 

fuel oil consumption (FOC) prediction, with approaches like Jeon et al. (2018), who compare 

mailto:p.iatropoulos@deepsea.ai
mailto:K.Polymenakos@deepsea.ai
mailto:A.Nikitakis@deepsea.ai
mailto:S.Paschalakis@deepsea.ai
mailto:K.Kyriakop@deepsea.ai
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polynomial regression (PR), support vector machines (SVMs) and artificial neural networks (ANNs). 

Levantis et al. (2020) used Gaussian process regression correlating FOC with a product of speed through 

water and mean draft exponentials. Their model was trained on data from one vessel covering a year of 

operation and evaluated on operational data from the following year. Papandreou and Ziakopoulos 

(2022) found eXtreme Gradient Boosting models to outperform ANNs for the FOC of a very large crude 

oil carrier (VLCC). Other works, instead of focusing on single-vessel applications, have investigated 

using data from larger fleets for their models, such as Wang et al. (2018), who used low frequency data 

from a container ship fleet and applied LASSO (Least Absolute Shrinkage and Selection Operator), 

Gaussian processes, support vector machines and neural networks. In a separate study, Le et al. (2020) 

harnessed operational data from a multitude of Korean container vessels and used an ANN to predict 

FOC for five distinct container ships of varying sizes, which they found to be more effective than 

regression models. 

 

1.1. Transfer Learning and Representation Learning 

 

There are two important aspects of ML that aim to improve modelling with limited data, transfer learning 

and representation learning. Each method tackles the learning problem at a different level and in this 

work, we leverage both as part of the same model training pipeline. 

 

Representation learning is a fundamental aspect of machine learning that involves automatically 

discovering meaningful and informative representations or features from raw data. By leveraging deep 

learning, neural networks and other algorithms, representation learning aims to transform data into 

compact, hierarchical representations that capture salient patterns and features. Embeddings, a key 

component of representation learning, refer to the process of representing objects or entities as low-

dimensional vectors in a continuous space. Embeddings capture the essential characteristics, semantic 

relationships, and contextual information of the objects, facilitating efficient computation and enabling 

tasks such as classification, recommendation, and information retrieval. Notable contributions in the 

field include word embeddings, Mikolov et al. (2013), image embeddings, Kiela and Bottou (2014), 

graph embeddings, Dettmers et al. (2018), pretrained language models, Devlin et al. (2018), and 

contrastive learning techniques like Siamese networks, Bölücü et al. (2023).  

 

Transfer learning is a powerful technique widely employed in ML. Instead of training a model from 

scratch on a specific task, transfer learning involves leveraging knowledge gained from training on a 

large and diverse dataset. By using a pre-trained model's learned features and representations, which 

capture general patterns and cues, the model can be fine-tuned on a smaller, domain-specific dataset. 

This approach enables the model to learn task-specific nuances more efficiently, even with limited 

labelled data.  

 

One of the main limitations of such techniques when applied to vessel modelling is that the source vessel 

needs to match closely the characteristics of the target vessel so as to achieve optimal results. Although 

this is attainable when using a big model database to achieve a good match in terms of vessel’s 

characteristics, other limitations can also compromise the source model’s performance, e.g. it is possible 

for the operational conditions between the source and target vessels to not match, or the transferred 

model to be trained on a limited dataset. 

 

1.2. Our approach 

 

To alleviate these limitations, we propose a model architecture incorporating additional context inputs 

that describe the unique characteristics of each vessel (e.g. hull geometry). Such a model can be trained 

using large data from multiple vessels of any type, practically encompassing the entire available dataset. 

It facilitates zero-shot learning, enabling the model to generalise to new vessels by seamlessly 

interpolating the characteristics of previously encountered vessels in order to match the target vessel. 

 

When confronted with vessel-specific data (even at scarcity), the model can still leverage the acquired 

knowledge from other vessels while being specialised to the specific vessel's distinct characteristics and 
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hull state. This approach proves advantageous in scenarios where limited data availability hampers 

traditional modelling techniques. 

 

The utilisation of a single, universal model eliminates the need for precise matching of pretrained models 

(i.e. of specific vessel types and operational conditions), facilitating a seamless transfer learning 

protocol. By jump-starting the model adaptation process, our approach expedites the practical 

application of machine learning in the shipping industry. Moreover, this approach brings additional 

benefits, including enhanced robustness and improved performance in generalising to diverse weather 

conditions, even unseen in the target vessel’s own data. 

 

2. Methodology 

 

2.1. Regression 

 

Let us consider the common scenario of predicting the power generated by a vessel’s main engine, based 

on operational and weather conditions. Assume we have a dataset of input-output pairs available for 

model training, denoted as 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝐾 , 𝑦𝐾)}, where each input 𝑥𝑖 represents a 

vector that contains all the input features (speed, acceleration, wind, currents, draft etc.) and each output 

(or target) 𝑦𝑖 represents the generated power at these conditions. This is a standard regression problem 

in ML. We use a neural network to represent the unknown function that estimates 𝑦𝑖 from 𝑥𝑖. After 

successfully training the model on a suitable dataset of a vessel, the model should be capable of 

accurately predicting power across most, if not all, realistic operating conditions for the vessel at hand 

(vessel specific model).  

 

The proposed model (vessel informed) is still regression-trained, but using data from multiple vessels. 

We achieve this by merging data from all vessels of all available types to train a single, universal hull 

model which takes additional data as input: the key vessel characteristics. Thus, a single model can 

explain multiple data distributions arising from different hull structures and operational conditions. The 

aim is to seamlessly specialise at inference-time to specific vessels without retraining. Note that the 

scope of this model is not to capture a vessel's state that could shift, e.g. due to fouling. Such aspects 

can only be handled during the adaptation phase using vessel specific data in a transfer learning setting. 

  

Intuitively, the model, after going through a large dataset containing data from many vessels, learns how 

different aspects of a vessel’s hull geometry, vessel type and other vessel characteristics, combined with 

operational and weather conditions, define the power consumed by the hull. This universal model 

“understands” the dynamics of different vessel types and can estimate the power consumption of unseen 

vessels. This modelling capability of generalising in previously unseen domains is referred to as zero-

shot learning, Socher et al. (2013), in the ML and AI literature.  

 

2.2. Training, validation and testing 

 

The usual process of training and evaluating such a model typically involves splitting the dataset into 

two or three parts: a majority portion for training, a portion for validation, and a portion for testing. 

Splitting the original dataset into training, validation and test sets is often as straightforward as randomly 

assigning every point in the original set to one of the three subsets, according to a preset probability 

distribution (e.g. 80% training, 10% validation, 10% testing).  

 

However, in real-world scenarios, it is unlikely for the model to be tested on randomly selected data 

points. For example, it is more realistic for the test set to consist of the most recent part of the dataset 

(points collected closer to the present time), i.e. earlier data points being utilised for training and the 

model being expected to perform accurately on more recently collected data without retraining. 

 

The above considerations have been taken into account for the transfer learning and adaptation 

experiment in Section 3.2, where we simulate the case of modelling vessels with transfer learning under 

limited operational data. 
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The training and evaluation protocol for the multi-vessel training is a folded cross-validation scheme 

(across vessels) and is explained in detail in Section 2.4.4. 

  

2.3. Dataset construction 

 

For a selected set of vessels, the minimum required number of data points for any vessel was set to a 

few days at 1,440 data points per day. A vessel type was considered eligible for inclusion in the vessel 

set only if it was represented by at least 5 vessels. These requirements left four vessel types available: 

Containers, Bulk Carriers, Oil Tankers and Chemical Tankers. The total number of vessels that were 

used in our experiments was 76. The distribution of the vessels of each type and the respective amount 

of per-minute data points are shown in Fig.1. 

 

 
Fig.1: Makeup of dataset in terms of numbers of vessels of each vessel type (left) and numbers of data 

points coming from vessels of each vessel type (right). The average container ship has been 

collecting data for a longer period of time than the others, which combined with the larger number 

of container ships, causes them to provide the vast majority of the data. 

 

2.4. Model Architecture 

 

2.4.1 Vessel Specific Baseline Models 

 

We first describe the architecture of a standard vessel-specific model which is trained on a vessel’s own 

data. This is a typical regression DNN where the inputs are the operational per-minute data listed in 

Table I and the output is the propeller’s shaft power. This DNN can be seen as an operational encoder 

network zop = hop(xop) followed by a linear prediction head layer ypred = g(zop). In this case, for each vessel 

we train a model using exclusively data from the vessel at hand. The data points are split randomly into 

a training set (80%), a validation set (10%) and a test set (10%). This model will be referred to as the 

vessel specific baseline model of the vessel. 

 

Fouling modelling is excluded throughout this work for all model types, in order to simplify the overall 

experimental design, as fouling is not only vessel-specific but also time-dependent. 

 

Table I: Input features used to represent the operational condition of the vessel at each point in time 

Speed (Over-Ground) [kn] 

Drafts (aft and fore) [m] 

Wind (apparent magnitude and angle) [kn] and [°] 

Currents (magnitude and relative angle) [kn] and [°] 
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Fig.2: Architecture of the operational encoder network, used to obtain a vector embedding representing 

the operational conditions of the vessel at each point in time. The light blue square represents 

trainable neural network layers. 

 

In the following subsections we describe the architecture of the vessel agnostic and vessel informed 

model both of which are trained on multi-vessel datasets. 

 

2.4.2. Vessel Agnostic Model 

 

The vessel agnostic model has the same architecture as the vessel specific baseline; but it is exposed to 

multiple vessel datasets. It serves the purpose of setting the performance of an “average” data-driven 

model. The vessel agnostic model has no way of knowing which vessel each data point comes from and 

thus can only provide a prediction for the “average” power across vessels and vessel types. 

 

2.4.3. Vessel Informed Model (proposed) 

 

In this paper, we propose the vessel informed model. This model combines the operational per-minute 

conditions with the vessel type and geometric characteristics of the vessel. The operational encoder part 

of the model is identical with the encoder hop of the vessel specific baseline and vessel agnostic model.  

 

In our approach, the vessel type and hull geometry features undergo an embedding process within a 

dedicated network, resulting in encoded representations as a series of real-valued vectors. This n-

dimensional embedding space can be regarded as a learned encoding of the vessel's characteristics, 

whereby vessels with similar attributes should be positioned in close proximity, while significantly 

different vessels are situated further apart. The embedding network is trained jointly with the rest of the 

model, with the objective of minimising power prediction errors. By incorporating the vessel embedding 

component, our model effectively captures the intrinsic structure of vessel characteristics to facilitate 

accurate power predictions across vessels. 

 

The network branch that encodes the vessel type is split into two sub-networks: the vessel type 

embedding network and the hull geometry embedding network. The first one is responsible for encoding 

the vessel type which is provided as a one-hot encoded vector xtype while the second one encodes the 

hull characteristics. 

 

xtype is passed to the vessel type embedding network to obtain a vector ztype = htype (xtype). The hull 

geometry embedding network encodes the geometric features xgeo of the vessel into another vector zgeo = 

hgeo(xgeo). These two encoded vectors are concatenated to form a single vessel embedding vector zvessel = 

ztype ⨁ zgeo = hvessel(xtype, xgeo). The operational vector zop is then concatenated with the vessel embedding 

zvessel and passed through a fusion encoder in order to obtain the fused vector z = h(zop⨁zvessel). A linear 

prediction head follows in order to emit the desired target predictions in the exact same way as in the 

previous models ypred = g(z). The described architecture of the vessel informed model encoder is shown 

in Fig.3. 
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All tested models have the same task of predicting the true shaft power at the current minute. The loss 

that is used is the mean squared error (MSE) between the true and the predicted value. The selected 

optimizer is Adam, Kingma and Ba (2014), with a starting learning rate of 0.001. The learning rate is 

reduced after a few consecutive epochs of no drop in the validation error and the training is early-stopped 

if no improvement is seen on the validation loss after a set number of epochs. The batch size is set to a 

lower number when training the vessel specific baseline models (only one vessel) compared to when 

training the vessel agnostic and the vessel informed (multiple vessels) models. The reason behind this 

is to assure that in every batch we have sufficient representation of all vessel types, since the multi-

vessel dataset is unbalanced across vessel types, with some types having a lot more data points than 

others.  

 

 
Fig.3: Architecture of the vessel informed model, used to extract information about the operational 

conditions of the vessel at each point in time, fused with information about the particulars of the 

vessel. The light blue squares represent trainable neural network layers, trained jointly and end-

to-end with the downstream task, i.e. predicting power. L/B is the ratio of length between 

perpendiculars to extreme breadth underwater, B/T is the ratio extreme length underwater to mean 

draught and Cb is the block coefficient (ratio of underwater volume to the product of length 

between perpendiculars, extreme breadth underwater and mean draught). 

 

2.4.4. Cross-Validation for Evaluation 

 

In order to measure the generalisation error on unseen vessels, we use multiple vessels’ data for training. 

We perform ten-fold cross validation following a different procedure. Instead of splitting randomly on 

the data points, we split on the vessels. Our entire vessel set is split sequentially into 80% of train vessels 

and 20% of inference vessels thus creating five different splits. The split is stratified on the vessel type 

meaning that the vessels’ type distribution remains the same across the folds. Then, the inference set is 

further split into two equally sized sets, validation and test. Validation and test vessels are swapped to 

create an extra fold leading to a total of ten folds. The procedure is schematically depicted in Fig.4.  
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Fig.4: Illustration of the ten-fold cross-validation methodology. The vessels are divided into five folds 

(A, B, C, D, E) each subdivided into two sub-folds (i and ii). Each of the experiments reported in 

this paper is run by first training on B-E, validating on Ai and testing on Aii, then training on B-

E, validating on Aii and testing on Ai, then training on A, C-E, validating on Bi and testing on 

Bii etc. Reported results are the average of all the sub-fold tests. 

 

3. Experimental Results 

 

3.1. Zero-Shot predictions 

 

Zero-shot prediction refers to the ability of a model to make predictions on tasks for which it has not 

been trained, in this case to predict power on a vessel for which it has received no training data. It is 

impossible to accurately model the hull of a completely unseen vessel due to properties of the hull not 

captured by the geometry as well as those that change over time (e.g. due to fouling). To capture these, 

at least some data must be provided for the adaptation phase of a transfer learning protocol. Despite this, 

experiments with no training data can provide a good measure for assessing how suitable a model is for 

adaptation. 

 

The performance of our vessel informed model is compared against three references. First, we train a 

vessel specific baseline model (the operational encoder model) using available data from the vessel in 

question. Second, we train the same operational model on data from all other vessels, without a 

representation of vessel characteristics (a vessel agnostic model). Finally, we use a model trained on 

only data from a sister vessel, which is the literature state-of-the-art approach when data for a vessel is 

not available. When a vessel u has no sister vessel in our database we detect the most similar vessel 

(nearest neighbour) using the learned vessel representations of the vessel informed model, to select the 

nearest vessel according to the Euclidean distance. After the vessel informed model is trained, we obtain 

a vector representation of each vessel by giving the encoder hvessel the characteristics of the vessel as 

input: zvessel = hvessel(xgeo, xhull). Thus, the nearest vessel v*
 is the vessel of the training set whose embedding 

is nearest to the embedding of vessel u: 

 

 v* = argminv dEucl(u, v). 

 

Sister vessels are guaranteed to have a Euclidean distance of 0 between their embeddings, so this process 

always returns a sister vessel if one exists. 

 

For the scope of this work, fouling modelling is not considered for simplicity. 

 

Table II shows the Mean Average Percentage Error (MAPE), averaged across vessels. The vessel 

specific baseline has the lowest error as expected, as it is based on data from the vessel in question. 
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Despite being trained on much more data, the vessel agnostic model trained on all other vessels performs 

worse than the model trained on just a sister vessel, with the distortion due to differences between vessels 

outweighing the benefit of additional data. However, when the nearest neighbour is not a sister vessel 

the vessel agnostic model actually performs better. 

 

The vessel informed model outperforms both the sister vessel model and the vessel agnostic model 

significantly, suggesting that it has successfully modelled the relationship between the vessel particulars 

and the current operational conditions, learning from other vessels without being distorted by their 

differences from the target vessel.  

 

Table II: Mean Average Percentage Error (MAPE) of predicting the per-minute power of a vessel from 

its operational conditions using a model trained on data from the vessel (vessel specific 

baseline), compared to four methods trained only on data from other vessels: the same model 

architecture trained on other vessels (vessel agnostic), the same model architecture trained on 

the most similar other vessel which is not a sister vessel (nearest neighbour non-sister), the 

same model architecture trained on a sister vessel (sister vessel), and the vessel informed 

model (which also incorporates vessel characteristics) trained on other vessels. 

 Power MAPE (%) 

vessel specific baseline 9.55 +- 2.80 

vessel agnostic 28.87 +- 18.80 

nearest neighbour (non-sister) 29.21+- 23.56 

sister vessel 21.47+- 11.78 

vessel informed 17.56 +- 6.44 

 

 
Fig.5: MAPE of predicting power for each vessel type of a model using only operational conditions 

trained on data from the vessel (blue), a model using only operational conditions trained on data 

from other vessels (orange) and a vessel informed model using operational conditions, vessel type 

and hull geometry trained on data from other vessels. 

 

Fig.5 breaks the results down by vessel type. The vessel informed model performs well even for vessel 

types other than containers, which represent the vast majority of the data. The case of chemical tankers 

is particularly interesting. The vessel agnostic model failed completely (60%+ error), however the vessel 
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informed model trained on the same mostly-container ship database was able to use its knowledge of 

the types and geometries of each vessel to provide reasonably accurate power predictions for each 

chemical tanker.   

 

To verify how the vessel informed model is capturing vessel characteristics, we inspect the vessel 

embedding vectors i.e. the representation of the vessel characteristics learnt in training. To map the 

vectors to 2D space for visualisation we perform dimensionality reduction on a randomly selected fold 

using two algorithms, the non-linear t-SNE, Van Der Maaten and Hinton (2008) and the linear PCA 

Jolliffe (2002). The results are shown in Fig.6. As expected, vessel type emerges as the dominant 

characteristic by which vessels cluster. 

 

 
Fig.6: 2D visualisation of multidimensional vessel embeddings (left: t-SNE, right: PCA). Same coloured 

points represent vessels of the same type. 

 

To qualitatively evaluate the performance of the models, we use them to perform Power-Speed (PV) 

simulations for each vessel. Every feature except for speed is fixed to a specific value as described in 

Table III.  

 

Table III: Ranges and values of operational conditions used as inputs to models to generate PV curves.   

                As currents are set to zero, speed over-ground is equivalent to speed-through-water.) 

Speed (Over Ground)* [kn] [min, max] of the vessel’s data 

Drafts (aft and fore) [m] Mean value of the vessel’s data 

Wind (apparent magnitude and angle) [kn, °] 
Varying along with speed to match 0 

magnitude and angle of true wind speed 

Currents (magnitude and relative angle) [kn, °] Set to 0 

 

Table IV: Legend of the colours used in the PV curves, Figs.7-9 

Colour Model Type 

Blue vessel specific baseline (operational model trained on data from vessel) 

Orange vessel agnostic (operational model trained on data from other vessels) 

Green 
vessel informed (model trained on data from other vessels taking into 

account both operational data and vessel particulars) 
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For the vessel informed model, the vessel characteristics are attached (and kept fixed) to the simulated 

data points in order for the model to be able to perform inference. Since many vessels (76 in total) were 

used in the experiments, we show six representative examples. 

 

  
Fig.7: Power vs. Speed for two representative Container ships (left and right) showing actual data 

(grey dots) and predictions of a vessel specific baseline model trained on the actual data (blue) 

and vessel agnostic (orange) and vessel informed (green) models trained on other vessels 
 

  
Fig.8: As Fig.7 for two representative Bulkers carriers (left and right) 

 

  
Fig.9: As Fig.7 for two representative tankers (left and right) 

 

Interestingly, the vessel-specific models that achieve lower prediction errors often produce simulations 

that differ from the expected cubic relationship between power and speed. This is most likely a case of 

overfitting: the model has learned to fit the data to high precision, but inadvertently has also modelled 

noise and/or dataset biases. On the other hand, the vessel agnostic models underfit, deviating systemati-

cally from the data.  

 



 

 

112 

The vessel informed model more closely fits the data than the vessel agnostic model and is smoother 

and more robust than the vessel specific model. It seems to tackle the problem of limited operational 

conditions in some of the datasets (e.g. vessel 3000 and 1005), whereby even a dataset which large 

amounts of data points can turn out to have been exposed to a limited range of operational conditions 

e.g. weather conditions and speed, creating gaps which the vessel-informed models can fill in by using 

insights from other vessels.  

 

3.2. Transfer learning and adaptation 

 

In this experiment, we artificially limit the available samples and train our models by incrementally 

increasing the amount of data. Each vessel is limited to 12 weeks of data with a per-minute sampling 

rate i.e. 120,960data points. The first 10 weeks are used as training data, the last week is held out as a 

test set and the penultimate week is held out as a validation set. We start with the first week of available 

data and incrementally add a week at each step, training from scratch a vessel specific baseline model 

and adapting the vessel agnostic and vessel informed models whose training vessels’ set did not include 

the target vessel. During the adaptation of the vessel informed models, the vessel encoder, which consists 

of hgeo and htype, is held frozen. Only the operational encoder hop, the fusion encoder, h and the prediction 

head, g are fine-tuned. 

 

We plot the median MAPE across the vessels along with the interquartile range (IQR). Interestingly, the 

vessel agnostic model outperforms the vessel specific baseline, as at these small amounts of data, the 

latter’s lack of data outweighs the former’s lack of relevance. The vessel informed model outperforms 

both other models, combining the best of both worlds. 

 

 
Fig.10: Performance (MAPE and IQR) when different numbers of 1-minute train samples of data are 

available from a vessel, at predicting the vessel’s power: i. from its operational conditions using 

a model trained on the samples (base) ii. from its operational conditions using the same model 

architecture trained on the samples plus data from other vessels (agnostic), and iii. from its 

operational conditions, vessel type and hull geometry, using the vessel informed model trained 

on data from other vessels and adapted using the samples (informed). Each step of 10K samples 

corresponds to roughly seven days of operational data. 

 

As expected, the fewer the available data points for a vessel, the more difficult it becomes for a vessel 

specific model to properly capture the vessel dynamics across a variety of conditions. Our proposed 

solution exploits learning from multiple vessels while simultaneously adapting to vessel-specific 
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characteristics. This essentially allows the model to combine rich and diverse operational conditions 

into a common representation hence increasing the robustness and extrapolation performance. 

 

4. Conclusions 

 

This paper investigated the problem of predicting per-minute power of a vessel by leveraging data from 

other vessels and knowledge of vessel characteristics, both in conditions of no training data available 

from the vessel and in conditions of limited training data. 

 

In conditions of no training data, the literature state-of-the-art is a model trained on a sister vessel, if 

one is available. Simply training a vessel agnostic power prediction model on data from large numbers 

of other vessels was confirmed to perform worse at predicting power than training the same model on 

just data from a sister vessel. This is to be expected as vessels with different characteristics require 

significantly different amounts of power in similar operating conditions. However, using our proposed 

architecture to enable the model to learn how hull geometry and type inform power from multiple 

vessels, we were able to demonstrate considerably better performance than the sister vessel model. 

Further, performance of our vessel informed model remains strong even when the majority of vessels in 

the dataset are of a different type. 

 

While predictions made by the vessel informed model using only data from other vessels and the vessel 

particulars are not as accurate as those made by a model trained on actual data from the vessel, the vessel 

informed model does have advantages over the vessel specific model, in particular when making 

predictions in conditions where data is not available, as illustrated in the P-V curves. 

 

In the limited training data conditions, we showed that by leveraging data from other vessels with 

knowledge of each vessel’s particulars, the vessel informed model trained on both the available data 

from the vessel in question and data from other vessels can achieve considerable gains over models 

trained only on the vessel in question. The vessel informed model achieves high levels of accuracy even 

with small amounts of data (< 2 weeks sailed) from the new vessel, with the advantage it gives over 

other models increasing the smaller the amount of available data. 

 

Data-driven methods have significant advantages for vessel performance modelling, but there will 

always be vessels with limited or biased datasets, such as newly constructed vessels, vessels with newly 

installed sensors, and those that have undergone retrofits substantially altering their performance. 

Combining representation learning with transfer learning can alleviate both the problem of vessel 

matching and robustify the training procedure, especially when data availability is low. In this study we 

proposed a methodology to construct DNN models that can effectively leverage large datasets, collected 

from a large number of vessels with different types, with the ability to perform zero-shot prediction for 

unseen vessels. This capability is achieved through modelling the impact of different vessel 

characteristics in the power consumption. Notably, this is accomplished without relying on analytical 

approximations, but by properly ingesting an extensive array of vessels with varying geometries and 

vessel types. 
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Abstract 

 

This paper describes the procedures in performing in-service speed trial analyses by the IMO MEPC 

1/ Circ. 901 for the purpose of EEXI calculations. The guidelines outline how speed power relations 

can be established as an alternative for the cases where design information is missing and the EEXI 

has to be estimated by statistical calculations. The speed trial location and time is flexible since the 

trial data is analysed with data from a real time performance system and is remotely monitored by a 

Class representative. The paper includes two case studies where vessels have performed the in-

service speed trials and the result of these are benchmarked to other available results. The in-service 

speed trials show promising results and can be used as an alternative to model tests and CFD 

simulations. 

 

1. Introduction 

 

As part of the short-term measures to reduce the CO2 emissions from Shipping, IMO introduced the 

EEXI as a measure to enter into force by 1st January 2023. As the design of new build vessels had the 

attained EEDI, existing vessel also were set up in a scheme where the design measures for the ship 

had to fall into specific boundaries for the CO2 emissions. If a vessel would fail to comply, measures 

should be implemented that would improve the EEXI. Measures most relevant for existing vessels 

could be:  

 

1. retrofitting devices or measures that could improve the energy efficiency.  

2. reducing the power of the main engine (with Engine Power Limitation = EPL) 

3. A combination of 1 and 2 

 

Any of the effects of including the measures would then be used in the calculations for the “new” 

EEXI which then would be approved by the verifier which in this case is a Classification Society 

(Class). 

 

2. Calculating the EEXI 

 

To calculate the EEXI a number of design information should be available. The calculation 

procedures are described in IMO Res MEPC 350.78 and to complement this IACS has issued a set of 

guidelines for the calculations, IACS No. 172 EEXI Implementation Guidelines. The most critical 

documents in the calculations are the speed trial documents and the engine fuel consumption 

information.  

 

To match the required EEXI for a vessel, the attained EEXI is adjusted by adjusting the Vref and the 

main engine power. The calculations lead to a new Vref and a resulting limited maximum main engine 

power (MCRlim) which then defines the EPL. The EPL can be overrideable, which means that if the 

vessels should need additional power e.g. in case of an emergency, the EPL can be broken and the 

vessel would have the full power available. The EPL can also be non-overrideable which means the 

vessels EPL is fixed and cannot be broken. 

 

In the guidelines from IACS there are guidance notes on the procedures for how the speed trials were 

to be held and from which documents the fuel oil consumption values should be established. For older 

vessels the information might not be available for the owner or the procedures on how the information 

has been collected might not meet the demands. For vessels where this has been the case, a set of 

statistical calculations has then been derived. Mainly to get a Vref which normally would come from 

mailto:svh@vesops.dk
mailto:aor@vesops.dk
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the speed/power curve from speed trials and to get the engine(s) SFOCs which normally would come 

from the factory acceptance tests (FAT). Specifically, for the Vref, the usage of the statistical value can 

be unfortunate since it would not very often describe actual performance of the vessel and in many 

cases penalize the vessel on its EEXI.  

 

If sea trial or tank test has not been conducted, the following approximation can be applied: 

 

𝑉𝑟𝑒𝑓,𝑎𝑝𝑝 = 𝑉𝑟𝑒𝑓,𝑎𝑣𝑔 − 2𝜎 [𝑘𝑛𝑜𝑡] 

 

Where Vref,avg is a statistical mean of distribution of ship speed in given ship type and ship size, to be 

calculated in accordance with the guidelines developed by the Organization, based on IHS Seaweb 

database and σ is a standard deviation of distribution of ship speed in given ship type and ship size, to 

be calculated in accordance with the guidelines developed by the Organization, based on IHS Seaweb 

database. 

 

Statistically, Vref,app refers to the worst 2.5% performer in terms of ship speed based on IHS Seaweb 

database. Therefore, this approximation will secure the EEXI value not overestimating the ship's en-

ergy efficiency performance. A couple of examples (for bulkers and tankers) can be seen in Fig.1. 

 

 
Fig.1: Estimation of Vref for Bulkers and Tankers 

 

In addition, to the knowledge of the IHS Fairplay being inaccurate in its vessel information, the 

refence values would in all be unfair to use for well performing vessels, where the available design 

information is inadequate for an EEXI calculation. 

 

3. The IMO MEPC1./Circ 901 

 

If not using the statistical measures, shipowners then have had the option to have a new speed trial 

done. A traditional speed trial would include a model test / CFD simulation and a speed trial at a 

reference condition to get to the EEXI speed-power curve for finding the Vref. Further the trial should 

be attended by Class and the whole arrangement would be costly and difficult to fit in to a busy 

schedule for vessel operating in a busy market. 

 

Over the last years more vessels have been using performance monitoring systems from different of 

providers and basically, the vessels performance is monitored continuously under operation by the 

vessel sending data to shore where it is analyzed in a software system available from the chosen 

provider. The frequency of which the data is sent varies pending on the chosen system, where a 

system with a high updating frequency has the advantage of being more accurate and faster in 

detecting any performance issues. These systems are being used in general to monitor 

hull/propeller/engine performance, to evaluate performance of antifouling paints, retrofits of Energy 

Saving Devices and in general to establish new baselines after a drydock or when acquiring new 

(used) vessels.  
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With the above in mind, the idea of introducing a more efficient way to conduct a speed trial without 

taking the vessel out of service, the BIMCO organisation called for a meeting with stakeholders in the 

industry that could have knowledge and interest in working towards a solution that would include in-

service measurements, remote monitoring and a flexible means to perform speed trials that would fit 

in to a busy vessels schedule. 

 

A group of experts defined the scope of work and after the first draft versions of the procedures were 

issued, RINA and Japan were engaged in the work and the Circular was presented in IMO at the 

MEPC 76 and the final version was approved at the MEPC 78 as MEPC.1/Circ. 901. 

 

3.1. What is new in the circular? 

 

In general, there are a lot of references to recommended speed trial practices, mostly to the ISO 

15016:2015 standard and this makes sense to ensure procedures and methods are uniform for the 

different stakeholders involved in the trial. The following differs from what has been the standard for 

these trials. 

 

• If a vessel does not have any model tests or speed trials at or around the EEXI condition, a 

speed trial can be performed at a reference condition. This condition is defined as the condi-

tion to where it had a speed trial when it was new. After the speed trial, the two speed power 

curves are compared, and the result is used for reference for the verification of the trial. Then 

the vessel can in addition perform a second speed trial at the EEXI condition. The result of 

this speed trial is then used in the estimation of the Vref for the EEXI calculations. 

• A speed trial does not have to be attended by a Class representative on board the vessel. If a 

vessel has a performance monitoring system with high frequency data updates that can be ac-

cessed by Class during the speed trial, the attendance can be done remotely. There are further 

no restrictions to where the speed trial can be held as long as it is held within the framework 

described in the circular. 

• It is the Shipowners responsibility to execute the speed trials according to the procedures in 

the circular. In the planning phase it is further recommended to include Class representatives 

for them to be aware and prepare for the trial and familiarize themselves to the performance 

monitoring system used during the trial. 

• The main engine fuel oil consumption during the speed trials is included as a measure. This 

for the Shipowner to include the consumption information for a vessel baseline for future use 

and for the verifiers to use as a sanity check on the speed – power curves produced from the 

trial. 

 

The circular includes very practical measures and checklists for equipment that should be included in 

the analysis. This makes it easier for the participants to plan and execute the trials. It further ensures 

transparency of the methods used and is helpful in the discussions with Class representatives in the 

preparations of the trials.  

 

The following two case studies describe the execution of speed trials for 2 different vessels, where the 

trials were held with the intent of improving the EEXI for vessels. 

 

4. Case Study vessels 

 

The first case vessel had the following issues with regards to the EEXI: 

 

• The vessel was delivered in 2008. 

• The vessel is overpowered and designed for a specific operational profile that do not match 

the current profile. 

• The EPL needed to meet the required EEXI were assumed too high for the vessel to be flexi-

ble to meet the needed speed to continue working in the current pool. 
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• There was no delivery speed trial information that matched the requirements to be used in the 

calculations. 

• There was a copy of a sister vessels model test but since the owner had applied Energy Saving 

Technologies to the vessel just after a drydock, it was considered that a speed trial in the ref-

erence condition should be tested to verify the improvement to the speed power curve. 

 

The second case vessel had the following issues with regards to the EEXI: 

 

• The vessel was delivered in 2008. 

• The vessel is overpowered and designed for a specific operational profile that do not match 

the current profile. 

• The EPL needed to meet the required EEXI were assumed too high for the vessel to stay in 

the trade that it was currently operating in.  

• There was no delivery speed trial information that matched the requirements to be used in the 

calculations and all calculations had to be done by statistical means. 

 

For both cases, it was therefore decided that a speed trial should be held just after drydocks in 2023. 

Class was included in the preparations and a remote survey team was introduced to the procedures 

and the performance software that was going to be used in the trial. 

 

4.1. Performance data 

 

Both vessels have during dry dock been fitted with fuel flow meters and a shaft torque meter. Both 

sets of equipment were tested and calibrated before use and the certificates were available for the 

verifiers. Further, all relevant performance data was logged through a performance system with a high 

frequency data update, and it was available during the speed trial assessment on board and ashore. 

 

The data was logged with high frequency according to the recommendations described in the 

MEPC.1/Circ. 901. 

 

During the trial, the progress was to be monitored online by verifiers and the office team. The 

performance system was set up with the relevant parameters for an online overview. Time series were 

extracted after the vessel was in steady state condition after each power setting, see example in Fig.2.  

 

 
Fig.2: Sample performance data 

 

4.2. Performance model 

 

A digital twin model was developed for the vessels. Based on the available design information, a 

model including design, equipment, consumers and propulsion characteristics was developed for the 

purpose of the performance analysis and to set boundaries for the data measured on board. The model 
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was included in the software for the speed trial analysis and the measured data was validated up 

against model values. Since the model represents the performance of the vessel when it was new, it is 

in this case used as the baseline for propulsion and consumption. The delta or the offset from the new 

model is then derived based on the speed trial analysis and gives an indication of the degradation of 

performance over the years it has been in operation. The delta is then used to update the model and set 

a” new” baseline for future performance monitoring and analysis. 

 

4.3. Trial sites and conditions 

 

The trial sites were chosen while the vessel was underway. The weather forecast was studied, and 

suitable areas were chosen and where conditions were within the boundaries of the described 

conditions in the MEPC.1/Circ. 901. Further the trials were held in daylight and in areas with little or 

no traffic. 

 

Environmental conditions were measured on the actual trial site, see example in Table I. The wind 

was measured by the anemometer in the ships and the sea state was estimated by visual observations, 

see example Fig.3. The effect of currents was considered by using the mean of means method in the 

speed trial analysis. 

 

Table I: Environmental conditions data sample 

Water depth 132 m 

Air temperature 12.3° C 

Sea water temperature 16° C 

Sea water density 1.025 t/m3 

Anemometer height 36 m 

 

 

  
Fig.3: Wind and wave estimations 

 

Trials were held at 4 different engine loads where the focus was on loads from 35 to 90 % of MCR, 

where the load range matched the operational profile of the vessel. Fuel specifications were obtained 

from the bunker delivery note and used in the ISO corrections of the SFOC, see samples in Table II. 

 

Table II: Fuel specs and load settings 

Fuel density 943.9 kg/m3 

Fuel LCV 41680 kJ/kg 

Trial Engine Load 35-50-75-90%  

 

The trials were conducted as double runs and runs were planned in overlaying tracks and verified on 

the ship’s ECDIS, see Fig.4. 
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Fig.4: Double run scheme plotted on the ECDIS 

 

5. The speed trial analysis 

 

The collected data were all analyzed using the ISO 15016:2015 method. The correction methods used 

in the analysis were as in Table III. 

 

Table III: Correction methods for environmental conditions 

Parameter Method 

Waves STA 1 

Wind Fujiwara 

Current Mean of Means method 

 

All values were run through the analytics software and a set of resulting speed – power values for the 

reference condition (at ideal weather conditions) were then used in a comparison with the original 

values and an average difference was then used – for Case 1, as the calibration factor for the EEXI 

condition and for Case 2 as verification for the result and the method in use. 

 

5.1. Case 1 

 

In the comparison with the model test values for a sister ship, the average power reduction in the 

reference condition was found to be 8%. This reduction was then an indication of the improvement in 

performance by the implemented EETs in the last dry dock. The reduction was then used as a 

calibration factor on the model test values for the EEXI condition and a new EEXI value was 

calculated and issued in an EEXI Technical File which was approved by Class.  

 

A comparison between values is found in Table IV. 
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Table IV:1 Reductions in Power and Speed 

 Statistical Method Model Test Speed Trial 

MCRlim / MCR 51% 57% 64% 

Max speed after MCRlim - reduction 14% 11% 9% 

 

For this vessel, there is a difference of 5% on the theoretical maximum speed from the statistical value 

to the actual performance of the vessel. For the MCRlim, the difference is 13%.  

 

5.2. Case 2 

 

The average power reduction in the reference condition was found to be 5%. This reduction was then 

an indication of the improvement in performance by the implemented EETs in the last dry dock. The 

result was accepted as the actual performance of the vessel and a second speed trial was held in the 

EEXI condition and a new EEXI was calculated and issued in an EEXI Technical File which was 

approved by Class. 

 

A comparison between values is found in Table V. 

 

Table V: Reductions in Power and Speed 

 

Statistical Method 
Speed Trial 

Overridable EPL 

Speed Trial 

Non-over-

ridable EPL 

MCRlim / MCR [%] 38% 44% 48% 

Max speed after MCRlim - reduction [%] 28% 22% 20% 

 

For this vessel, there is a difference of 6% on the theoretical maximum speed from the statistical value 

to the actual performance of the vessel. For the MCRlim, the difference is 6%. The reductions were 

quite large for this vessel and the option of introducing a permanent power reduction was considered. 

In the regulations, the Pme is 75% of the MCRlim instead of the the 83% for overrideable power 

limitations which will add to the available power for the vessel (shown last column in Table V). 

 

 5.3 The fuel oil consumption analysis 

 

For the two cases, the fuel oil consumption was analyzed. The ME SFOC was calculated based on the 

measured power and the measured fuel oil consumption. The values were ISO corrected and 

compared to the ME FAT tests that were available for both case vessels. The measured values were 

compared to expected values (from the vessel model) and found in a valid range. A sample measured 

values are shown in Fig.5. 

 

 
Fig.5: Sample Power and Fuel Oil Consumption values 
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Case 1: For this vessel, the speed trial was held in the reference condition and the results were as in 

Table IV. 

 

Table VI: SFOC diff 

 Speed Trial 

SFOCiso delta 4% 

 

The result is quite good compared to the age of the engine (2008) and the delta is quite consistent on 

all engine loads.  

 

Case 2: For this vessel, the two speed trials were used to find the actual SFOC for the vessel. The 

result is as given in Table VII. The result is quite high even for an engine of this age (2008) and the 

delta is quite consistent on all engine loads. 

 

Table VII: SFOC diff 

 Speed Trial 

SFOCiso difference 13% 

 

The engine degradation over the years can vary depending on the engine maker and type, the 

maintenance schedules of the engine and for the actual performance status of the engine. There are 

rules of thumbs within the different shipping companies and often it is experienced based. In any case, 

the actual information can be used in setting the baseline for the vessel with respect to speed, power 

and consumption for a future performance monitoring perspective. 

 

6. Conclusions 

 

The introduction of the MEPC.1/Circ. 901 has made it possible to add flexible speed trials for the 

verification of the performance of vessels. The flexibility with regards to time, area and the 

verification of results gives the opportunity to fit the trials into a busy vessels schedule.  

 

The inclusion of data from a high frequency performance monitoring system as data used for the 

performance analysis adds to the use of large data amounts and to increased digitalization at sea. The 

precision, the timeseries and the availability (connectivity) makes it possible to perform the speed 

trials when the conditions are met. 

 

The digital model of the ship provides a theoretical overview of the vessel’s performance i.e,. how the 

vessel would perform when it was new. It further adds to the verification of the measured data with a 

sanity check and if data are within the expected values. After the speed trials, the model can be 

updated with the actual performance values and used as a baseline model for the future performance 

evaluation of the vessel. 

 

The results with respect to the EEXI verification show that the vessel now is assessed according to the 

actual performance of the vessel. The speed trials are performed to the approved standards and with 

recognized methods and not to unknown or random practices. The standardization further makes the 

verification process by Class smoother and the transparency of the analysis process is clear due to the 

availability of the time series from the performance system. 

 

The results further have the desired effect on the EEXI, and the vessel has had a fair assessment of the 

performance due to the usage of the actual values. The statistical evaluation shows that the vessel is 

penalized with regards to power limitation and speed reduction. The advantage of using the speed trial 

results is obvious and for both case studies, the vessels flexibility in adapting to the market has been 

maintained to some extent.  
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As a remark to the reduction of power of the engines and the future operation on lower engine loads, 

it is assumed that the engines will run less efficiently since they will be operating on a less efficient 

area when looking at the SFOC curve. Typically, in cases of derating engines, which the EPL would 

be a case of, modifications to the engines with respect to shifting the SFOC curve to “the left” i.e., 

move the efficient area to lower loads, is often included in the derating. If this is not considered in the 

installation of the EPL, the engines could encounter maintenance issues over time and the ability of 

running the engine regularly on high loads is not possible without overriding the EPL. 

 

The EEXI regulations are introduced as a short-term measure to reduce the CO2 emissions from 

shipping and reduction of power of the main engines does in theory also reduce the emissions. The 

question is whether it actually reduces emissions since the market over time has adapted to lower 

speeds already. And the overpowered badly designed older tonnage where the EEXI regulations 

should have an effect already are operating in this changed market. Since the EEXI is introduced 

along with the CII regulations, the combined effect probably will lead to replacement of older 

tonnage. Since the regulations are new and there are no agreed sanctions to vessels that do not comply 

with rules, it is still to be seen what the full effect on vessel operations will be. 
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Abstract

 

This study investigates a method to forecast a vessel’s end-of-the-year Carbon Intensity Indicator 

(CII) value based on the vessel’s historical operational patterns and vessel-specific performance 

model. The forecasting model’s accuracy and error margins are evaluated based on the amount of 

available data as well as the model’s sensitivity to unexpected events is discussed. The study focuses 

on dry and wet bulk fleets. 

 

1. Introduction 
 

The shipping industry plays a crucial role in global trade, facilitating the movement of goods across 

the world's oceans. However, the environmental impact of maritime transport, particularly its 

contribution to greenhouse gas emissions, has raised significant concerns. The International Maritime 

Organization (IMO) has set a target to be net zero in carbon emissions by year 2050. This is a step up 

from the previous target to have at least 50% lower absolute emissions by that year, when compared 

to the emissions in year 2008. To address these concerns and move towards a more sustainable 

maritime sector, there has been a growing emphasis on developing new regulations to measure the 

industry’s carbon emissions, from which the carbon intensity indicator (CII) is one example. 

 

CII is an operational index, which measures all the carbon emissions from all ballast and laden 

voyages, anchorage, and port stays, divided in bulk ships by the deadweight and distance sailed in a 

year (grams of CO2 per DWT mile) for ships with gross tonnage over 5000. A rating from A to E is 

assigned to each ship every year based on requirements that will become more stringent year by year. 

Besides the fact that ships with higher ratings will have a privileged market position by helping the 

shipping stakeholders and cargo owners to prioritize well-rated vessels, the vessels that achieve a D 

rating for three consecutive years or an E rating in a single year must develop a corrective action plan 

as part of the SEEMP. 

 

This article focuses on exploring the use of vessel operational data and vessel-specific performance 

models to predict the CII for bulk carriers and tankers, two critical components of the global shipping 

fleet covering a total of 59% of the world tonnage. Understanding and forecasting the CII 

performance for these vessel types are vital steps toward improving their overall environmental 

impact and preventing any commercial consequences from a bad CII rating. 

 

The accurate prediction of CII is a complex task due to the multifaceted nature of vessel operations 

and their dependency on numerous factors. The variations in operating conditions, routing, and 

weather conditions, hull fouling, among others, contribute to the challenges in establishing robust 

forecasting models. In addition, the model does not have transparency on any possibly planned dry 

docking or energy-saving equipment installations, that would significantly impact the carbon intensity 

of the vessel’s operation for the remainder of the year. 

 

The primary objective of this research is to evaluate the predictability of CII for bulk carriers and 

tankers using vessel-specific models and available vessel operational data. By leveraging vessel 

operational data and employing vessel-specific performance models, we aim to shed light on the most 

critical factors influencing CII and their potential impact on the overall environmental footprint of 

bulk fleets. Such insights will not only benefit ship operators and owners in optimizing their 

operations but will also assist policymakers in formulating effective regulations and incentivizing 

cleaner maritime practices. 
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It is also demonstrated how digital solutions, such as NAPA CII simulator, play an irreplaceable role 

to gather onboard operational data, track and understand performance in real time, and facilitate 

collaboration between stakeholders in planning next actions to meet requirements and improve their 

competitiveness. 

 

In the following sections, we will delve into the methodology and analysis process employed as well 

as the key findings derived from our investigation. Additionally, we will discuss the limitations of our 

research and the criticism the CII has received from the industry. Some criticalities in terms of 

correlation between the current formulation of the CII and the benefits for the society have been 

highlighted in the literature and will be discussed in section 4. It is nevertheless relevant to assess the 

collocation of the global fleet in terms of CII ranking, and estimate to which extent it has the 

potentiality to influence the operational profile of the vessels and affect the maritime industry on 

market positioning, business models and communication strategy. 

 

With the urgency of mitigating climate change and the rising demand for environmentally responsible 

shipping practices, the outcomes of this study are anticipated to contribute to the ongoing efforts of 

making maritime transport more sustainable, efficient, and environmentally friendly. 

 

2. Carbon Intensity Indicator forecast 

 

2.1. Methodology 

 

A fundamental aspect, especially when ship operational performance is linked with regulatory 

framework as in the case of CII, is the ability to predict the score in the future and in particular at the 

end of the year, when the first CII evaluation will be carried out. 

 

Data analysis plays here a key role. By analyzing the past operations, the model can learn the typical 

sailing speed of the vessel in different conditions, areas and weather encountered, the time spent in 

port for loading and discharging, the idle time, and the consumption in the different phases of the 

voyages. It also accounts for past maintenance and consumption trend, as shown in Fig.1, by applying 

a hull performance degradation correction. 

 

 
Fig.1: Effect of fouling and maintenance show in the consumption trend graph 

 

Global AIS information processing crossed with ship specific operational reports and measurements 

are combined with environmental conditions and allow to understand the speed profile, operational 

drafts in laden and ballast, port calls, waiting time and maintenances, and to develop models for the 

prediction of vessels’ specific performance, additional consumption from auxiliaries and boilers, and 

typical voyage process. 

 

Different forecasting models for the end-of-year CII score have been studied, from the simplest 

assumption of unvaried operations with respect to the previous year, which serves as a baseline, to the 

most comprehensive approaches attempting to simulate in detail the future operations. 
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Not always the most complex model offers the best results. Instead, a balance must be found to 

maximize the statistical significance of the past information, the reliability of the simulated events and 

processes, and the representativity in catching alterations in the operational profile and technical 

performance. The selection of the model and tuning of the relative parameters have been finally 

driven by the minimization of the prediction error when applied to the historical data of several 

vessels with verified operational data reliability. 

 

2.2. Accuracy evaluation 

 

The accuracy of the method has been evaluated by comparing past predictions with the actual score 

achieved by the vessels. With the developed method which monitors the evolution of the vessel’s 

operational profile in real time, in 90% of the cases the estimation error is below 15% already in 

March and to around 10% before the half of the year. For half of the vessels the result was closer than 

5% of the predicted score regardless of the prediction date. Fig.2 summarizes the results of the 

accuracy evaluation. 

 

As a comparison, by assuming the CII score in the current year to be the same as in the previous year, 

a significant error can be expected, with a 90% confidence interval between 20% and 25%. 

 

 
Fig.2: Confidence intervals of the predictions 

 

The accuracy of the prediction model depicted in the previous figure refers to the basic case in which 

only past operations can be considered and no information is available on the future plans. One of the 

challenges in developing the methodology resided in the drastic modifications in the operational 

profile experienced by the shipping industry in the past year due to the pandemic and in part to the 

Ukrainian war. Consequently, the confidence levels might be conservative in a more stable period and 

will be recursively evaluated in the future. 

 

However, the confidence intervals must be related to the changes in the operational profile of the 

vessels. For ships which operate in a regular way and do not incur in drastic technical modifications, 

the error will be close to zero. On the other hand, if in the upcoming months it is expected to install 

energy saving devices, drastically change the sailing speed to adapt to evolving market demand, or 

spend a prolonged time in port, the estimation accuracy can be affected. Modern digital tools allow to 

assimilate such information in the system to improve the predictions. Fig.3 shows an example of CII 

monitoring and prediction including the assimilation of information regarding maintenance and 

installation of energy saving devices planned for the future months. Furthermore, it is possible to 

insert future voyages and simulate their effect to facilitate the fleet operational planning and 

collaboration among different stakeholders, for instance in the stipulation of chartering contracts. 
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Fig.3: Example of CII prediction assimilating information about planned maintenance and installation 

of energy saving devices 

 

2.3. Results 

 

The prediction model discussed above has been then used to forecast the grades that vessels will 

receive at the end of the year, being first evaluation of the CII rating. The analysis focused on dry and 

wet cargo fleets as they cover more than half of the global merchant vessels. The results are 

summarized in Fig.4. 

 

Bulk Carriers Tankers 

       
Fig.4: Predicted 2023 end-of-year CII distribution for dry bulk carriers 

 

It has been found that one third of the bulk carriers will not achieve the minimum C-rating to be 

considered compliant with CII regulation, 12% of them will get a E-rating, as discussed in section 3, 

will already need to amend their SEEMP part III in 2024. About another third of vessels will achieve 

the required C-rating, but will still need to carefully plan the operations in 2024 considering that the 

thresholds will decrease by 2% every year until 2026. 

 

The situation looks blighter for wet cargo shipping, with almost 50% of tankers expected to receive 

A- or B-rating. However, the portion of non-compliant vessels will be just slightly lower with respect 

to bulk carriers, with almost 28% of tankers falling in ranks D or E. 
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2. Consequences for the companies 

The regulatory framework does not yet establish consequences or penalties for vessels not complying 

with the required CII ranking in 2023. Operators are however obliged to submit a SEEMP Part III 

Corrective Actions Plan before DCS Statement of Compliance can be issued for vessels getting a E-

rating the previous year or a D-rating three years in a row. 

 

An underlying assumption in the approach of the policy maker is that CII will foster a change in the 

industry driven by commercial reasons rather than regulatory enforcements. Nevertheless, more 

stringent requirements may result from the IMO revision of the regulation if the effects timeline will 

not align with the ambitious decarbonization schedule. 

 

Besides the critical aspects that will be discussed in the next section, the CII has two undoubtable 

strengths with respect to the regulatory approaches proposed in the past: 

 

• it requires a continuous change in the daily operations of the vessels instead of one-time eval-

uation of the technical performance, with year-to-year improvements 

• it assigns an easy-to-understand traffic light mark which can be powerfully exploited in the 

communication in an era when the industry is under the microscope of a more and more envi-

ronmentally conscious public opinion which stimulates responsible shipping initiatives such 

as Poseidon Principle and Sea Cargo Charter. 

 

As a consequence, a comprehensive strategy to improve efficiency of the fleet will not only help 

complying with the regulation, but also enhance the attractiveness of the vessels and the 

competitiveness of the companies. On the contrary, a passive behavior can lead to a series of mid-

term consequences which combined can jeopardize the business, such as: 

 

• more difficult access to financial market 

• lower negotiation power in closing chartering contracts 

• lower freight rates 

• increased insurance premiums 

• higher port fees 

• limitations or deprioritization in the access to ports 

 

3. Criticalities of CII 

 
The foundation of the CII approach stands on the fact that emissions are acceptable to the extent that 

they bring a benefit to society. Considering the CII equation in its summary form: 

 

𝐶𝐼𝐼 =
𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑖𝑐𝑒 − 𝐶𝑎𝑟𝑔𝑜 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 ∙ 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 ∙ 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆
 

 

and focusing on the main contributors highlighted, the concept is that the more goods are transported 

for a longer distance, with lower emissions, the better the CII rating. 

 

Wang et al. (2021) listed a series of paradoxes demonstrating how any CII approach can cause a 

behavior not expected by policy maker leading to the opposite effect of increasing the overall carbon 

emissions. Differently, in this section we aim at focusing on the criticalities related with possible 

unfair consequences of the regulation rather than tricks to achieve the required CII rank. 

 

1. The first critical aspects regard the fact that the capacity does not always relate the same way 

to the amount of cargo transported, thus to the benefit for the society. A voyage sailed in bal-

last condition will lead to fewer emissions and a better CII than the same voyage sailed in 

laden conditions. Ballast voyages are in some cases unavoidable, but a different approach 

could foster actions to limit them as much as possible. 
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2. Vessels regularly deployed in short voyages are disadvantaged with respects to long hauls. In 

fact, the time spent in waiting for berth availability, manoeuvring, loading, etc., is in propor-

tion longer for the former. This may lead to prefer other means of transporting goods in short-

er distances, for example by road, with a counter effect for the environment. Taking into ac-

count trades in a holistic way and the specificities of intermodal links would be important to 

achieve the goal of the regulation. 

3. As previously discussed, the CII regulation can affect the attractiveness of vessels with lower 

ranks. As a consequence, the use of lower ranked vessels, which are discarded by the healthi-

est and the most environmentally conscious stakeholders, may be concentrated in specific 

trades or regions, increasing the disparity and the pollution in these areas. 

 

4. Conclusions 

 

After thrilling the shipping industry and dominating the news in the months crossing 2022 and 2023, 

CII lost a bit of momentum in the communication giving more space to the upcoming EU-ETS 

scheme. Nevertheless, ship owners must remain vigilant and keep updating and actuating the strategy 

to minimize the potential negative impacts of this regulation and instead get the most benefits out of 

it. 

 

The paradoxes discussed in the literature, e.g. Wang et al. (2021), are often deriving from attempts to 

put a patch on an uncontrolled situation. Although it is important to highlight these aspects, it is 

equally important to understand that such methods to achieve the required CII rating typically come 

with a reduction of the overall efficiency of the vessel and a lost in competitiveness with respect to 

competitors which apply a holistic and preventive strategy to comply with the regulation through an 

effective improvement of the performance of their fleets. 

 

Decarbonization of shipping industry book represents a significant challenge and requires an effort 

from all players, NN (2023). However, it does not necessarily need to undermine the business, on the 

contrary as all challenges it can also be an opportunity if a proactive approach is pursued. Companies 

which start investing now on the right solutions will quickly find themselves to be compliant, 

sustainable, and efficient, and ultimately have a competitive advantage.  

 

The technology to prepare your fleet for tomorrow is already available. Digital tools such as NAPA 

Fleet Intelligence and Voyage Optimization can support in this endeavor to maintain the fleets in the 

preference of the charterers, cargo owners any stakeholder. 
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Abstract

 

Within the JoRes Joint Research project, the uncertainty levels for a speed/power trial was 

investigated. The sea trials were performed as accurately as possible, following the ISO15016:2015, 

best practices and incorporating calibrated wave buoys for measuring sea state and independent 

judgment of vessel draughts. Based on the analysis conducted, it can be concluded that for the 

presented case, consisting of a 50k DWT tanker trialled in moderate weather conditions, the overall 

uncertainty in shaft power—taking into account various sources of uncertainty such as shaft power 

measurements, wave correction, wind correction, and others — amounts to approximately 4 - 6%. 

This indicates that even with the implementation of rigorous and accurate sea trials, there will still be 

inherent uncertainties that can affect the estimation of performance gains. 

 

1. Introduction 

 

Reliable speed and power data play a vital role in assessing the performance and efficiency of vessels, 

optimising fuel consumption, evaluating propulsion systems, and ensuring economical operation. 

Therefore, it is crucial to conduct speed and power trials using standardised methodologies and 

equipment to obtain precise and trustworthy results. 

 

In the pursuit of standardised and internationally recognised procedures for speed and power trials, 

significant efforts have been made by esteemed organizations, such as the Ship Trials and Analysis 

Joint Industry Project (STA-JIP) run by MARIN. The results of STA-JIP were adopted by the 

International Towing Tank Conference (ITTC), the International Maritime Organisation (IMO) and 

the International Organisation for Standardization (ISO). These entities have developed guidelines 

and standards, including the ISO15016:2015, which provide detailed protocols for conducting and 

analysing speed and power trials, encompassing methodologies, instrumentation requirements, and 

data analysis techniques. The utilisation of these established frameworks should ensure consistency, 

comparability, and credibility of trial results across different vessels and trial specialists. 

 

For reliable and meaningful speed and power results, it is essential to adhere as strictly as possible to 

the ISO standard and execute the trials meticulously. This entails employing the appropriate instru-

mentation, calibrated equipment, and experienced specialists well-versed in conducting speed and 

power trials. Furthermore, adherence to the standard promotes procedural consistency, minimising 

potential errors and uncertainties that could compromise the reliability of the trial’s outcomes. 

 

Insel (2008) conducted an uncertainty analysis using Monte Carlo simulations, considering a set of 

sea trials with 12 sister ships. The analysis took into account a range of parameters such as 

displacement, water depth, water temperature, wind speed, and wave height. The study concluded that 

the bias limit, precision limit, and total error ranged between 3-5%, 7-9%, and 8-10%, respectively. 

Similar conclusions were reached by Werner and Gustafsson (2020). 

 

In the case of the JoRes Tanker this research paper focuses on, the trials were carried out under 

favourable conditions. Expert specialists with extensive experience in speed and power trials led the 

efforts, employing state-of-the-art equipment (including a wave buoy) to gather precise data. The 

trials were conducted in weather conditions featuring wind speeds ranging from 6 to 11 kn and a 

significant wave height between 0.6 and 1.2 m. While not ideal, these conditions adequately represent 

practical scenarios where reliable results from speed and power trials are still sought after. The 

subsequent chapter will delve into the specific uncertainty components, their magnitudes, and their 

propagation into the final results, focusing on this particular case study. 
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2. Uncertainty components & their propagation  

 

Uncertainty in the results of speed/power trials can be considered as originating from two distinct 

sources: the uncertainty associated with the measurements and the uncertainty arising from the 

analysis process, i.e. the different corrections made to arrive at results for the ideal condition (no wind 

and waves, deep unrestricted water of standard temperature and density, no current, correct 

displacement).  

 

The different components have an effect on either speed or power. Below, the contributing 

components are discussed: the nature of their contribution, the magnitude of the standard uncertainty 

𝑢𝑐(𝑦) for each component 𝑦, as well as how they propagate into the end result. The expanded 

uncertainty 𝑈 is calculated as 𝑈 = 𝑘𝑢𝑐(𝑦), with 𝑘 the coverage factor, taken as 2 assuming normal 

distribution, to arrive at a 95% confidence interval. 

 

2.1. Uncertainties propagating to speed 

 

The ship’s speed through water is determined by measuring speed over ground by a GNSS system, 

and employing a current correction using the double runs in opposite directions.  

 

 
Fig.1: 12 double runs of the sea trials 

 

• Measurement: GNSS uncertainty - The GNSS system used (CSI Wireless Vector PRO) has a 

documented standard uncertainty u(GNSS) = 0.5 m for horizontal position in DGPS mode. As 

prescribed in the ISO15016:2015 standard, speed over ground is determined from the distance 

between start and end positions of the run, divided by time. If both the start and end positions 

have a standard uncertainty of 0.5 m, the standard uncertainty on the distance 𝑑 is 𝑢𝑐(𝑑) =

√(0.52 + 0.52) = 0.7 m. Dividing that to the distance yields the uncertainty for speed over 

ground. The resulting expanded uncertainty 𝑈(𝑉𝐺) is around 0.005 kn for all run sets. 
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• Speed through water determination: current correction - The speed through water is calculated 

from for a run set (consisting of one or two double runs) by a current correction. 

ISO15016:2015 offers the choice of using either of two methods: the mean of means method 

and the iterative method. There is no general statement on the accuracy of these methods, 

making the evaluation for our purposes difficult. As a measure of uncertainty, the spread be-

tween the available methods and a hindcast current model (with its own, unknown uncertain-

ty) is taken as a (be it crude) measure of the overall uncertainty on speed through water. The 

difference between both methods to the hindcast model is between 0.05 and 0.19 kn, depend-

ing the run set. These are taken as the expanded uncertainty of speed through water for the re-

spective run sets.  

 

2.2. Uncertainties propagating to power 

 

The contribution of the uncertainties within the measurement chain of shaft power and the different 

correction methods used is detailed below. 

 

2.2.1. Measured shaft power 

 

The shaft power is determined from measured shaft torque 𝑄𝑚𝑠 and shaft speed 𝑛𝑚𝑠 by 𝑃𝑚𝑠 =

𝑄𝑚𝑠𝑛𝑚𝑠
2π

60
.  

 

The shaft speed is measured by an optical pickup aimed at a reflective tape on the shaft, passing once 

per revolution. If the pickup misses up to one cycle per run, the associated uncertainty in shaft speed 

can amount to 𝑈𝑛 = 0.01 to 0.06 rpm (or: between 0.02% to 0.1% for the different runs (differences 

due to different shaft speeds and run lengths).  

 

The shaft torque 𝑄𝑚𝑠 is determined by measurement of shaft strain by a strain gauge glued to the 

shaft, Fig.2. As means to check installation uncertainty, two strain gauges were installed on the same 

shaft. From the strain ϵ𝑚𝑠, shaft torque is calculated by 𝑄𝑚𝑠 = 𝜖𝑚𝑠
2

𝑘
𝐺𝑍𝑃. Table  lists all the 

associated uncertainty components. 

 

  
Fig.2: On of the two strain gauges installed on the shaft  
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• For 𝜖𝑚𝑠 itself we consider three sources of uncertainty: the strain gauge’s k-factor, the installa-

tion and the zero calibration.  

- The strain gauge’s k-factor is listed by the manufacturer as expanded uncertainty 𝑈 = 1%.  

- The installation uncertainty was researched in the GRIP project, Janse and Hasselaar 

(2014) to be 0.55%. For this case, the mean difference between the two strain gauges on 

the same shaft is found to be 0.7%, which is used going forward.  

- The zero calibration was done both before and after the trials, with a difference of 0.3%.  

• The shaft diameter was determined by measuring circumference of shaft, which is estimated 

to be within 1 mm accurate. The diameter is therefore within 0.3 mm accurate. It propagates 

into the shaft torque via the polar section modulus. 

• The actual G-modulus for a specific shaft is not often tested, so the standard value of 82,400 

N/mm2 is taken. This value was chosen as a mean value during the STA-JIP. From that work, 

the spread was judged to be 2.5%, which is taken as expanded uncertainty propagating linear-

ly into the shaft torque.  

 

This results in a uncertainty on the measured shaft power of 2.8%, Table I. The dominant uncertainty 

in the shaft torque is the uncertainty associated with using the standard G-modulus. The uncertainty in 

shaft power is 2.8%, with the uncertainty in shaft speed having a negligible effect. 

  

Table I: Uncertainty components in 𝑄𝑚𝑠 

Component U Propagation to 𝑄𝑚𝑠 Propagated 

k-factor 1.0% Linear 1.0% 

Installation error 0.7% Linear 0.7% 

Zero calibration 0.3%  Linear 0.3%  

Shaft diameter 0.1% Via polar section modulus: 𝑍𝑃 =
π

16
𝐷3~𝐷3 0.2% 

G-Modulus 2.5% Linear 2.5% 

Total   2.8% 

 

2.2.2. Displacement: draught reading, effect on displacement 

 

The ship’s displacement is determined by reading the draught marks, Fig.3. For this case, the 

uncertainty on the draught readings, performed at sea, was determined to be 27 mm, Ponkratov and 

Struijk (2022), taking into account differences between observers, methods of observation, draught 

change over the trial duration and the slight rolling motion of the vessel during observations.  

 

 
Reading 1: 10.51 m 

 
Reading 2: 10.37 m 

 
Reading 3: 10.44 m 

 
Reading 4: 10.20 m 

 
Reading 5: 10.56 m Reading 6: 10.37 m 

Fig.3: Sample draught measurements after the trials (consequent waves crests and troughs at transom) 
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Fig.4: Deriving the mean draught at the transom by averaging consequent waves crests and troughs 

 

From the hydrostatic tables it was calculated that the impact of such deviation would be 0.3% on the 

displacement volume. This propagates via the admiralty coefficient, resulting in 0.2% propagated 

uncertainty on power. 

 

2.2.3. Wind correction 

 

The added resistance due to wind is determined by 𝑅𝐴𝐴 =
1

2
ρ𝐴𝐶𝐴𝐴(ΨW)AXVVW

2 . Within the wind cor-

rection, the following components are identified: 

 

• The used wind resistance coefficient 𝐶𝐴𝐴 from the ISO standard is one for a general tanker 

vessel, not the specific vessel. Review of literature and MARIN’s internal database shows a 

spread in 𝐶𝐴𝐴 values of around 0.1 for different tankers. This is about 16% of the used 𝐶𝐴𝐴 

values, and is taken as the expanded uncertainty propagating linearly into the wind correction. 

• The measurement uncertainty within 𝑉𝑊 is stated by the manufacturer of the used anemome-

ter (Gill WindSonic) as 2%. This is taken as the expanded uncertainty propagating quadrati-

cally into the wind correction. 

• The frontal wind area 𝐴𝑋𝑉 is determined from drawings at an estimated accuracy of 3%, taken 

as the expanded uncertainty propagating linearly into the wind correction. 

• Placement of the anemometer - in practical use of an anemometer in a ship’s mast, it is una-

voidable to be in a region of disturbed flow. Taking from the research by Moat (2003), for the 

setup in this case the disturbance on wind speed is estimated to be in the order of 5%, propa-

gating quadratically into the wind correction.  

• Similarly, Moat (2003) states the wind angle can be disturbed by about 10 degrees, leading to 

a different 𝐶𝐴𝐴 value being used for that different angle of about 11%, propagating linearly in-

to the wind correction.  

 

With the above, the total uncertainty on the wind correction is 22.5%. The propagation is proportional 

to the magnitude of the wind correction, which in the presented case is between 2% to 6% of 

measured power, leading to propagated expanded uncertainty levels between 0.5% to 1.4% of 

measured power (both due to changing weather and the differences in magnitude of measured power 

over the runs). 

 

2.2.4. Wave correction 

 

The STAWAVE-2 method is used to correct for the added resistance due to waves. Within the wave 

correction, we can identify the following contributions: 
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• Measured wave height - the uncertainty of measured wave height by the used wave buoy (Da-

tawell DWR), Fig.5, was determined by Van Essen (2018) to be 2%. This propagates quadrat-

ically into the wave correction to an expanded uncertainty level of 4%. 

• Wave added resistance method - the documented uncertainty of the used method (STA-

WAVE-2) is 31%.  

 

 
Fig.5: Wave buoy data (wave hight, period, direction) 

 

The total uncertainty of the wave correction is 31.3%. Analogous to the wind correction, the 

propagation is proportional to the magnitude of the correction made, which in the presented case is 

between 1% to 9% of measured power, leading to propagated uncertainty levels between 0.3% to 

2.8% of measured power (both due to changing weather and the differences in magnitude of measured 

power over the runs). 

 

2.3 Total uncertainty on speed and power 

 

Table II gives a summary of all the uncertainty components discussed above, and their propagation to 

speed and power. Alternatively, if one is to draw a bandwidth around the obtained speed/power 

relation obtained from the corrected trial points and their respective error bars in speed and power for 

all run sets, the shaded area in Fig.6 offers a visual representation. The shaded area encompasses a 

bandwidth in power varying from 4% at the higher speeds to 6% at the lower speeds. 
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Table II: Summary of the total propagated uncertainties 

  Propagated uncertainty per run set 

Run set 1 2 3 4 

GNSS 0.1% 0.0% 0.0% 0.0% 

STW 2.1% 0.7% 0.4% 1.0% 

Total propagated to speed 2.1% 0.7% 0.4% 1.0% 

          

Shaft power measurement 2.8% 2.8% 2.8% 2.8% 

Displacement 0.2% 0.2% 0.2% 0.2% 

Wind correction 1.4% 1.1% 1.2% 0.5% 

Wave correction 2.8% 1.6% 0.7% 0.3% 

Total propagated to power 4.2% 3.4% 3.1% 2.9% 

 

3. Conclusion 

 

Based on the analysis conducted, it can be concluded that for the presented case, the overall 

uncertainty in shaft power—taking into account various sources of uncertainty such as shaft power 

measurements, wave correction, wind correction, and others—amounts to approximately 4 - 6%. This 

indicates that even with the implementation of rigorous and accurate sea trials, there will still be 

inherent uncertainties that can affect the estimation of performance gains. 

 

 
Fig.6: Corrected trial results with error bars per run set and shaded bandwidth around obtained 

speed/power relation 

 
Therefore, if a shipowner intends to assess the impact of an energy-saving device installation or any 

other modification on the vessel's performance, it is important to consider the magnitude of the 

expected gain. If the anticipated gain falls within the stated uncertainty band, it may not be reliably 

captured or distinguished from the inherent uncertainties associated with the measurement and 

correction processes. 
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It is crucial for shipowners and stakeholders to be aware of the inherent uncertainties in power 

determination and to interpret the results of sea trials accordingly. If low uncertainty levels are 

warranted to e.g. prove a performance gain, it is of vital importance to undertake the sea trials in very 

favourable weather conditions, such that the propagation of the correction method’s uncertainties to 

the end result is limited. 

 

Additionally, ongoing efforts to improve measurement techniques, reduce uncertainties, and enhance 

the accuracy of power calculations can further refine the assessment of performance gains and help 

minimize the impact of uncertainties on decision-making processes. 

 
References 

 

INSEL, M. (2008), Uncertainty in the analysis of speed and powering trials, Ocean Engineering 35, 

pp.1183-1193 

 

JANSE, G.H.; HASSELAAR T.W.F. (2014), Validation of Energy Saving, GRIP – Green Retrofitting 

through Improved Propulsion, Report N GRIP-MARIN-DEL-D6.5, MARIN, Wageningen  

 

MOAT, B.I. (2003), Quantifying the Effects of Airflow Distortion on Anemometer Wind Speed 

Measurements from Merchant Ships, PhDe thesis, University of Southampton 

 

PONKRATOV, D.; STRUIJK, G.D. (2022), JoRes1 Tanker Vessel Draughts Observations for CFD 

Simulations, JoRes project, Report Ref. 2022-015 

 

VAN ESSEN, S.; EWANS, J.; McCONOCHIE, J. (2018), Wave Buoy Performance in Short and 

Long Waves, Evaluated Using Tests on a Hexapod, 37th OMAE Conf., Madrid 

 

WERNER, S.; GUSTAFSSON, L. (2020), Uncertainty of Speed Trials, 5th HullPIC Conf., Hamburg 



 

139 

Alternative Approaches for Collecting High Frequency  

Performance and Consumption Data 
 

Rodion Denisyuk, EYEGAUGE, Paris/France, rodion@eye-gauge.com 

 

Abstract 

 

Recent studies and new products on the market show a clear benefit of using high-frequency ship 

performance and consumption data over manual noon reports for optimization of shipping 

operations. Unfortunately, the majority of ships are not equipped with auto-logging sensors, such as 

mass flowmeters and shaft power meters, and existing retrofit solutions on the market are too costly. 

Moreover, those solutions are not suitable for operators of time-chartered vessels. This paper 

describes novel non-invasive solutions for automated high-frequency ship performance and 

consumption data collection, alternative to existing retrofit approaches. It covers approaches suitable 

for both mechanically controlled and electronically controlled engines. The results are compared to 

the “golden standard” of data collection set by ISO 19030. 

 

1. Introduction 

 

The idea of data driven ship performance optimization has been gradually accepted by the shipping 

industry over the last 30 years thanks to the development of accessible ship to shore connectivity 

solutions. Consumption, performance, and weather data reported by the crew through the means of 

noon reports started to be used for modelling of the hull condition, prediction of performance, vessel 

routing and other tasks of shipping operations optimization by ship owners, charterers, and technical 

management companies. However, the nature of this manually collected and reported information 

impacted the quality of the data. Very often noon reports require some sort of verification and 

cleaning, that is often done automatically or even manually by a shore team. Averaging of the 

reported parameters from noon to noon is also impacting the usability of the produced data. 

 

Introduction of machine learning proposed new solutions to many existing optimizations tasks as 

shown by Petersen et al. (2020). Nonetheless, those solutions rely more than ever on the quality and 

the quantity of the datasets they are trained on. While several attempts are being made to train those 

algorithms on noon reports collected from hundreds of vessels, many studies show that only auto-

logged high-frequency high-quality data can produce reliable models. Transition from noon reports to 

automated high-frequency reporting was started by many shipowners and was assisted by different 

vendors. Most of the navigational data, such as GPS location, ground speed and log speed, together 

with weather data can be rather easily extracted from the bridge equipment and delivered to the shore 

almost in real time. Alternative solutions relying on publicly available AIS and metocean data can 

also be used for certain use cases. 

 

Unfortunately, data related to propulsion and consumption is a lot more difficult to collect. Auto-

logging sensors, such as mass flowmeters and, especially, shaft power meters are still rarely found on 

merchant vessels (except, probably, containerships). Retrofits are too costly for many shipowners, and 

we still see many newbuilds coming out with volumetric flowmeters and analogue AMS. 

 

One of the reasons cited by the shipowners for not equipping their vessels with auto-logged sensors is 

that the benefits of such devices are ripped by charterers while the cost is on owners. On the other side 

the majority of charters do not have a possibility to access the ship’s machinery and install required 

sensors even on time-chartered vessels. 

 

Also, many OEMs (original equipment manufacturers) are locking down access to the digital 

interfaces of their modern equipment (electronically controlled main engines, generators, AMS, etc.). 

Certain vendors provide access to high-frequency machinery data through maintenance contracts but 

claim the ownership of the data to themselves, and not many shipowners have enough negotiation 

mailto:rodion@eye-gauge.com
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power to adjust those contracts. As a result, the only data about the machinery performance and 

condition we can work with is limited to a couple of day-averaged parameters such RPM, running 

hours and temperatures in the noon reports. 

 

In the following chapters we will discuss what data must be collected for evaluation of vessel’s 

performance and consumption and what methods can be used to collect this data without installation 

of auto-logging sensors, suitable for owned and time-chartered vessels. We will also compare the 

quality of collected data using those methods to the “golden standards” of the industry. 

 

2. Vessel consumption and performance measurement 

 

Fuel is the major cost factor for almost all means of transportation and precise fuel consumption 

measurement is a prerequisite for any type of performance optimization. Several methods can be used 

to measure vessel’s fuel oil consumption and we will discuss them in the next section. 

 

Another prerequisite for vessel performance optimization is the ability to measure the performance 

and, more importantly, to detect the changes in this performance. To unify different approaches, the 

industry has developed the ISO 19030 standard, ISO (2016), that is widely used as a reference for 

building modeling and optimization solutions. The standard was developed to be used with high-

frequency data collected from onboard sensors. It defines a “default” method in its part 2 for 

measurement as well as “alternatives to default method” in its part 3, when certain elements (sensors) 

of the method are not available on a particular ship. The default method defines the following set of 

“primary parameters” for measuring changes in hull and propeller performance: 

 

• speed through water (STW) 

• delivered power (propeller power) 

 

And secondary parameters: 

 

• wind speed and direction 

• speed over ground (SOG) 

• ship heading 

• shaft revolutions 

• static draft 

• water depth 

• rudder angle 

• seawater temperature 

• ambient air temperature 

• air pressure 

 

The above parameters can be split into 3 groups: 

 

• power parameters (delivered power and shaft revolutions) 

• navigation parameters (STW, SOG, heading, rudder angle, draft) 

• environment parameters (wind, sea, air) 

 

We will leave navigation and environment parameters outside of the scope of this study and cover 

fuel oil consumption and power measurement. 

 

2.1. Fuel oil consumption measurement 

 

While the departure/arrival tank sounding is still considered by certain ship owners as “the most 

reliable way” to calculate the total fuel oil consumption, this method is not suitable for performance 

analysis methods that require consumption data during the voyage.  
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The industry currently employs four techniques for fuel consumption monitoring during the sea 

passage: 

 

• Tank sounding (manual or automated) - Tank sounding during the voyage is more suitable for 

ROB (remaining on board) reporting rather than the momentary consumption due to the 

nature of indirect measurement of the fuel flow and due to a number of non-measured 

external parameters that affect the calculations (weather and sea state, temperatures, etc.). 

• Estimation from engine parameters - Estimation of consumption from different engine 

parameters such as RPM/running hours/injection counters/etc. is mostly used on smaller 

vessels (e.g. tugboats, coastal traders) that are not equipped with any type of fuel flow meter. 

The margin of error of such indirect estimation is usually high because it depends on the 

condition of the engine and some parameters (e.g. power) that are not measured directly. 

• Volumetric flow - Volumetric flow meters are the most common flowmeters found on 

merchant ships and can provide accuracy between 0.5% and 2% if maintained properly, 

https://www.insatechmarine.com/products/fuel-performance/performance/insatech-fuel-

consumption-system. However, they can only report the volume flow (in liters) that is not 

enough for consumption monitoring, because the consumption is measured in mass flow 

(MT) and a conversion must be done that requires fuel oil temperature and specific gravity of 

the fuel in use. Certain volumetric fuel flowmeters available on the market are equipped with 

a temperature probe and even have an option to enter specific gravity in order to 

automatically calculate mass flow. 

• Mass flow - Coriolis type mass flowmeters can directly measure the mass of consumed fuel 

and are considered as the “golden standard” of fuel consumption monitoring with an accuracy 

of 0.1%, O’Banion (2013). Such high accuracy, however, comes with high price that slows 

downs the adoption of mass flowmeters by ship owners. Certain customers also complain 

about the complexity of the installation of Coriolis mass flowmeters and their sensitivity to 

vibration of high-speed engines. 

 

A special procedure is applied for fuel consumption monitoring on vessels with a common (or mono) 

fuel system (shared between main engine and auxiliary engines, Fig.1), no matter if volumetric or 

mass flowmeters are used. Such systems usually require at least 3 mass or volumetric flowmeters (ME 

in, AUX in and AUX out). With the 3-meter system, the total fuel consumption is monitored by flow 

from fuel tank to settling tank. A set of flow meters, installed on the common auxiliary fuel supply 

line and return line, provide the total consumption measurement of the auxiliary engines and the main 

engine fuel consumption can be calculated by subtraction. The readings of all flow meters (and 

corresponding FO thermometers if required) must be done simultaneously, that increases the chance 

of human error. 

 

 
Fig.1: Common (or mono) fuel system. Marine Fuel Flow Meter, Consumption Systems & 

Measurements, Insatech Fuel Consumption System 

https://www.insatechmarine.com/products/fuel-performance/performance/insatech-fuel-consumption-system
https://www.insatechmarine.com/products/fuel-performance/performance/insatech-fuel-consumption-system
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2.2. Delivered power measurement 

 

ISO 19030:2 stipulates that delivered power shall be calculated in one of the following ways: 

 

• approximated from shaft power measured by a torsion meter 

• or based on calculations of brake power from an engine specific SFOC reference curve  

 

The most reliable method and the “golden standard” for power data collection is a torsion (torque) 

meter. There are several types of torque meters on the market based on strain gauges, acoustic strings, 

lasers, and other technologies. Unfortunately, this type of device is still rarely found on merchant 

vessels, except for container ships. The reason is the high cost of this sensor and complexity in 

installation and maintenance. 

 

Reliance on SFOC reference curve brings a certain level of uncertainty. It is highly dependent on the 

accuracy of fuel oil mass flow measurement but is also influenced by changes in SFOC over time due 

to engine degradation. 

 

Although not mentioned in ISO 19030:3, for two-stroke engines directly coupled to propeller (no 

gearbox) without shaft generator it should be possible to estimate delivered power from the engine 

power. Due to the friction in thrust bearings the delivered (propeller) power will be lower than the 

engine power, but the later one can be monitored without any additional equipment as following: 

 

• for electronically controlled engines the engine power can be monitored via a PMI (Perfor-

mance Measurement Indicator) or similar system 

• for mechanically controlled engines the engine power can be estimated from fuel index using 

power estimation curves 

 

3. High-frequency data availability 

 

ISO 19030 was developed to be used with high-frequency data. And for hull and propeller perfor-

mance assessment recommends 15 s (0.07 Hz) sampling rate (split and filtered in 10 minutes blocks). 

Such frequency of measurements can only be achieved with auto logging sensors. Most high-

performance sensors such as mass flowmeters and torque meters are digital by design and are 

equipped with a digital interface (e.g. Modbus) that makes automated high-frequency data collection 

straightforward. 

  

Unfortunately, the level of digitalization of merchant fleet is very low. Guldteig (2022) discovered 

that only 15% of vessels have electronically controlled engines. Digital by design sensors, such as 

mass flowmeters and, especially, shaft power meters are still rarely found on merchant vessels (with 

containerships being a notable exception). It is also surprising to see many newbuilds coming out of 

shipyards with analog equipment, such volumetric flowmeters and analog AMS (alarm and 

monitoring system) and no torque meter installed. 

 

Another reason for slow adoption of high-performance auto logging sensors is that very often the 

main beneficiary of such devices is not the shipowner who installs them but a charterer who uses 

those sensors for performance optimization and costs reduction. And the majority of charterers do not 

have the possibility to access the ship’s equipment and install required sensors even on long time-

chartered vessels. 

 

All the reasons listed above have led to the situation when high-frequency vessel consumption and 

performance data is not available and noon reports remain the only source of data accessible to fleet 

performance managers. This manually collected data is very difficult to work with because it is 

averaged over one day plus often contains human errors. 
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Fortunately, thanks to recent technological advancements, we are now able to present alternative 

approaches for collecting high-frequency performance and consumption data from existing equip-

ment, suitable for owned and time-chartered vessels. 

 

3.1. Collecting data from analog equipment 

 

Unless we are talking about unmanned vessels, all existing ships and their equipment are designed to 

be monitored by humans and humans do not connect their brain to machines using some sort of wires. 

From the inception, the human-machine interface was mostly visual and based on instruments (also 

known as gauges) placed directly on the equipment or grouped in dashboards. And nowadays the 

crew is collecting the information from onboard machinery in the same way – by looking at those 

instruments, probably writing the values down on a piece of paper or typing them in some sort of 

software before sending it to shore. However, the crew members can only perform this task a limited 

number of times per day (or even per week) because of other tasks they are assigned to and, 

sometimes, because of the difficulty to access some of those gauges (e.g. FO flowmeters and 

thermometers in the engine room). 

 

With the advancement of AI and computer vision algorithms it became possible to make computers 

perform the same task but an any required frequency. EYEGAUGE has developed and patented a 

technology that can “read” the gauges and transform those reading into data that can be delivered to 

the shore in near real time. This technology can be dubbed as an “OCR for the equipment”. The setup 

consists of a set of IP cameras installed in the locations around the ship where analog machinery 

dashboards and individual gauges are already present: in the engine control room, in the engine room, 

in the cargo control room, or on the bridge. The transformation of the images taken by cameras is 

done onboard (as it is said “on the edge”) into telemetry by a processing server running AI and 

computer vision algorithms Fig.2. 

 

 
Fig.2: Data collection from analog equipment using AI powered cameras 

 

3.2. Collecting data from digital equipment 

 

Of course, we see more and more digital equipment onboard ships. Paper maps have disappeared and 

all navigational equipment on the bridge is integrated, thanks to the public standards such as 

NMEA0183, and the corresponding data is easily accessible.  

 

Moreover, recently built ships are usually equipped with electronically controlled engines, modern 

alarm and monitoring systems that are digital by design, Fig.3. The most logical way to collect data 

from such equipment is through digital interfaces and protocols (Fieldbus, MODBUS, CANBus, 

OPC-UA, MQTT, etc.) that we find in ground or air transportation and other industries. 

Unfortunately, many marine equipment vendors are reluctant to share access even to the basic data 

generated by their machinery or choose to charge a data access fee that is considered to be excessive 

by ship owners.  

 

Although several standards for machinery, performance and consumption data exchange were 

published over the last decade, they did not manage to get enough traction in the industry. This 

situation is often described as “isolated data silos”. 
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Fig.3: Digital machinery examples (Kongsberg AMS, Alfa Laval FCS) 

 

While we are waiting for the OEMs to solve the problem of data silos and democratize access to the 

machinery data, a set of technologies were developed by EYEGAUGE and other technological 

companies that can be used to extract data locked in digital equipment in a non-invasive way. We will 

leave those solutions outside of the scope of this paper and assume that data from onboard digital 

equipment can be extracted. 

 

4.1. Consumption monitoring of analog flow meters 

 

Since volumetric flowmeters are currently the most widespread in maritime transportation, we will 

focus on data collection from them. Certain models of volumetric flowmeters available on the market 

are equipped with digital (Modbus) or analog (pulse or 4-20 loop) interfaces that can be easily 

connected to auto logging equipment. Some of those models are also equipped with a temperature 

probe and can transmit the FO temperature as well. Specific gravity must still be entered manually by 

the crew, however.  

 

 
Fig. 4: Examples of onboard analogue volumetric flowmeters and FO thermometers 

 

Unfortunately, more often, even onboard recently built vessels, we find the most basic flowmeters 

with mechanical, or LCD displays used in combination with standalone “mercury type” 
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thermometers, Fig.4. Often those instruments are located in difficult to access areas and are some-

times found in neglected condition. 

 

As we can see, volumetric flow meters are the best candidates for automated data collection using 

smart cameras. The accuracy of the collected data will be close to the accuracy of the flow meter itself 

and the accuracy (and state) of the corresponding FO thermometer. 

 

For the setup we will use a set of cameras positioned in front of every FO flowmeter and FO 

thermometer, Fig.5. If some flowmeters and thermometers are located close to each other, a single 

camera can collect data from multiple instruments. 

 

 
Fig.5: Positioning of cameras for consumption monitoring 

 

This type of data collection requires us to specify the frequency at which we need to receive data. 

Although ISO 19030 recommends a 15 s (0.07 Hz) sampling rate, the commonly accepted sampling 

period is between 5 and 15 minutes. In our study we will use 10 minutes because ISO 19030:2 

recommends splitting higher frequency sampling into 10 minutes blocks. 

 

For conversion from volume (liters) to mass (MT), we need first to calculate fuel density (Rt1) and 

will use the JIS (1989) standard: 

 
Rt1 = Rt0 – C * (t1 – t0) 

M = V * Rt1 

 

Where  

 Rt1:  Specific Gravity 

 Rt0:  Specific Gravity at 15/4 ºC 

C:  Correction coefficient 0.00065 (heavy fuel oil) 

t1: Measured temperature 

t0: 15 ºC 

V: Measured volumetric flow 

M:  Mass flow 

 

 
Fig.6: Mass flow calculations from volumetric flow, temperature, and FO parameters 

 

Specific fuel gravity depends on the actual fuel used and must be updated on each fuel change from a 

bunker delivery note or a lab test. This information can be input manually by the crew (e.g. via means 
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of a noon report or a BDN), or, for electronically controlled engines, it can be automatically retrieved 

from the main engine PMI system.  

 

Unfortunately, it is not possible to find ships with both volumetric and mass flow meters installed, 

therefore, to evaluate the efficiency of this method of data collection, we will compare the daily 

consumption reported by the crew in noon reports with our calculations summed up over 24 h, Fig.7. 

Here we have sample data from 1 year monitoring of ME consumption of a 63 000 DWT bulk carrier 

using the described auto logging method from analogue volumetric flowmeters and thermometers 

versus consumption data reported by the crew via noon reports. 

 

 
Fig.7: Comparing automated consumption monitoring to noon report data 

 

We can observe a mean absolute percentage error (MAPE) of 2% with a mean absolute error (MAE) 

of 0.45. As you can see this result is very close to the accuracy of the volumetric flowmeter itself. 

 

4.2. Performance monitoring of electronically controlled engines 

 

As it was mentioned in section 2.2, for two-stroke engines directly coupled to propeller (no gearbox) 

without shaft generator the engine power can be used as an approximation of the delivered power.  

 

Electronically controlled engines such as two-stroke MAN B&W ME series are equipped with indi-

vidual cylinder pressure transmitters. Usually, such engines are supplied with online performance 

monitoring systems, such as MAN PMI (Performance Measurement Indicator), https://man-

es.com/docs/default-source/document-sync/performance-measurement-indicator-eng.pdf, that are able 

to automatically estimate the engine power, Berdempe (2020). 

 

The calculation is performed according to the following formula, MAN (from the Instruction Book 

Operation for 50-108MC/MC-C Engines): 

 

 

https://man-es.com/docs/default-source/document-sync/performance-measurement-indicator-eng.pdf
https://man-es.com/docs/default-source/document-sync/performance-measurement-indicator-eng.pdf
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Pme = Pmi – K  

Pe = C x Pme x Ne x Z 

 

Where 

Pmi: Mean indicated cylinder pressure (bar) 

Pme: Mean effective pressure (bar)  

Pe: Effective power (in kW) 

K:  Mean friction pressure loss (engine mechanical efficiency is generally 

independent of the engine load and is usually accepted as 1 bar) 

C: Cylinder constant (determined by the dimensions of the engine) 

Ne:  Main engine speed 

Z: Number of cylinders 

 

 
Fig8: Screenshot of MAN engine monitoring software 

 

All the above parameters can be auto logged, and the data collection frequency will depend on the 

approach used to connect to the engine performance monitoring systems. 

 

 
Fig. 9: Comparing engine power (from PMI) to shaft power for an electronically controlled engine 
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Fig.9 compares the calculated power with measurements of a shaft power meter installed on the same 

ship (81000 DWT bulk carrier with MAN 6S60ME-C8.2 8880 kW engine) over a single voyage. We 

can observe a mean absolute percentage error (MAPE) of 4.6%. As was already mentioned, due to the 

friction in thrust bearings the delivered (propeller) power will be lower than the engine power. From 

the above graph we can confirm the power loss. By simply shifting the estimated engine power by 

180 kW we will get a MAPE of 1.8%. 

 

4.3. Performance monitoring of mechanically controlled engines 

 

Mechanically controlled engines such as two-stroke MAN B&W MC series are not generally 

equipped with online cylinder pressure transmitters and engine power can be calculated from fuel 

index (also known as fuel rack or pump mark) and RPM using power estimation curves found in ship 

trials documentation.  

 

Most often the power estimation curve for a particular engine may provide directly the Pme (mean 

effective pressure) that can be transformed into effective engine power using formula from section 

4.2, Fig.10, or it can be based a more sophisticated calculation that takes into account the fuel oil 

parameters such as type, density, and temperature, Fig.11. 

  

 
Fig. 10: Power estimation curve example (Pme only) 

 

 
Fig. 11: Power estimation curve example (with FO parameters) 
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The above method of power estimation from fuel index has 2 issues: 

 

• performance curves are influenced by engine degradation and accumulate error over time; 

• mechanically controlled engines rarely have digital interfaces suitable for automated data 

collection and are designed to be monitored manually by the crew. 

 

While it is quite challenging to update performance curves regularly, we can address the problem of 

automated data collection with the camera-based approach proposed in section 3.1. 

 

With a single camera placed in the ECR in front of the Main Engine console we can collect RPM and 

Fuel Index data at the required frequency and estimate the engine power in real time.  

  

 
Fig. 12: Live monitoring and calculation of engine power on MC engines 

 

If the performance curve for the particular engine requires fuel parameters (e.g. specific gravity and 

calorific value), those parameters can be obtained in the same way as discussed in section 4.1 for 

volumetric flowmeters.  

 

Fig.13 compares the calculated power with the measurements of a shaft power meter installed on the 

same ship (61000 DWT bulk carrier with MAN 6S50MC-C8 8260 kW engine) over a single voyage.  

 

 
Fig.13: Comparing engine power to shaft power 
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Note that similar to electronically controlled engines, due to the friction in thrust bearings, the 

delivered (propeller) power will be lower than the engine power. And here we see a very strong 

separation of two measurement types. We can observe a mean absolute percentage error (MAPE) of 

8%. By shifting the estimated engine power by 350 kW we will get a MAPE of 1.2%. 

 

5. Conclusion 

 

In this paper we presented alternative approaches to automated high-frequency ship performance and 

consumption data collection that do not require replacement of existing flow meters and installation of 

torque meters. These non-invasive approaches make data driven performance optimization more 

accessible to ship owners and charterers.  

 

The proposed method for monitoring of fuel oil consumption from analog volumetric flow meters 

provides data quality close to human monitoring but at high frequency and is only limited to the 

accuracy of the existing fuel flow flowmeters and thermometers. For ship performance monitoring we 

have shown the ways to automatically collect and estimate engine performance data for both 

electronically and mechanically controlled engines. The obtained results were compared to propeller 

power data collected by a torque meter and showed a mean absolute percentage error (MAPE) 

between 4.6 and 8% with a stable bias explainable by a power loss on thrust bearings. With a simple 

adjustment in calculations compensating for this power loss it is possible to get very close to the level 

of data quality expected by the ISO 19030 standard of ship performance monitoring. 
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The Value of Autolog Performance Monitoring for an Owner 
 

Carsten Manniche, Navigator Gas, Copenhagen/Denmark, carsten.manniche@navigatorgas.com  

 

Abstract 

 

The purpose of this paper is to present real-life examples of benefits bringing autolog performance data 

to shore and available online. The examples are based on more than 100 vessel years high frequency 

data collection. The paper will furthermore demonstrate the needed initiatives with focus on cost, 

installation, and integration both of data but also among staff and crew. Among the benefits, the EEOI 

development over seven years will be presented clearly demonstrating the potential efficiency gains 

compared with annual market rates. Furthermore, the paper will argue for the need of high frequency 

data supporting the effort towards the maritime GHG emission limiting efficiency targets in 2030 via 

the Carbon Intensity Index (CII) as well as the forthcoming EU Emission Trading System (EU ETS) 

from 2024. Finally, the paper will present the auditors view on the future for more accurate high 

frequent data as well as data handling, not least for satisfying the expected need from stakeholders for 

transparency as well as documentation of GHG emission. 

 

1. Introduction 

 

The need for performance data has always been relevant for shipping companies but for a long time 

based on manual reporting – noon reporting – with one per day reported figure for consumption, draft, 

speed, position, cargo with few more. This level of data reporting was sufficient for a long time until 

the increase in fuel prices and the price for data transferring drop to a level where new online solutions 

became reachable cost wise. 

 

The author will in this paper demonstrate the pathway from a pure noon reporting system to a full online 

performance system for the use of the company not only the technicians but operators, commercials, 

and management as well as the benefits.  

 

Some of the periods described are before Ultragas and Navigator Gas merged in early 2021 so both 

owner names will be used in the paper. ‘Operator/Operations’ and ‘Commercials’ are used for the 

inhouse operational and commercial departments.  

 

2. Early days 

 

A shipping company is basically a logistic company carrying goods from A to B under different 

contracts, in liner- or spot voyages with a focus on the highest possible income. It will not be for this 

paper to explain and demonstrate the commercial functionality of shipping just to say that the purpose 

of the company as described above is what a performance system basically needs to support.  

 

Furthermore, the climate and environmental focus with rather challenging goals needs more accurate 

data not least to develop a baseline but also for measure the development – or transition – towards the 

climate and environmental goals set.   

 

During the early days the focus was solely on the fuel oil cost and ways to keep the cost down as well 

as describe the vessels speed and consumption in the most competitive way towards charters – although 

not with a too tight margin risking a contract dispute. If the vessel was on spot it will be operated by 

Owners with full control of the speed and consumption, but on a charter party operated fully by charters. 

So, if the vessel was not on a spot voyage the incentives for reducing fuel oil cost by efficient operations 

were few unless the vessel could not perform in accordance with a contract. 

 

Noon reporting was the tool to report the one per day performance of the vessel. The inaccuracy of the 

data was rather high but acceptable, covered by the contract performance margins. 

mailto:carsten.manniche@navigatorgas.com
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In connection with the strive towards higher crew welfare, better and stronger data coverage was one 

of the tools. The price per kB decreased to a level where data picked up onboard could be rather cheaply 

transferred to a server ashore. This made the way for a higher level of data transferring soon followed 

by new equipment installed onboard like mass flow meters, torsion meters, power meters and various 

sensors. The installation package where costly and the benefit a bit blur as seen from the commercial 

side, but slowly the benefit would be revealed and supported by all. 

 

Ultragas made investments back in 2013 installing mass flow meters (on main engine) and torsion 

meters on seven LPG/c newbuildings as a kind of a pilot to get a better idea of the potential benefits 

from overviewing the main engine- and hull performance at different drafts and speeds. The speed- and 

speed log sensors were of a normal make which later showed to be with a high inaccuracy although 

acceptable due the high number of incoming autolog data. 

 

2.1. Description of installations 

 

Ultragas installed mass flow meters in the fuel oil system at in- and return main, shaft torsion meter and 

power meters for the auxiliary engines all connected to a Marorka server installed in the cargo control 

room. A few years later mass flow meters (in- and return) were installed in the auxiliary engines fuel 

oil system and mass flow meter at inlet to the oil-fired boiler. Furthermore, connections were made to 

the cargo system as well as the vessels navigational system.  

 

 
Fig.1: Early set up of autolog performance system (source: Marorka) 

 

This gave Ultragas the possibility to collect, transfer and report following data: 

 

• Main- and aux engines consumption, power, SFOC and running hours 
• Oil fires boiler consumption and running hours 
• Position, heading, speed (log & GPS), draft, trim and wind 
• Shaft power/torque and rpm 
• Rudder angle 
• Cargo weight, temperature and pressure per cargo tank 

 

The data can be collected down to a few seconds per reading, but it was decided to bring it home in 15-

minute packages to reduce some of the fluctuations seen. 
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The installation budget was estimated at USD 50-60,000 per vessel although logistics and unforeseen 

situations somewhat increased the cost slightly. 

 

2.2. Early findings – hull efficiency ballast vs laden  

 

Bringing data home reveals the inaccuracy of the many original onboard sensors, especially the speed 

logs and draft sensor but also the noon reported consumption (which were still reported in parallel) 

versus mass flow meters. This led to some crew discussions regarding the accuracy of mass flow meters 

and to a lesser degree the feeling of being monitored from shore. Both topics are relevant and need to 

be addressed and dealt with as the success of the changes is through proper communication and 

cooperation not least between crews and shore staff. 

 

 
Fig.2: Typical LPG/c design – incl. Mewis duct and pronounced bulbous bow 

 

 
Fig.3: Sea trial results ballast & design – light ballast drafts penalized the performance 
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The early learning was the rather small difference between ballast and laden draft due to the vessel’s 

hull design with a pronounced bulbous bow optimized for the design draft and an installed propeller 

wake improvement duct also designed for design draft - a typical LPG/c design for the time.  

 

Furthermore, the typical ballast condition was light with a pronounced aft trim which made the bulbous 

bow inefficient and in certain conditions penalizing the hull efficiency. And most likely caused an 

increased inefficiency of the propeller wake improvement duct although we cannot for certain prove it 

as all seven vessels are delivered with a duct. 

 

Just as a remark, the typical LPG/c hull design at the time where somewhat hampered with respect to 

hull efficiency by the focus on cargo intake in bi-lope tanks. This led to rather full body designs (high 

block coefficients) trading at design speeds of 16-16.5 knots, which is 1-2 knots faster than a typical 

tanker. Although, an LPG/c design is regarded as a “cubic” design and a tanker as “deadweight” design 

there are many similarities with tankers in the way it is designed. 

 

It was clear from the new autolog data that the vessels where draft- and trim sensitive and highly 

designed for the design draft, Fig.3, and the vessels where guided to add more ballast (up to 2,000 tons 

in certain cases) and seek even keel as far as possible. But it was also recognized that the effect of 

trimming was dependable on speed, which led to further investments in a trim optimization tool.      

 

2.3. Early findings – Trim optimization 

 

Trim optimization is important for hull designs like LPG/c as the contract speed years ago were rather 

high and as such higher of today compared to tankers. A full body hull design at higher speeds is 

challenging to the designer leading to much focus on meeting the contract design speeds at the lowest 

power and consumption. If the Owner has not specified the operational profile (% in ballast, laden, 

partly loaded at a certain speed range) properly in the negotiated contract and specification, an 

optimized performance at design speed may be the result. 

 

Therefore, it is important to understand the hull efficiency outside the design speed at a certain draft, 

which is why a trim optimization tool could be beneficial. 

 

Ultragas decided to test the seven-vessel series in a model tank developing a trim optimization tool for 

the use of the crew and onshore performance department. The software SeaTrim©, Fig.4, from FORCE 

Technologies in Denmark was chosen as supplier. 

 

SeaTrim© was based on a matrix of 120 runs of resistance test with various trim, draft and speeds in the 

model tank and installed as independent software onboard the vessels and at shore. 

 

The crew are planning their departure condition as normal and then input the condition in SeaTrim© 

checking for a more beneficial condition. A report will be forwarded to shore before departure. If there 

are changes to the speed and/or draft underway a new report will be made and forwarded to shore. 

 

One example of the importance of mid-voyage trim optimization is the example as described below, 

Fig.5.  During an eastward Pacific crossing to Panama fuel oil was transferred from the forward fuel oil 

tank to aft - approximately 100 m - changing the trim from 7.3 m even keel to 7.0/7.6 aft trim. Not much 

of a change but resulted in a staggering 25% increase in consumption and CO2 emissions. The change 

in trim causing the rather high increase in consumption was clearly seen from the autolog data, Fig.5. 

 

This example shows the importance of checking the performance in case the speed and/or trim are 

changed. However, it must be said that the average savings from trim optimization on these vessels 

are about 5-8% in ballast and up to 5% in laden. The benefit will be less and less visual in line with 

the crew experience increases.    
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Fig.4: Typical screen dump from SeaTrim© 

 
Fig.5: Increase of consumption due to fuel oil shifting from forward to aft increasing aft trim 
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2.4. Early findings – added resistance and fouling  

 

The choice of anti-fouling coating is, as all know, an important part of the performance improving 

strategy. Choosing the correct fouling depends on cost, expected idle time, operation time and speed 

and what seems to be a correct choice at one point can be changed with the market, the need for speed 

and change of idle time. 

 

Based on autolog data we could visualize that contract/voyages with a high profit could change to a 

poor result if the added fouling resistance from the longer idle periods were included. 

 

One example is a vessel on a charter (externally operated) with a vague hull cleaning clause resulting 

in limited overview of added resistance due to fouling and the need of cleaning. 

 

Autolog data revealed an over-consumption of more than 20% but no cleaning was performed by the 

charters resulting in an over-consumption of 215 tons fuel oil in 30 days compared to a daily 

consumption of about 20 tons. When the vessel was re-delivered back to Ultragas the performance was 

poor and beyond recovery until next dry dock, Fig.6. 

 

 
Fig.6: Consequence on performance from increased idling and lack of cleaning 

 

Fig.6 shows the change in speed drop over time since delivery from the newbuilding yard in 2016. The 

first year shows a decrease in speed drop due to self-polishing abilities by the anti-fouling paint which 

is somewhat expected and a steady performance until 2020 where the vessel entered the mentioned one-

year charter contract resulting in a speed drop of almost 10% (equals about 25% increase in 

consumption). The anti-fouling was beyond recovery by cleaning and the vessel was rather poor 

performing until she was docked late 2021 costing about ½ million dollars in added fuel oil cost. 
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2.5. Early findings – optimized running of aux engines and oil-fired boiler 

 

The auxiliary engines on an LPG/c have normally a max output of 20-25% compared to the max output 

of the main engine and up to 45% for a ethylene carrier. The energy for cargo cooling, purification, 

purging and machinery- and cargo handling is produced by the auxiliary engines which makes them an 

important consumer. The oil-fired boiler is basically used for heavy fuel oil heating with more and is 

not regarded as an important consumer. 

 

During design of a vessel engine layout based on expected electrical balance it is often seen that the 

auxiliary engines are the same in size most likely because it is easier/cheaper for the yard to manage 

three similar auxiliary engines compared to variations in models and size. It is however important that 

the Owner focuses on the variance in the electrical balance loads for different scenarios, not least for 

gas carriers, to ensure that at least one engine is optimized in size for handling the hotel load. This will 

be beneficial for consumption as well as running hours. And which is why Ultragas installed power 

meters in the main switchboards for the auxiliary engines to overview and optimize the auxiliary engines 

running hours and consumption. 

 

It was soon discovered that the hotel load could not be handled by one auxiliary engine resulting that a 

second engine kicking in, Fig.7. From Fig.7 it is clear that after a long period of cooling covered by two 

auxiliary engines and stopped around noon 20th July the auxiliary engines continued to run even though 

the power needed could be well covered by one auxiliary engine. This could be caused by either the 

automatic management system being switched to manual or sat at a lower max output than 85% MCR 

for one engine. The low load running triggered an alert after 6 hours of running forwarded automatically 

by mail to the technical superintendent.  

 

 
Fig.7: Two diesel generators running at low load (< 85%MCR of one) 

 

 

The oil-fired boiler has a less significant role to play, and its consumption is somewhat overlooked. The 

consumption per day operative equals less than 1% of the total consumption however still worth of 

chasing. As seen from Fig.8 the oil-fired boiler is running even though the main engine exhaust boiler 

produces enough steam. The boiler consumption is not very high but still worth reducing as well as the 

running hours. 
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Fig.8: Oil-fired boiler running when main engine is in operation 

   

The annual over-consumption from auxiliary engines and the oil-fired boiler is estimated to 2-2.5% of 

the total consumption and about 12-15% of the total consumption by auxiliary engines and boiler. 

 

2.6. Early findings – optimized cargo cooling 

 

As mentioned, energy for cargo cooling is significant and every cargo cooling enroute is well planned 

to reach the cargo terminal at the agreed cargo temperature otherwise penalized by cargo owner. 

 

 
Fig.9: Cargo cooling for a full voyage 

 

 
Fig. 9A Standard cooling and correct cooling strategy during longer laden voyages 



 

159 

Even though Ultragas experienced a variance in cooling methods by the onboard gas engineer from 

vessel to vessel the dominant way of cooling was to cool down to expected discharge temperature during 

the full voyage which is not the most optimized way of performing cargo cooling, Fig.9. Fig.9 shows a 

rapid cooling at the beginning of the voyage which is kept during the full voyage until late March. An 

optimized way of performing cooling during a voyage would be a gradual cooling over time and enroute 

just ending in the expected temperature for discharge, Fig.9A. Therefore, standard cooling curves for 

various cargoes were integrated in the vessel performance system for easy tracking by operation of the 

cargo cooling performance.  

 

2.7. Early findings – auxiliary equipment 

 

It was decided quite early in the process to apply frequency controlling systems to cooling pumps and 

main engine room blowers to limit the energy used. This was decided after an onboard energy review 

inspection by an external consultant pointing out areas for improvement hereunder increased insulation, 

Fig.10, of fuel oil- and steam pipes. Furthermore, LED lighting was introduced in the engine room. All 

together the energy consumption was reduced slightly, but the hotel load was still at a level where the 

second auxiliary engine was kicking in. 

 

 
Fig.10: Thermically pictures of non-insulated fuel oil system 

 

2.8. Early findings – awareness and alert settings 

 

A vessel performance system does not save a penny if not used! A slogan which is equally truth today 

as well as in the past. Therefore, training and awareness is of great importance and should have the 

highest and continuous priority. 

 

By having a performance system installed the speed and consumption could be visualized vessel by 

vessel and not based on vessel class. The speed and consumption were in Ultragas the same for the 

whole sister class with no real consideration to actual performance of the individual vessels which was 

changed by introducing the vessel performance system.  

 

A voyage tool was introduced to the Operator, Fig.11, filled out before start of the voyage and goals 

(traffic light) checked during the voyage. The goals with +/- tolerance were set by the commercials and 

operators and both under- and over performing would be presented as a red traffic light. Key targets 

were consumption per day, ETA and speed where main target in a low market was consumption and 

speed/ETA in high market. Alerts are triggered if the traffic lights (consumption) are red for a certain 

time and forwarded to the operator responsible for the voyage. The operator will then decide if the 

targets for the voyage should be altered and if so, re-enter the new targets into the system. The new 

targets will immediately be visible onboard on a screen on the bridge, Fig.13. The detailed performance 

of the voyage is available for the operator, Fig.12, including weather to give the operator a better 

understanding of the conditions the vessel is in. 
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Fig.11: A typical voyage overview – for the Operator and checked daily 

 

 
Fig.12: Voyage overview of consumption, speed (log & GPS), shaft rpm, wind speed and current. The 

shaded areas are time with wind > BF4 

 

A monthly review of the voyages was performed, and it was soon discovered that the speed and 

consumption profiling of the vessels in the commercial system (used by the commercials) were not 

aligned with the actual performance of the specific vessel. Therefore, a quarterly review of the vessels’ 

speed and consumption data, Fig.13, was established, and the commercial system updated if needed. 

 

The updated performance data including margins was distributed to the operator for the use of 

planning future voyages, Fig..14). 
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Fig.12: Viewer on vessels bridge showing targets for the specific voyage 

 

 
Fig.13: Actual good weather performance vs standard ballast- & laden curves 

  

The above-mentioned sounds easy and logical but it means that office staff need to change their daily 

duties, which were regarded as add-ons to their daily work. Therefore, it was quite important to train 

and explain why the extra work was important and demonstrate the benefit to the bottom line. 

 

In the early days we experienced some good and not so good examples of voyage management 

performance, which is demonstrated below, Fig.14A and B. In Fig.14A there have been no review of 

the voyage and the vessels arrive late at a high consumption across Atlantic Ocean most likely due 

unfavorable weather conditions. The consequence is overconsumption and somewhat unexpected late 

arrival. If discovered early during the voyage the operator/commercial could have discussed the terms 

and condition for late arrival and possible slow down saving fuel. The fuel penalty was an over-

consumption of almost 80 tons fuel close to 4 days of normal consumption during a 10-day voyage. 
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Fig.14: Vessel specific speed and consumption table for the use by the operator 

 

 
Fig.14A: The consequences of being off voyage target 

 

Even though the weather has been less favorable than expected a cooperation between the vessel crew 

and the operator resulted in an optimum performance during an Atlantic Ocean crossing, benefiting 

the voyage commercial result, Fig.14B.  
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Fig.14B: The consequences of being on voyage target 

 

2.9. Early findings – results and conclusions 

 

Navigator Gas has not yet found the perfect energy performance measure for what we are doing. There 

are several measures available like CII, EEOI with more but we do not find that they cover the areas 

which in we would like to measure ourselves.  

 

 
Fig. 15 EEOI development vs monthly rates since start of autolog 
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It was found important to combine technical performance with a commercial figure to understand how 

efficiently we move one ton of cargo a certain distance with special focus on CO2 emissions. It was 

decided to use EEOI + average monthly rates as the need for speed (and thereby consumption) varies 

with market demand – and therefore the rates, Fig.15. 

 

Since the start of autolog EEOI has decreased more than 30% irrespective of the development on the 

market which means that the fleet is more efficiently traded than before the autolog installation. It shows 

that all the efforts made and focused performance and awareness has paid off. This can also be seen on 

the development of CII where the seven sister vessels are currently all in A or B although the CII is not 

the most perfect measure of efficiency.   

 

3. Current efforts and way ahead 

 

It is without doubt that better and more accurate data is needed for the shipping industry to demonstrate 

and verify the energy used and GHG emitted. Accurate noon reporting may be sufficient for some, but 

it is clear to us that validated autolog data is necessary for demonstrating further efficiency initiatives 

as well as quantify the emission to an accuracy level where our customers and regulative bodies are 

satisfied. When EU ETS and FuelEU Maritime kicks in there will be a cost on CO2 as well as need for 

fuel mix demonstration which will be audited pushing autolog data in a central role. After the early days 

with autolog experience in Ultragas it was decided to extend the installations to more vessels. Ultragas 

was merged with Navigator Gas in 2021 and the installation program was extended to the full fleet of 

55 vessels and is still ongoing. Currently, there are 30 vessels fully equipped with performance systems 

collecting data as described in 2.1 and we expect the full fleet will be equipped by the end of 2024. 

 

3.1. Current efforts and way ahead – commercial efficiency 

 

What is commercial efficiency when it comes to performance? The commercial system is basically 

where the commercials calculate the main figures for a future voyage with output such as daily rate, 

speed, ETA with more. In the past the vessels’ performance where normally described as a group of 

sisters in the commercial systems resulting in large consumption margins to cover the most inefficient 

vessel among the sisters. This could be accepted if the consumption was not more than the market would 

expect. When the contract was signed, and the vessel lived up to the promised performance there were 

no real incentives to perform more efficiently. However, this was not the case for the so-called spot 

voyages where the fuel was paid by the Owner and consumption tried minimized. 

 

 
Fig.16: Charter Party prognosis based on actual performance 
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As the vessels with autolog were no longer described as a group but individually in the commercial 

systems we had a chance to optimize the performance and be more competitive when closing contracts 

with cargo owners. However, when you want to be more precise and limit the speed and consumption 

margin you may have the risk of under performance during a charter voyage or arrive late on a spot 

voyage. So, how to quantify the risk of under performance when lowering the consumption margins? 

 

A tool was made based on autolog data where we could adjust the consumption margins and weather 

and get a picture of the likelihood of being above the margin input. Therefore, it was quite easy to adjust 

the margins to an acceptable commercial level which in many cases were significantly below the normal 

margin used in the past. 

 

3.2. Current efforts and way ahead – Monthly reports & awareness 

 

In the past and before autolog the technical manager was instructed to perform a diver inspection every 

6 months to understand the level of hull and propeller fouling. This was not always done due to 

commercial and technical reasons and was in some cases not done. And in some cases, the vessel was 

greatly under performing for a long period before the fouling was discovered. 

 

This was changed after the introduction of autolog as the vessel’s performance was overviewed day by 

day and summarized in monthly reports presented to the operation and commercials, Fig.17. 

 

 
Fig.17: Monthly report – sister vessels 

 

 
Fig.18: Speed and consumption data – past five months and in good weather (<BF 4) 
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The experience from the increased awareness between the technical management and operations on the 

hull and propeller fouling has been positive as it can be seen on the overall performance. Furthermore, 

we no longer have unnecessary hull cleanings with wear and tear on the anti-fouling coating as a result. 

 

The speed and consumption input to our commercial systems is updated every six months or after dry 

docking and in some cases after hull cleaning. The data input is based on last five months autolog data, 

Fig.18. 

 

3.3. Current efforts and way ahead – anti-fouling strategy 

 

It did not take a long time after installing autolog onboard before we realized that the anti-fouling 

coating applied did not match the operational profile of the vessels where longer idle time in warm 

waters was not unusual. It was clear that longer idle periods resulted in lack in anti-fouling self-

polishing, increasing the need for more frequent hull cleanings, leading to even lower performance over 

time, Fig.19. 

 

 
Fig.19: Speed drop over a period of four years until new anti-fouling was introduced 

 

The speed drop after longer idle periods observed was surprisingly high and the time for the anti-fouling 

system to regain efficiency longer and seldom back to the starting point. Therefore, it was decided to 

change anti-fouling system during scheduled dry docking to a system that was more resistant to idle 

periods. The effect can be seen on the speed drop in figure 19. The fuel oil and savings and the reduction 

of CO2 emissions have been significant for the fleet to an extent where we have decided to use similar 

anti-fouling systems for all vessels when dry docking. 

 

Furthermore, we are investigating if advanced dry docking just for applying new anti-fouling could be 

beneficial even for vessels outside the dry-docking period. 
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3.5. Current efforts and way ahead – Weather Routing 

 

Weather routing is normally ordered from voyage-to-voyage from different providers and the vessel is 

then guided externally by the provider. It has long been a wish from our side to integrate voyage 

planning with weather routing in the same performance system and new initiatives have commenced 

and been launched on trial basis (see fig. 20). 

 

 
Fig.20: Example of a voyage-based route optimization integrated in the performance system 

 

The pilot tests show good results although expected average savings are regarded limited with 2-3% on 

the fuel compared with an optimal use of the external weather routing provider. However, it was 

discovered that not all longer voyages automatically were connected to external weather routing and 

just by doing so the benefit is somewhat bigger than 2-3%. 

 

3.6. Current efforts and way ahead – Commercial OnePager 

 

The available performance data of more than 100 vessel years is used as base for a so-called Commercial 

OnePager that will be forwarded to our customers after each voyage – spot as well as charter. The idea 

behind the OnePager is to present the data available such EEOI, CII, CO2 emitted, fuel consumed with 

many more, Fig.21.  

 

This is seldomly requested by our customers representatives, but we want to promote the transparency 

of our performance when transporting their cargo. The OnePager will be automatically forwarded to 

our operators, commercials and customers. 
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Fig.21: Commercial OnePager 

 

3.7. Current efforts and way ahead – CII, EEOI & EU ETS 

 

Society strives towards a more data driven shipping sector which has resulted in the development of 

EEXI and CII globally and EU ETS regionally. While EEXI is limitation of power for majority of the 

fleet instead of a specific speed limitation CII is the first step towards a more data driven quantification 

of the fleet efficiency later turning into emitted GHG by other instruments yet to be finalized (well-to-

wake).  

 

There is no doubt that pure noon reporting as we have seen in the past will not be sufficient and 

acceptable for society. We will need accurate autolog data to demonstrate as an industry sector full 

transparency of GHG emitted; where, when and how much – and pay the cost per emitted unit firstly 

regionally later globally. A fund of shipping money is needed building expertise up globally to ensure 

available, efficient and low-cost global transport.   

 

As said earlier we have not yet found the best measure for efficiency: CII has only two variables CO2 

emitted and distance but no relation to cargo carried. This means that the simple question for a consumer 

in a warehouse asking: how much CO2 emitted has this piece of goods caused until now? cannot be 

answered for the shipping transport leg. This is not sustainable and has to be changed. Therefore, we 

have been testing other measures with a link between energy efficiency and commercial figures and are 

currently using vessel specific EEOI & monthly rates as a measure, Fig.15. However not perfect but 

more relevant to us than CII although we of course follow and report the development of CII – both 

vessel by vessel and weighted fleet in accordance with Poseidon’s Principle. 

 

Based on autolog data two CII supporting tools have been prepared namely an CII overview tool and a 

CII prognosis tool. The CII overview tool is for overviewing the development of CII over the year, 

Fig.22, where the negative impact from idle and low activity early in the year can be seen. Especially, 

low activity early in the calendar year has a negative effect on the development of CII moving from A 

to D during a period of 40 days idling although it will gradually improve during the year. However, we 

have seen charter contracts with very low activity during the year as the vessel has been engaged partly 

for storage. 
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Fig.22: CII overview tool – clear negative impact from idling 

 

Furthermore, a fleet CII overview tool showing the development in CII in the years to come based on 

the current performance and operational profile is available and used for a more strategical approach, 

Fig.23. 

 

 
Fig.23: Fleet CII overview tool based on current performance and operational profile 

       

One thing is how the CII is currently developing, and another thing is what will happen if we charter a 

vessel out for a longer period and the charter speed and consumption agreement results in an A rated 

vessel are delivered back as D rated. There will be cost associated with bringing the vessel back from 

D to A as the only variables are consumption and distance meaning that the vessel must sail long 

distances at assumingly lower speed and consumption losing valuable time. 

 

Therefore, a CII prognosis tool, Fig.24, was developed giving the commercials the possibility to 

simulate the consequences on CII from planned contract speed and consumption as well as activity.  
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Fig.24: CII prognosis tool simulating the development of CII under a charter party. 

 

This has been a resourceful instrument and useful to discuss the compensation with Charter for 

redelivery of vessel at end charter with a lower rated CII than received. The CII prognosis tool includes 

the positive effect from dry docking, hull- and propeller cleaning and retrofitting which cost can be 

discussed with the Charter. 

 

The energy used for cargo handling (mostly from cargo cooling) can be deducted from CII at a certain 

rate for gas carriers. This needs to be quantified, which we are currently working on using the many 

consumption and power data we have from our auxiliary engines and oil-fired boiler. We will present 

our proposal to the Danish Flag later this Fall.    

 

 
Fig.24: Deduction in CII for energy used on cargo handling 

 

4. Current efforts and way ahead – Summary 

 

There is no doubt that more accurate performance data are needed in future, and we believe continuing 

with noon reports will not be sufficient for the level of transparency we want to achieve. The data 

collected will be used as base for many things apart from efficiency improvement such as setting long 

term GHG goals, fleet value review and renewal, Scope 1 input, transparency with more. 

 

Navigator Gas is in the process of installing full autolog on the whole fleet, currently having 30+ vessels 

ready. The better and more accurate performance overview it gives us has already now revealed savings 

at a magnitude we are quite satisfied with. We believe based on experience that we will be able to cut 

15% of the consumption (conservative set) reducing our CO2 emission by more than 100,000 tons per 

annum. The total investment will be about USD 2-2.5 mill.   
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Abstract

 

There is a need for a structured approach in evaluating energy efficiency measures and their effects on 

ships holistically. A key question from ship owners and operators right now is: “How can we make a 

more educated decision in choosing the right measures?” This is a ship-specific question which 

requires a ship-specific investigation. With that in mind, Hempel has developed a framework for 

evaluating different pathways for enhancing energy efficiency before any investment is made on an 

individual ship. The framework is based on four pillars: operational, regulatory, technoeconomic and 

environmental. By deploying the framework on a bulk carrier case, we model the effects of widely used 

biofouling management approaches, bringing new insights to support decision-making on energy 

efficiency investments. The findings demonstrate that a biofouling management approach that involves 

the adoption of silicone-based coating, which by design requires no in-water hull cleaning, provides 

the best investment option across all examined pillars. 

 

1. Introduction 

 

The maritime industries play a critical role in addressing society’s needs for global trade and 

transportation. Shipping goods across the world’s oceans and seas represents the most economic means 

of trade today. Nevertheless, the shipping sector is a significant contributor of Global Greenhouse Gas 

(GHG) emissions, amounting to roughly 3% of the total GHG globally, IMO (2021a). As the global 

demand for trade is expected to grow considerably, Stopford (2022), the maritime industries need to 

expand and develop the existing fleet of vessels. But with the supply of alternative fuels being low 

during the 2020s, the demand for more trade capacity will be satisfied by vessels that use diesel-powered 

engines which are expected to dominate the fleet mix until zero-carbon vessels become available. It is 

estimated that approximately half of all shipping related GHG emissions between 2020 and 2050 will 

come from diesel-powered vessels (ibid). 

 

A key challenge for the shipping industry is thus related to ensuring short-term reduction of GHG 

emissions from the existing fleet through operational measures and technical upgrades, using the energy 

efficiency technologies and measures that are currently available. These may include, among others, 

installation of energy saving devices, the use of biofuels in the fuel mix, or increasing the frequency of 

dry dockings to refresh the coating system and improve energy ratings. Silicone-based and other 

advanced antifouling coating systems are one of the most mature technology upgrades that can provide 

immediate improvement to ship energy efficiency, ABS (2021) and IMO (2023a). The choice of 

antifouling coatings is part of the vessel biofouling management plan which also involves implementing 

relevant monitoring and maintenance activities, including the regiment of in-water hull cleaning and 

propeller polishing. Biofouling management can enhance vessel hydrodynamics and energy efficiency 

by ensuring a clean hull throughout the docking cycle, and by extension significantly reduce vessel 

GHG emissions, IMO (2022,2023b).  

 

With multiple approaches suggested by industry and academia for the most optimal energy efficiency 

measures and investment, ship owners and operators are facing a key question: “How can we make a 

more educated decision in choosing the right measures?” This is a ship-specific question and thus 

requires a framework to evaluate ship-specific parameters. To this end, Hempel has developed a 

comprehensive framework to support the maritime industries with navigating energy efficiency 

dilemmas. The framework provides a holistic analysis of different pathways to increase energy 

efficiency ratings and reduce GHG emissions. With this paper we demonstrate the utilization of the 

mailto:phsf@hempel.com
mailto:ykd@hempel.com
mailto:via@hempel.com
mailto:sop@hempel.com
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Hempel framework to evaluate alternative energy efficiency measures with focus on biofouling 

management. 

 

A recent report from the IMO GloFouling Project, GEF-UNDP-IMO (2022), reiterates that if left 

unmanaged, biofouling can significantly increase frictional resistance and GHG emissions. The same 

report outlines a series of biofouling prevention and management measures to support in-service vessels 

and depicts the impact of alternative scenarios on fuel consumption and GHG emissions. Specifically, 

the report focuses on the in-service measures such as in-water hull cleaning, propeller polishing, and 

other operations that take place while the vessel is in the water. Although it emphasizes that “anti-

fouling coatings are the first and foremost tool […] to prevent biofouling” (p.13), it does not consider 

the choice and performance of alternative antifouling coating systems. 

 

The aim of this paper is to enhance the analysis presented by GEF-UNDP-IMO (2022) by incorporating 

alternative coating technologies and providing a more comprehensive framework that extends beyond 

fuel consumption and GHG emissions. Specifically, the paper examines the performance of the same 

vessel as the one used in initial report, but adds an additional scenario for silicone-based low friction 

coating, while also conducting a more holistic analysis that considers the impact of alternative 

biofouling management approaches on the total fuel consumption, variations in Carbon Intensity 

Indicator (CII) rating, EU ETS carbon costs, as well as Total Cost of Ownership (TCO) and payback 

period over a docking cycle of 5 years. 

 

2. The Hempel framework for evaluating ship energy efficiency measures 

 

Hempel has developed a decision framework to support the maritime industry in evaluating ship energy 

efficiency measures, which also include biofouling management. The framework assesses these 

measures across four essential pillars: (1) vessel trade and operational profile, (2) regulatory 

requirements and compliance, (3) TCO and payback period, (4) environmental considerations and 

sustainability. The framework enables the analysis of these options to yield vessel-specific results, 

offering valuable insights tailored to each individual ship. Fig.1 illustrates the four pillars of the 

framework. 

 

 
Fig.1: The Hempel Framework for ship-specific assessment 

 

(1) Vessel trade and operational profile: This section of framework focuses on testing each measure 

on the specific operational profile of the vessel (historical or expected) to identify the following: 
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- Biofouling risk, considering location, idle periods (AIS data) in aggressive waters (ocean-

ographic data), speeds and requirement for operational flexibility, assessment of current 

hull condition and outlook for deterioration based on expected performance of coating in 

use, historical underwater data from past diving reports and hull interventions. 

- Risk of increasing CII due to operation including idle periods, short voyages, and prolonged 

port stays. 

- Alignment of coating specification with the vessel-specific trade pattern, including product 

per hull area, number of coats, dry film thickness. 

- Risk of mechanical damages due to canal transits, ice trading, ship-to-ship operations, 

berthing conditions and other relevant parameters. 

(2) Regulatory requirements and compliance: This section of the framework considers global pol-

icy frameworks set forth by organizations like the International Maritime Organization (IMO) 

and the European Union (EU). It simulates the potential impact of each energy efficiency meas-

ure considered by the owner and/or the operator on various regulatory aspects, including the 

Carbon Intensity Indicator (CII) rating, Vref for the Energy Efficiency Existing Ship Index 

(EEXI), and EU Emissions Trading System (ETS) compliance. The framework allows for ad-

justments to consider future regulatory developments. The upgrades under consideration may 

involve an antifouling coating system or a combination of multiple energy efficiency upgrades. 

(3) Total Cost of Ownership (TCO) and payback period: In this section of the framework, the TCO 

of each energy efficiency measure is quantified including all costs associated with their instal-

lation and in-service operation and maintenance. The analysis provides valuable insights into 

the expected payback period from each measure considered by the owner and/or the operator 

of the vessel. It also considers factors such as fuel cost responsibility (e.g., owner vs. operator) 

to provide a comprehensive assessment of the financial implications of adopting these technol-

ogies. 

(4) Environmental considerations and sustainability: In this section, the framework considers the 

sustainability profile of retrofit systems, and factors such as expected durability, required 

maintenance, and installation. For coating systems, it is important to consider the impact during 

installation (e.g., volatile organic compounds) and in-service impact (e.g., biocidal content and 

microplastics). Hempel's product sustainability scorecard provides insights into the products' 

impact based on nine different metrics that focus on environment, circularity, and chemical 

safety. 

 

For this paper, we primarily focus on the sections of the framework that align with the aim of this study. 

As the vessel used in this initial study, GEF-UNDP-IMO (2022) has pre-defined trading parameters in 

the Mediterranean Sea (pillar 1), our main emphasis will be on extending pillar 2 (regulatory aspects 

concerning the Carbon Intensity Indicator - CII rating and EU ETS carbon costs) and pillar 3 (TCO and 

payback period). To ensure comparability with the initial study we do not consider the 4th pillar. 

 

Two fundamental models within the Hempel framework, which are relevant to discuss while exploring 

pillars 2 and 3, are the fuel consumption model and the cost model. Adapted from Demirel et al. (2017), 

these models are tailored to analyze investments in new coating systems and simulate variations in total 

fuel consumption, CII, EU ETS carbon costs, TCO and payback period, across biofouling management 

approaches. To ensure comparability with the initial study, GEF-UNDP-IMO (2022), certain limitations 

have been incorporated into the models. 

 

2.1 Fuel consumption model 

 

The fuel consumption of a ship is significantly influenced by the condition of its hull surface, as 

increased hull roughness leads to higher frictional resistance. Each ship is designed for specific 

operating conditions, and there is a predetermined power requirement to achieve a particular speed. 

However, during the vessel's service life, the required power gradually increases due to various factors, 

including biofouling accumulation, mechanical degradation of the coating, and reduced efficiency of 

the ship's mechanical systems. For the sake of simplicity and to stay within the scope of this paper, we 

will categorize all non-coating and non-biofouling-related power increases, as well as any unrecover-
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able increases, as 'aging.' Therefore, the required power to achieve a certain speed at any given time can 

be simplified as follows: 

 

𝑃𝐵_𝑡 = 𝑃𝐵_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝛥𝑃𝐵_𝑏𝑖𝑜𝑓𝑜𝑢𝑙𝑖𝑛𝑔 + 𝛥𝑃𝐵_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 + 𝛥𝑃𝐵_𝑎𝑔𝑖𝑛𝑔 

 

𝑃𝐵_𝑡 is the required brake power at any time, 𝑃𝐵_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the design brake power, 𝛥𝑃𝐵_𝑏𝑖𝑜𝑓𝑜𝑢𝑙𝑖𝑛𝑔 the 

increase in brake power due to biofouling, 𝛥𝑃𝐵_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 the increase in brake power due to 

mechanical deterioration of the coating, and 𝛥𝑃𝐵_𝑎𝑔𝑖𝑛𝑔 the increase in brake power due to the aging of 

the ship. In this case, 𝛥𝑃𝐵_𝑓𝑜𝑢𝑙𝑖𝑛𝑔 + 𝛥𝑃𝐵_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 are directly related to the selected coating system 

and the biofouling management measures. Once these values are known or predicted, the corresponding 

increase in fuel consumption over time can be determined. It is assumed that the increase in fuel 

consumption is directly proportional to the increase in power, as illustrated in the equation below: 

 
𝑃𝐵_𝑡

𝑃𝐵_𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=

𝐹𝑢𝑒𝑙𝑡

𝐹𝑢𝑒𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 

 

𝐹𝑢𝑒𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the fuel consumption per mile at the design stage and 𝐹𝑢𝑒𝑙𝑡 is the fuel consumption per 

mile at any time. Given that the initial fuel consumption of a ship (𝐹𝑢𝑒𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is known, the fuel 

consumption at any time can be obtained using the above equation. 

 

Considering the information provided above, every ship has a higher required power and higher fuel 

consumption at the end of the docking cycle than at the beginning of a docking cycle. Our proposed 

model simulates scenarios starting from the end of one docking cycle until the end of the subsequent 

docking cycle, just before the ship enters the dry dock again. 

 

The choice of coating system and other energy efficiency technologies has a direct impact on the 

required power and, consequently, fuel consumption immediately after the dry dock, exerting its 

influence throughout the entire docking cycle. Moreover, the choice of coating system also have a 

significant impact on the accumulation of biofouling and the sensitivity towards mechanical 

deterioration of the coating, which in turn affects fuel consumption over time. 

 

The impact of such choices can be observed on the required power and, hence, fuel consumption (and 

CII), by considering four factors:  

 

(1) Standard improvement from dry dock by washing and cleaning the hull, regardless of coating ap-

plication. This procedure is assumed to remove any biofouling deposits from the hull. 

(2) Improvement from surface preparation and coating application. Full blasting and coating applica-

tion are assumed to remove the effects of mechanical deterioration of the coating over time. In the 

case of spot repairs, a partial recovery of 𝛥𝑃𝐵_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 is assumed, resulting in required power 

2.5% higher than that of the full-blasting scenario. This assumption is based on a high-frequency 

confidential dataset. 

(3) Immediate power gain after the application of silicone-based coatings due to smoothness compared 

to SPCs and/or the application of other energy efficiency technologies. It is important to note that 

this power gain refers to a further reduction in the initial required power, 𝑃𝐵_𝑖𝑛𝑖𝑡𝑖𝑎𝑙. Silicone-based 

topcoats are reported to consistently decrease the frictional resistance compared to SPC type paints, 

as shown by Candries and Atlar (2005), Schultz (2004), Demirel (2015). 

(4) Increase in power over time due to mechanical deterioration of the coating, biofouling accumulation 

and aging. The speed loss of a given coating system according to ISO 19030 is translated into the 

yearly added power. Differences in speed loss between coating systems result in different rates of 

deterioration, directly impacting the fuel consumption, and CII, assuming operation is equal.  

 
The first three factors mentioned above directly affect the required power and, consequently, the fuel 

consumption of ships immediately after dry-docking when their hulls are clean and biofouling-free. On 

the other hand, the fourth factor influences the required power and fuel consumption over time, as it 
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represents the variation in required power after the dry-dock as a function of time due to hull degradation 

worsening over time. 

 

2.2 Cost model 

 

Total Cost of Ownership (TCO) refers to the overall costs related to the selected coating system and/or 

other energy efficiency measures incurred by a shipowner or operator throughout a docking cycle. TCO 

can be defined by the equation below: 

 

𝑇𝐶𝑂 = 𝐶𝑜𝑠𝑡𝑑𝑟𝑦−𝑑𝑜𝑐𝑘 + 𝐶𝑜𝑠𝑡𝑣𝑜𝑦𝑎𝑔𝑒 
 

where 𝑇𝐶𝑂 is the total cost of ownership over the docking cycle, 𝐶𝑜𝑠𝑡𝑑𝑟𝑦−𝑑𝑜𝑐𝑘 is the cost of all 

activities when the ships are in dry dock, and 𝐶𝑜𝑠𝑡𝑣𝑜𝑦𝑎𝑔𝑒 is the cost of all activities when the ships are 

in operation. 

 

𝐶𝑜𝑠𝑡𝑑𝑟𝑦−𝑑𝑜𝑐𝑘 = 𝑊𝑎𝑠ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

+𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑎𝑛𝑑 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠  
+ 𝑟𝑒𝑝𝑎𝑖𝑟 𝑦𝑎𝑟𝑑 𝑟𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 + 𝑜𝑓𝑓 − ℎ𝑖𝑟𝑒 𝑐𝑜𝑠𝑡 

 

𝐶𝑜𝑠𝑡𝑣𝑜𝑦𝑎𝑔𝑒 = 𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 + 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 

 

The term ‘𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠’ encompasses a 

range of expenses, including but not limited to inspection and cleaning costs related to biofouling 

management approaches. It is important to note that the fuel cost can be directly influenced by several 

factors, including the ship's design and operations, the in-service performance of the selected coating 

system combined with energy efficiency measures, and the aging effect over time. These factors play a 

significant role in determining the overall fuel consumption and associated costs during the ship's 

operational life. 

 

3. Case study 

 
This paper takes a point of departure from the case study entailed in GEF-UNDP-IMO (2022). The 

focus of GEF-UNDP-IMO (2022) was on a bulk carrier coated with a Self-Polishing Coating (SPC) 

system, as also studied by Uzun et al. (2019). GEF-UNDP-IMO (2022) explored the potential for 

greenhouse gas (GHG) reduction through various biofouling management scenarios, namely: 1) the use 

of only SPC, 2) SPC with responsive cleaning, and 3) SPC with regular cleaning. The study predicted 

the impact of these biofouling management scenarios on the ship's required power, fuel consumption, 

fuel costs, and total CO2 emissions over a 5-year docking cycle. However, it is essential to note that 

GEF-UNDP-IMO (2022) solely considered SPC-type coatings in all three scenarios and did not account 

for any other costs associated with the biofouling management activities. 

 

Building upon the analysis presented in GEF-UNDP-IMO (2022), the current study goes a step further 

by integrating a silicone-based low friction coating into the investigation. Through a more 

comprehensive approach, it evaluates the influence of the selected biofouling management strategies 

on the total fuel consumption, CII rating variations, EU ETS carbon costs, and Total Cost of Ownership 

(TCO) and payback period throughout a 5-year docking cycle. As a result, this study seeks to offer a 

more encompassing overview that can better inform industry stakeholders and policymakers alike. 

 

It is essential to note that this study provides a limited subset of the comprehensive results obtained 

through the Hempel framework to maintain comparability with the original report. The focus is on 

specific aspects of interest. Table I displays the principal particulars and selected biofouling manage-

ment scenarios for the target vessel. 
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Table I: Principal particulars and selected biofouling management scenarios of the target vessel 

(adapted from GEF-UNDP-IMO (2022)) 
Vessel type Bulk carrier 

Deadweight 40,000 t 

Length 179 m 

Breadth 28 m 

Design draft  10.6 m 

Wetted surface area 7,350 m2 

Speed 14 knots 

Fuel consumption (clean - SPC) 20.4 t/day 

Operating region Mediterranean region 

Operation period 5 years 

Biofouling management 

scenarios* 

Scenario 1: SPC - no in-water cleaning 

Scenario 2: SPC + responsive cleaning 

Scenario 3: SPC + regular cleaning  

Scenario 4: Silicone-based low friction coating - no in-water hull cleaning 
*The terminology referring to cleaning regimes is slightly different from the GEF-UNDP-IMO (2022). This is because the 2023 IMO Bio-

fouling Guidelines, IMO (2023b) differentiate proactive and reactive cleaning based on the size of biofouling on the hull, not based on 
frequency or number of cleaning interventions. Specifically, according to IMO (2023b), proactive cleaning only refers to cleaning of 

microfouling while reactive cleaning refers to macrofouling cleaning. Scenarios 2 and 3 represent alternative cleaning frequencies with no 

reference to the type or size of biofouling growth on the hull. As such, we opted not to use the term “proactive cleaning” to prevent any 
confusion with the term used in the recently updated IMO (2023b). 

 

3.1. Assumptions 

 

Scenarios 1, 2, and 3 are directly taken from GEF-UNDP-IMO (2022), and the same assumptions were 

utilized. Scenario 4 is based on a silicone-based low friction coating available in the market. The 

analysis considers the ship under study entering dry-dock and the adoption of the listed biofouling 

management scenarios. 

 

3.1.1. Fuel consumption  

 

Table II: The analyzed biofouling management scenarios and assumptions used 
Biofouling management 

scenario number 

Hull coating Hull related 

measures 

Propeller related 

measures 

Assumptions used 

Scenario 1 SPC AF coating No No Assumption 1** 

Assumption 2** 

Assumption 4** 

Assumption 8 

Scenario 2 

 

SPC AF coating Hull cleaning 

after 3 & 4 

years 

Propeller cleaning 

after 3 & 4 years 

Assumption 1** 

Assumption 2** 

Assumption 3** 

Assumption 4** 

Assumption 5** 

Assumption 8 

Scenario 3 SPC AF coating Hull cleaning 

after 1 ½, 2, 

2 ½, 3, 3 ½, 4, 4 

½ years 

Propeller cleaning 

after 1 ½, 2, 2 ½, 3, 3 

½, 4, 4 ½ years 

Assumption 1** 

Assumption 2** 

Assumption 3** 

Assumption 4** 

Assumption 6** 

Assumption 8 

Scenario 4 Silicone-based low 

friction coating 

No Propeller polishing, 

twice a year 

Assumption 9 

Assumption 10 
**See GEF-UNDP-IMO (2022) for the description of the assumptions. 

 

 

Table II shows the assumptions used for the analyzed biofouling management scenarios, and Table III 

shows the details of the assumptions used for the present study. 
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Table III: The details of the assumptions used for the present study 
Assumptions Description 

Assumption 8 1. The bulk carrier enters drydock at the end of 2023 and leaves the dry-dock on 1st January 2024. 

2. The bulk carrier was assumed to be coated with an SPC in the previous docking cycle, and it 

entered the dry-dock with biofouling growth and mechanical degradation of the coating. The im-

pact from ageing is ignored.  

3. Spot blasting (40%) was conducted before the application of the SPC in the current dry-dock. 

4. The increase in power due to the aging of the ship, 𝛥𝑃𝐵_𝑎𝑔𝑖𝑛𝑔 is disregarded for both the current 

and previous docking cycle. 

Assumption 9 1. The bulk carrier enters drydock at the end of 2023 and leaves the dry-dock on 1st January 2024. 

2. The bulk carrier was assumed to be coated with an SPC in the previous docking cycle, and it 

entered the dry-dock with biofouling growth and mechanical degradation of the coating. The im-

pact from ageing is ignored.  

3. Full blasting was conducted before the application of the silicone-based low friction coating in the 

current dry-dock. 

4. Immediate power gain after the application of silicone-based low friction coating compared to SPC 

is assumed to be 6% based on the Hempaguard technology of Hempel (Bertelsen and Meseguer 

Yebra, n.d.). 

5. Considering the points above, the decrease in the ship's required power (at the same speed) due to 

the silicone upgrade during dry-dock is estimated to be 8.5% (2.5% + 6%) compared to the re-

quired power of the ship that underwent spot blasting and was coated with SPC, corresponding to 

scenarios 1, 2, and 3. 

6. The increase in power due to the aging of the ship, 𝛥𝑃𝐵_𝑎𝑔𝑖𝑛𝑔 is disregarded for the previous dock-

ing cycle. 

Assumption 10 The increase in power over time, attributed to mechanical deterioration of the coating, fouling 

accumulation, and aging is assumed to result in a 1.4% speed loss over a 5-year period. This represents 

the guaranteed maximum average speed loss of a vessel with the Hempaguard X7 coating system, as 

per ISO 19030. 

 

3.1.2. Cost 

 

Table IV shows the assumptions used for cost calculations.  

 

Table IV: Elements of costs and the assumptions used 

 
 

3.1.3. In-water hull cleaning 

 

The authors of this study acknowledge certain limitations, especially in relation to the effects of in-

water hull cleaning. Specially, this study does not consider the impact of frequent in-water hull cleaning 

interventions on the coating systems and the water column. The dataset from GEF-UNDP-IMO (2022) 

used in the case study has the same limitations. To ensure a fair and consistent comparison, the current 

study adopts the same assumptions, thereby inheriting the same limitations as the GEF-UNDP-IMO 

(2022). For illustration the below constitute critical points which are not considered in this study: 
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• In-water hull cleaning can reduce the active lifetime of a coating system. This is especially true 

for Self-Polishing Coatings (SPCs), which may not maintain effectiveness for the full 5-year 

duration unless additional DFT is applied initially. The in-water hull cleaning process, while it 

removes biofouling from the hull, will reduce the coating's effective lifetime. This may lead 

operators to further increase the frequency (and costs) of in-water hull cleaning – especially in 

year 4 and 5. Alternatively, a more resource-intensive coating system with higher DFT (and 

cost) will be required to withstand frequent hull cleaning interventions and ensure hull protec-

tion and performance. 

• In-water hull cleaning services are not always available when needed. This means that a vessel 

may need to operate with added biofouling growth on the hull and hence a fuel penalty until it 

arrives at a location where cleaning services are available and permitted. In our modelling, like 

the initial study, there is an assumption that in-water hull cleaning is always available when 

needed at specific time intervals. 

• The significance of cautious cleaning activities cannot be overstated. Incorrect in-water clean-

ing practices may damage coating systems, causing accelerated biofouling accumulation, in-

creased drag, and higher fuel consumption. Incorrect hull cleaning practices may remove bio-

fouling but also damage the coating, resulting is faster re-fouling rates. While GEF-UNDP-

IMO (2022) acknowledged the possibility of coating damage due to cleaning activities, it did 

not consider the potential impact on biofouling growth rates from damaged surfaces. To ensure 

a fair comparison, the present study maintains the same assumption and does not consider the 

variation in regrowth rates following frequent in-water hull cleaning activities. 

• An increased frequency of in-water hull cleaning operations may require additional time and 

costs associated with pre- and post-cleaning hull inspections to determine the sections requiring 

cleaning and to document the cleaning effect afterwards. These costs are not considered in 

GEF-UNDP-IMO (2022) nor in this study. 

• Potential damages to the coating system from frequent in-water cleaning operations may lead 

to extra costs and activities during subsequent dry-docks in terms of surface preparation. These 

costs are not considered in GEF-UNDP-IMO (2022) nor in this study.  

• GEF-UNDP-IMO (2022) assumed that biofouling growth is uniformly distributed on the hull 

wet surface and that any in-water hull cleaning intervention would result to the entire hull and 

propeller being fully clean.  However, biofouling growth tends to be concentrated on certain 

hull sections and it is not practically possible for in-water hull cleaning operations to achieve a 

completely clean hull as measured by the entire wet-surface area. Contrary, there are sections 

which are not cleaned due to operational reasons. Priority is usually given to the areas that can 

have a strong effect to fuel efficiency (i.e., vertical sides) or to the areas relevant for biosecurity 

compliance (i.e., niche areas). Also, it is common for vessels to have very limited time along-

side at port terminals or anchorages, which results in partial cleaning each time and multiple 

cleaning interventions to achieve a “clean hull”. The present study retains the same assumptions 

with the GEF-UNDP-IMO (2022) to align with the original study's methodology and ensure 

comparability. 

• Although the current study focuses primarily on fuel consumption and subsequent CO2 emis-

sions, it is important to recognize that in-water cleaning activities may increases the risk of 

chemical and biological contamination because of waste substances released into the water col-

umn. Although this is beyond the scope of this paper, it remains a critical avenue for further 

research. 

 

3.2. Results 

 

3.2.1. Required power change 

 

Fig.2 shows the increase in the required power of the bulk carrier to maintain the 14 kn design speed. 

The required engine power increases for the first three scenarios are directly taken from GEF-UNDP-

IMO (2022). The required engine power for scenario 4, has been calculated based on the information 

provided in Section 2.1 and the assumptions provided in Section 3.1. The negative value at Year 0 is 
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attributed to the immediate power gain observed after the full blasting process and application of a 

silicone-based coating, which results in a smoother surface compared to a conventional SPC. 

 

The different scenarios analyzed in the study show varying effects on the required power for ship 

operation. The ‘SPC - no in-water cleaning’ scenario (scenario 1) exhibits the most severe increase in 

required power, reaching up to 45%. Conversely, the ‘SPC + responsive cleaning’ (scenario 2) and 

‘SPC + regular cleaning’ (scenario 3) scenarios demonstrate immediate drops in power requirements 

upon the application of cleaning measures. At the end of the docking cycle (Year 5), the power increase 

values for ‘SPC + responsive cleaning’ and ‘SPC + regular cleaning’ scenarios are 19% and 6%, 

respectively, GEF-UNDP-IMO (2022). Notably, the ‘Silicone-based low friction coating - no in-water 

hull cleaning’ (scenario 4) scenario outperforms others, thanks to the combined benefits of an initial 

power gain after dry-docking and a slow deterioration over time. The power starts at -8.5% and linearly 

increases to -0.1% compared to a clean SPC coated surface (if always clean). However, focusing solely 

on power increase values may be misleading when comparing different options, as the primary 

difference lies in the total fuel consumed during the docking cycle. Therefore, a comprehensive 

assessment considering overall fuel consumption is crucial for making informed decisions. 

 

 
Fig.2: Required power increase of a bulk carrier with different biofouling management strategies over 

the 5-year operation, adapted from GEF-UNDP-IMO (2022) 

 

3.2.2. Cumulative fuel consumption 

 

Fig.3 presents a comparison of the cumulative fuel consumption of the bulk carrier under different 

biofouling management scenarios. The cumulative fuel consumption values for the first three scenarios 

are directly taken from GEF-UNDP-IMO (2022). The cumulative fuel consumption for scenario 4, 

namely silicone-based low friction coating with no in-water hull cleaning, has been calculated based on 

the information provided in Section 2.1, and the assumptions provided in Section 3.1. 

 

As the operation time extends, the variations in cumulative fuel consumption between the scenarios 

become more distinct. The results from the original report indicate that scenario 2 (SPC - no in-water 

cleaning) results in a total fuel consumption exceeding 46,000 tons over the 5-year period. 

Implementing responsive cleaning (scenario 2), which involves hull and propeller cleaning after 3 and 

4 years of operation, reduces the total fuel consumption to below 42,000 tons. Adopting a regular 
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cleaning strategy (scenario 3) further reduces the total fuel consumption to below 38,000 tons, GEF-

UNDP-IMO (2022). The results from the present study emphasize the significant potential for fuel 

savings by choosing a silicone-based low friction coating (scenario 4), as the total fuel consumption 

can be decreased to below 35,000 tons. These findings underscore the impact biofouling management 

activities can have in optimizing fuel efficiency for bulk carriers and highlight the substantial fuel-

saving benefits of adopting a silicone-based low friction coating. 

 

The total fuel costs for the 5-year operation of the bulk carrier were estimated based on predicted fuel 

consumption under different scenarios. Table VII illustrates the total fuel cost of the bulk carrier across 

various biofouling management scenarios, with calculations based on a fuel price of 572.5 USD per 

metric ton of FO fuel. The findings indicate that the total fuel cost over the 5-year operation can reach 

~$26.70 million under scenario 1. However, this cost is reduced to ~$23.85 million and ~$21.80 million 

under scenario 2 and scenario 3, respectively, GEF-UNDP-IMO (2022). Adopting a silicone-based low 

friction coating can further decrease the total fuel cost to ~$19.95 million. Table VII provides a 

comprehensive comparison of the differences in total fuel costs between the different biofouling 

management strategies. 

 

 
Fig.3: Cumulative fuel consumption of the bulk carrier with different biofouling management strategies 

over the 5-year operation, adapted from GEF-UNDP-IMO (2022) 

 

3.2.3. Carbon Intensity Indicator (CII) 

 

The CII (Carbon Intensity Indicator) is a measure for a ship’s energy efficiency and is given in grams 

of CO2 emitted per cargo-carrying capacity and nautical mile, DNV (2023). 

 

Since the nautical miles of the ship operated in this cycle and the attained CII of the previous year before 

the dry-dock are unknown, we relied on a set of assumptions to derive a representative CII value and 

demonstrate the impact of each scenario on the CII rating. The following assumptions were used: 

 

• The ship enters drydock at the end of 2023 and leaves the dry-dock on 1st January 2024 so that 

the effect of each scenario would fully impact the CII of 2024 onwards. 

• Required annual operational CII, 𝐶𝐼𝐼𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, in 2024 is the attained CII of the ‘ideal ship’. 

This 'ideal ship' is assumed to remain unaffected by any biofouling accumulation, coating 
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degradation, or aging in 2024. In simpler terms, the sum of 𝛥𝑃𝐵_𝑓𝑜𝑢𝑙𝑖𝑛𝑔, 𝛥𝑃𝐵_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙, and 

𝛥𝑃𝐵_𝑎𝑔𝑖𝑛𝑔  is considered to be zero for the ‘ideal ship’ in 2024. 

• The reduction factors for Phase 3 (2027 – 2030) have not yet been announced. A 3% reduction 

was assumed for this specific period. 

 

By using the assumptions above, we can directly see the effect of each selection on the CII starting from 

the 1st year compared to an ‘ideal ship’ that is operating without any increase in the required power. 

The details of CII can be seen in IMO (2021b; 2021c; 2021d; 2021e). 

 

Using the methods mentioned above, the theoretical CII of the ‘ideal ship’ is calculated to be 6.056 in 

2024. The effect of each option on the CII value was then calculated for each year, Table V. 

 

Table V: The CII values of the ship under different biofouling management scenarios 

 2024 2025 2026 2027 2028 

Scenario 1 6.12 (C) 7 (E) 8.19 (E) 8.72 (E) 8.76 (E) 

Scenario 2 6.12 (C) 7 (E) 8.09 (E) 6.74 (E) 6.69 (E) 

Scenario 3 6.12 (C) 6.49 (D) 6.33 (D) 6.38 (D) 6.35 (D) 

Scenario 4 5.59 (B) 5.69 (C) 5.8 (C) 5.9 (C) 6 (D) 

 

The CII analysis across the different biofouling management scenarios reveals important insights into 

the energy efficiency, environmental impact, as well as a critical compliance consideration. According 

to IMO regulations, a vessel that receives three consecutive "D" ratings or a single "E" rating in a given 

year is mandated to develop and present a corrective action plan, outlining the strategies to attain a CII 

index of "C" or higher. This underscores the significance of adhering to the established efficiency 

standards. Furthermore, as stipulated by the IMO, there is a proactive encouragement for 

administrations, port authorities, and relevant stakeholders to offer incentives to ships that achieve "A" 

or "B" ratings, fostering an environment of enhanced energy efficiency and sustainability within the 

maritime industry. 

 

Scenario 4 (Silicone-based low friction coating - no in-water hull cleaning) consistently demonstrates 

favorable CII values for each year, starting at 5.59 g of CO2 emitted per cargo-carrying capacity and 

nautical mile in 2024 (B rating). It gradually increases to 5.69 (C) in 2025, 5.8 (C) in 2026, 5.9 (C) in 

2027, and finally reaches 6 g (D) in 2028. These CII values for scenario 4 show the considerable 

emission reduction potential that the shipping industry can achieve today with the available silicone 

coating technologies. On the other hand, scenario 1 (SPC - no in-water cleaning) and scenario 2 ( SPC 

+ responsive cleaning) exhibit higher CII values with consecutive E ratings, indicating non-compliance 

with the regulatory threshold, relatively lower energy efficiency and higher environmental impact over 

multiple years. Scenario 3 (SPC + regular cleaning) demonstrates consecutive D ratings, which do not 

comply with the regulatory requirement of avoiding three consecutive D ratings. Ships operating under 

these scenarios will need to implement additional measures to improve energy efficiency and reduce 

their CII ratings to align with the regulations set by the IMO. These findings underscore the significance 

of selecting biofouling management strategies that prioritize energy efficiency and reduce carbon 

emissions while ensuring compliance with the established energy efficiency standards. 

 

3.2.4. EU ETS carbon cost 

 

The EU ETS is a cap-and-trade system designed to reduce GHG emissions by imposing a cap on 

emissions for specific economic sectors. The shipping sector has been included in the EU ETS from 

2024 onwards. Table VI presents the annual EU ETS carbon costs for each biofouling management 

scenario. 

 

It is important to highlight that the vessel used in this study already has pre-defined trading region of 

Mediterranean Sea, GEF-UNDP-IMO (2022). However, the specific intricacies of the trading 

parameters remain undisclosed. Hence, we relied on a series of assumptions to establish representative 
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EU ETS carbon costs and to showcase the influence of each scenario on the EU ETS carbon cost. The 

following assumptions were considered: 

 

• All operations occur within the Mediterranean Sea throughout the 5-year docking cycle. 

• 60% of the operations involve travel between EU ports, while the remaining 40% involve jour-

neys between EU and non-EU ports. 

 

In the years 2024, 2025, 2026, 2027, and 2028, the percentages of eligible emissions to consider for EU 

ETS Carbon costs are 40%, 70%, 100%, 100%, and 100%, respectively. EU ETS carbon price is 

assumed to be $90. This carbon price represents the cost of emitting one ton of carbon dioxide 

equivalent (CO2e) into the atmosphere under the European Union Emissions Trading System (EU 

ETS). 

 

Table VI: Yearly EU ETS carbon costs of the ship under different biofouling management scenarios 

Scenarios    2024 2025 2026 2027 2028 Total 

Scenario 1 $659,441 $1,321,482 $2,207,104 $2,351,478 $2,361,518 $8,901,022 

Scenario 2 $659,441 $1,321,482 $2,182,127 $1,816,054 $1,804,891 $7,783,995 

Scenario 3 $659,441 $1,225,397 $1,707,617 $1,719,178 $1,711,584 $7,023,216 

Scenario 4 $603,114 $1,074,652 $1,562,649 $1,590,081 $1,617,513 $6,448,009 

 

The analysis of different scenarios reveals insights into the EU ETS carbon costs associated with each 

approach. These costs are closely aligned with the fuel consumption trends observed in each scenario. 

Notably, scenario 4 stands out with the lowest total EU ETS carbon cost, totaling $6,448,009 over the 

five-year period, which further reinforces its position as a compelling option for reducing emissions 

and costs, optimizing operational efficiency. Comparatively, scenario 3 follows with total EU ETS 

carbon costs of $7,023,216, while scenario 2 incurs $7,783,995, and scenario 1 records the highest total 

EU ETS carbon costs at $8,901,022. 

 

3.2.5. Total Cost of Ownership and payback period  

 

Table VII details the cost elements for different biofouling management scenarios over a 5-year docking 

cycle. It is important to note that the calculation of the expected payback period in the table assumes 

that the same company is the owner and operator of the vessel. This means that fuel costs and the voyage 

costs are paid by the owner of the vessel. 

 

The TCO for the four biofouling management scenarios provides insights on the financial implications 

of each option. The initial investment costs, including coating purchase cost and rental of repair yard 

cost, differ for each scenario. Scenario 4 requires an initial investment of $581,500, while scenarios 1, 

2, and 3 have an initial investment cost of $213,500. However, it is important to note that despite the 

higher initial investment cost of scenario 4, this is quickly compensated due to the increased fuel savings 

provided by this scenario. Considering the fuel costs, which represent a significant expense, scenario 4 

stands out with a total fuel cost of ~$19.950 million. In comparison, scenarios 1, 2, and 3 have total fuel 

costs of ~$26.70 million, ~$23.85 million and ~$21.80 million, respectively. Moreover, the cleaning 

costs associated with each scenario should also be considered. Scenario 4 has only propeller polishing 

costs of $27,000, while scenario 2 incurs $54,000 in cleaning expenses and scenario 3 incurs $210,000, 

including off-hire costs. Scenario 1 has no cleaning costs. 
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Table VII: The cost element for different biofouling management scenarios 

  Elements of Cost Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Scenario 4 

VS  
Scenario 1 

P
a
in

t 

Paint purchasing cost $62,000 $62,000 $62,000 $305,000 $243,000 

R
e
p

a
ir

 Y
a
rd

 

Surface preparation cost $21,000 $21,000 $21,000 $55,000 $34,000 

Washing cost $4,500 $4,500 $4,500 $4,500 $0 

Paint application $12,000 $12,000 $12,000 $65,000 $53,000 

Repair Yard Rent $30,000 $30,000 $30,000 $40,000 $10,000 

Off hire cost $84,000 $84,000 $84,000 $112,000 $28,000 

C
le

a
n

in
g

s
 

Diver cost $0 $40,000 $140,000 $27,000 $27,000 

Off Hire cost $0 $14,000 $70,000 $0 $0 

F
u

e
l Fuel Cost (HSFO) 5 Years $26,700,000 $23,850,000 $21,800,000 $19,950,600 -$6,749,400 

CO2 emission Tons (HSFO) 5 Years 145,043 129,549 118,425 108,517 -36,526 

T
C

O
 

Total Cost of Ownership (HSFO) 5 
Years 

$26,913,500 $24,117,500 $22,223,500 $20,559,100 -$6,354,400 

Savings over 5 years $6,354,400 

Expected Payback Period (Months) 12 

 

These findings highlight the significance of evaluating TCO for making informed investments in 

alternative technologies. While initial investment costs are important, the long-term operational costs, 

particularly fuel costs, play a crucial role. Although scenario 4 requires a higher initial investment, its 

lower fuel costs and absence of hull-cleaning expenses contribute to its favorable TCO. The findings 

also reveal that opting for Scenario 4 over Scenario 1 leads to an impressive payback period of 12 

months which may be even shorter for other vessel types and trading patterns. This shows that within 

just a short timeframe, the accumulated savings in fuel costs from the enhanced fuel efficiency of 

scenario 4 will recuperate the upfront investment. This underscores the importance of considering the 

costs across the product lifecycle and making informed decisions to achieve both financial savings and 

substantial reduction in GHG emissions in the long run. 

 

Note that Table VII does not consider the potential savings from EU ETS carbon costs. Tying together 

data from Table VI and Table VII, we can gain a more complete picture for difference in through-life 

costs associated with biofouling management strategies as shown in Table VIII. 

 

Table VIII: The cost element for different biofouling management scenarios 

  Elements of Cost Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Scenario 4 

VS  
Scenario 1 

T
C

O
 

Total Cost of Ownership $26,913,500 $24,117,500 $22,223,500 $20,559,100 -$6,354,400 

E
U

 E
T

S
 

C
a
rb

o
n

 

C
o

s
t 

Total EU ETS Carbon Cost $8,901,022 $7,783,995 $7,023,216 $6,448,009 -$2,453,013 

T
o

ta
l 

TCO + EU ETS Carbon Cost $35,814,522 $31,901,495 $29,246,716 $27,007,109 -$8,807,413 

 

Taking a comprehensive view, combining the total cost of ownership (TCO) and the EU ETS carbon 

cost over a 5-year horizon further substantiates the advantage for scenario 4. The total financial outlay 

and environmental impact are both markedly reduced in this scenario. Specifically, scenario 4 stands 

out with a combined TCO and EU ETS carbon cost totaling approximately $27.01 million, revealing 
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an impressive cost savings of approximately $8.81 million compared to scenario 1. This analysis 

underscores the pivotal role of both effective biofouling management strategies and conscientious 

decisions regarding coating systems in achieving substantial financial benefits while contributing 

positively to environmental sustainability. 

 

4. Conclusions and discussion 

 
This study introduces a comprehensive framework to evaluate ship energy efficiency measures, 

considering operational, regulatory compliance, technoeconomic, and environmental aspects. The 

methodology outlined covers dry-docking and operational phases, offering a well-rounded analysis.  A 

case study utilizing a bulk carrier was conducted to demonstrate the application of the framework with 

a particular emphasis on biofouling management. 

 

Applying the framework to different biofouling management scenarios for a bulk carrier over a 5-year 

docking cycle yielded valuable insights into financial and environmental outcomes for each option. The 

findings underscore the significance of weighing the total cost of ownership (TCO) and the carbon 

intensity indicator (CII) when choosing biofouling management strategies. This approach aligns with 

industry needs and environmental targets, guiding informed decision-making for energy efficiency 

enhancements and emission reductions. 

 

In terms of required power increase, the study revealed that the choice of biofouling management 

scenarios significantly impacts vessel power requirements. The use of SPC without cleaning resulted in 

the highest power increase, reaching up to 45% over the 5-year operation. On the other hand, scenarios 

involving responsive and regular cleaning regimes demonstrated immediate drops in power 

requirements upon the application of cleaning activities which underlines that in-water hull cleaning is 

a critical activity in biofouling management. With the use of a silicone-based low friction coating we 

observed the most favorable results, with an initial power gain (reduction in the required power) and a 

slow deterioration over time. These findings emphasize the importance of selecting biofouling 

management options that minimize power increase and improve fuel efficiency. 

 

The cumulative fuel consumption analysis further highlighted the significant fuel-saving potential of 

different biofouling management scenarios. Among the scenarios involving SPC coatings, the study 

showed that the use of regular cleaning measures (scenario 3) resulted in the lowest cumulative fuel 

consumption over the 5-year operation, reducing fuel costs by approximately $4.9 million compared to 

the scenario 1. However, it is important to note that when comparing across all scenarios, the adoption 

of a silicone-based low friction coating demonstrated even greater fuel savings. This scenario 

showcased the lowest cumulative fuel consumption, with a reduction of approximately $6.75 million 

compared to the scenario 1, namely ‘SPC - no in-water cleaning’. These findings underscore the 

substantial impact of biofouling management strategies on fuel efficiency and the potential for 

significant cost savings over the docking cycle. While the scenario 3 is the most favorable among the 

SPC-based options, the overall silicone-based coating offers the greatest fuel-saving advantage, while 

also requiring no hull cleaning by design. 

 

The CII analysis provided insights into the environmental impact of the different biofouling 

management scenarios. The study demonstrated that the scenario involving a silicone-based low friction 

coating consistently achieved lower CII values compared to other scenarios, indicating improved energy 

efficiency and reduced carbon emissions. Conversely, scenario 1 (SPC - no in-water cleaning), scenario 

2 (SPC + responsive cleaning) and scenario 3 (SPC + regular cleaning) exhibited higher CII values, 

indicating lower energy efficiency and higher environmental impact. Similarly, the analysis links EU 

ETS carbon costs with fuel consumption patterns across scenarios, with scenario 4 exhibiting the lowest 

total EU ETS carbon cost over five years, endorsing its cost-reduction potential. Scenarios 3, 2, and 1 

follow with increasing EU ETS costs. These findings emphasize the importance of selecting biofouling 

management options that not only achieve fuel savings but also align with established and new energy 

efficiency standards, environmental regulations, and financial implications. 
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Considering TCO, which includes both the initial investment costs and the operational costs over the 5-

year docking cycle, the study revealed that the selection of biofouling management scenarios can have 

significant financial implications.  

 

Table IX: A qualitative summary of the study's outcomes (★ denotes the least favorable scenario and 

★★★★ denotes the most favorable scenario across different perspectives) 
Perspective Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Power penalty over time ★ 

Highest due to the 

fastest rate of 

degradation over 

time. 

★★ 

2nd-highest. 

The rate of 

degradation over 

time is identical to 

scenario 1 but 

immediate drops in 

power requirements 

occur upon the 

application of 

cleaning measures. 

★★★ 

3rd-highest. 

The rate of 

degradation over 

time is identical to 

scenario 1 but 

immediate drops in 

power requirements 

occur upon the 

application of 

cleaning measures. 

★★★★ 

Lowest due to the 

slowest rate of 

degradation over 

time. 

Total fuel consumption ★ 

Highest. In line with 

the highest power 

penalty over time.  

★★ 

2nd-highest. In-line 

with the power 

penalty over time 

and the number of 

cleaning 

applications. 

 

★★★ 

3rd-highest. In-line 

with the power 

penalty over time 

and the number of 

cleaning 

applications. 

 

 

★★★★ 

Lowest due to the 

8.5% (2.5% + 6%)  

out of dock power-

gain and slowest rate 

of degradation 

(1.4% speed loss) 

over time. 

CII ★ 

Highest at the end 

of the cycle. In line 

with the highest fuel 

consumption. 

★★ 

2nd-highest at the 

end of the cycle. In 

line with the fuel 

consumption. 

★★★ 

3rd-highest at the 

end of the cycle. In 

line with the fuel 

consumption. 

 

★★★★ 

Lowest due to the 

lowest fuel 

consumption. 

Total EU ETS carbon 

cost 
★ 

Highest. In line with 

the highest total fuel 

consumption. 

★★ 

2nd-highest. In line 

with the total fuel 

consumption. 

★★★ 

3rd-highest. In line 

with the total fuel 

consumption. 

★★★★ 

Lowest due to the 

lowest fuel 

consumption. 

Upfront investment cost ★★★★ 

Lowest due to the 

low cost of 

purchasing paint 

(SPC),  surface 

preparation and 

paint application. 

★★★★ 

Lowest due to the 

low cost of 

purchasing paint 

(SPC),  surface 

preparation and 

paint application. 

★★★★ 

Lowest due to the 

low cost of 

purchasing paint 

(SPC),  surface 

preparation and 

paint application. 

★ 

Highest due to 

increased cost of 

purchasing paint,  

surface preparation 

and paint 

application. 

Cleaning cost ★★★★ 

Lowest due to no 

in-water cleaning 

applications. 

★★ 

2nd-highest due to 

responsive cleaning 

(hull & propeller) 

operations (2 times). 

★ 

Highest due to 

regular cleaning 

(hull & propeller) 

operations (7 times). 

★★★ 

Very low due to 

virtually zero hull 

cleanings required 

to maintain the 

guaranteed speed 

loss. Only propeller 

polishing is 

considered. 

TCO ★ 

Highest driven by 

the highest total fuel 

consumption. 

★★ 

2nd-highest. In line 

with the total fuel 

consumption. 

★★★ 

3rd- In line with the 

total fuel 

consumption. 

 

★★★★ 

Lowest driven by 

the significant fuel 

cost reduction. 

Payback in 12 

months. 

Overall evaluation of 

scenarios 
★ ★★ ★★★ ★★★★ 
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While the initial investment costs varied among the scenarios, the long-term operational costs, 

particularly fuel cost, played a crucial role in determining the overall TCO. The scenario involving a 

silicone-based low friction coating demonstrated the most favorable TCO, considering the lower fuel 

costs. This highlights the importance of taking a holistic approach when evaluating the financial 

implications of biofouling management strategies and considering the long-term operational savings. 

 

Table IX presents a qualitative summary of the study's outcomes, utilizing ★ to denote the least 

favorable scenario and ★★★★ to signify the most favorable scenario across different perspectives. 

 

In conclusion, the case study and analysis utilizing the proposed framework provide valuable insights 

for ship owners and operators in making informed decisions regarding biofouling management 

strategies. The study highlights the importance of considering both financial and environmental factors 

when selecting options. The findings underscore the significant impact of biofouling management 

choices on fuel efficiency, cost savings, and environmental sustainability. Ship owners and operators 

are encouraged to assess the specific characteristics of their vessels and operational profiles in order to 

select the most suitable energy efficiency measures including biofouling management strategies that 

optimize the total fuel consumption, total cost of ownership, and comply with energy efficiency 

standards and regulations. 

 

Consideration should be given to the fact that enhancing a ship's technical performance offers a dual 

advantage. On one hand, it appeals to owners seeking a commercially appealing vessel, while on the 

other, it brings operators both fuel savings and the prospect of future reductions in EU ETS carbon 

costs. This convergence of interests is fostering an increasing willingness among operators to invest in 

coating upgrades and other energy efficiency measures, thereby establishing a 'win-win' scenario that 

breaks the pre-CII era's split incentive. For the current study, we have operated under the assumption 

that ownership and operation of the vessel are integrated, with the owner covering fuel and voyage 

costs. Nevertheless, the adaptability of the developed framework enables the exploration of investment 

scenarios that involve operators, necessitating customized analysis and result interpretation. 

 

Future pieces of work could involve evaluating the combined effect of energy-saving devices and 

biofouling management strategies using the developed framework, as well as validating the current 

findings through the analysis of high-frequency ship data. 
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Abstract 

 

This paper describes an approach for increased efficiency from voyage optimization through automated 

integration of advanced vessel performance. Key parts of the approach are: (1) ship-specific vessel 

performance model for fuel consumption both in design and actual condition, based on data collected 

during vessel operation; (2) novel routing algorithm allowing variations in physical route and engine 

power variations; (3) highly automated user interface. This paper presents application experience 

quantifying saving potential with respect to costs and emissions (CII).  

 

1. Introduction 

 

Data sharing across products often presents friction due to conflicting interests or competing user offers. 

Vessel owners and operators apply an array of services with different purposes in focus. While these 

services may individually possess unique features and benefits, cross-platform benefits are rarely 

utilized. A consolidated data base presents an opportunity for focused expert services to work in 

symbiosis increasing the informed decision-making foundation and improving the readily available 

operational and performance potential for the individual services. 

 

Through a collaborative effort Danish based Optimum Voyage and Polish based Enamor are working 

towards bridging the gap between Vessel Performance and Voyage Optimization. Through API 

connection voyage optimization is made accessible for autonomous integration as a natural extension of 

the present decision support platform offered by Enamor. Consumption models generated though data 

collection, filtration, and analysis are integrated into the voyage optimization engine enhancing 

optimization potential. Results from the optimizations are delivered and displayed through 

SeaPerformer allowing for direct and cohesive information flow. 
 

2. Service arrangement  

 

As for the data flow between two systems (SeaPerformer and Optimum Voyage Optimization Server) 

flow chart Fig.1 represents this process. 

 

The optimization process starts with collecting data about a selected voyage and all the parameters 

required by the OV API. Once everything is filled in by the user (or left default) and validation passes, 

a first request is sent to the OV API, to create an optimization job in their system, for future reference. 

Each response can indicate success or error. In case of an error the data flow goes back to previous step 

as shown on the flow chart. If the request passes, SeaPerformer receives a created job identifier for 

monitoring purpose. Error handling is in place in case of any malfunctions. Each successfully initiated 

route optimization job is saved in SeaPerformer database so the user can see history of the requested 

optimizations as well as status of optimization job which is updated in intervals. An optimization 

duration varies depending on several factors, so SeaPerformer is constantly checking for update. Once 

the route is optimized and job finished, the user receives email notification and is able to see all the 

optimized route variations in the system as shown in Fig. 6. 

 

mailto:wojciech.gorski@enamor.pl
mailto:krzysztof.licznerski@enamor.pl
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Fig. 1: Data flow chart for SeaPerformer and OV 

 

2.1. SeaPerformer data collection 

 
SeaPerformer is the general, flexible data collection system developed by Enamor and devoted to 

monitoring of ship operations. It is designed as a modular system therefore it can be adjusted to specific 

arrangements of the vessel. SeaPerformer is comprised of: 

 

• PC Unit with UPS used as data server, processing unit and ship-to-cloud communication ser-

vice, 

• Multiple Data Collecting Units, data gateways featuring variety of data interfaces and flexible 

power supply options (230VAC/24VDC), 

• Data processing onboard software and user interface providing continuous data validation, vis-

ualization and process optimization, 

• Data analytics cloud software featuring fleet and vessel operation insight and multiple optimi-

zation schemes including route optimization endpoint. 
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2.2. Minimum dataset 

 

Performing ship routing tasks requires that the optimization algorithm is provided with ability to predict 

fuel consumption in various operational conditions. The prediction process is based on the performance 

models which shall adequately reflect impact of ship operational parameters and conditions on the fuel 

consumption of main consumers used onboard. Preparation of the performance models requires 

gathering of a dataset upon which models are adjusted or tuned. For this purpose data shall be collected 

in a consistent manner (i.e. using common time reference and sampling) in order to properly represent 

correlations. Data collection in a consistent way is the primary task of SeaPerformer onboard system. 

Following quantities are usually collected during vessel operations for this purpose: 

 

• Fuel consumption of main consumers onboard, 

• Load and (optionally) revolutions of main and auxiliary engines, 

• Vessel speed through water and over ground, 

• Vessel draft and trim (dynamic and static), 

• Vessel heading and course over ground, 

• Apparent wind speed and direction, 

• Air temperature and pressure, 

• Wave significant height, direction, and period, 

• Water depth, 

• Water temperature. 

 

It is nearly impossible to collect the entire set of data using onboard sensors therefore SeaPerformer 

employs a blending technique incorporating direct measurements and supplementary data sources such 

as weather, oceanographic and bathymetry services. 

 

2.3. Data validation 

 

Any larger dataset inevitably contains errors and therefore data validation is an essential and crucial 

process which shall precede any further data analytics. It is especially important while attempting to 

create the model based on data collected in highly uncontrolled conditions (measurements onboard the 

ship are far more vulnerable to errors comparing to laboratory measurements). Data gathering based on 

onboard sensors may include errors due to multiple reasons. The most obvious and common is sensor 

malfunction. Measurement sensors failure may be manifested by lack of signal accompanied 

(sometimes) with error indication. Such situation can be easily handled however many data sources may 

provide a formally valid signal even during malfunction. Many older, but still used, sensors do not 

provide internal validation and error indications. For such cases more sophisticated methods of data 

validation are required. Another frequent source of data corruption is sensor misconfiguration. It 

typically affects analogue measurements for which sensor input (usually voltage or current) require 

conversion to physical units. Signal processing (sometimes referred to as scaling) is set up during data 

collection system commissioning and may lead to errors especially in cases where variable input is not 

available (commissioning is usually done in port or during ship overhaul when some systems are not 

operational). Data validation can be done on the entire dataset prior to analyses (passive validation) or 

each time a new data record is collected (active validation). The latter approach is more effective since 

data analyses usually cover long periods of time and therefore data validation problems undetected at 

the time of data collection may results in rejection of large parts of the dataset. SeaPerformer provides 

active data validation with use of simple and sophisticated methods. Among the simple methods there 

are gap and out-of-range detection. More sophisticated methods compare current measurements with 

historical trends, reference models or correlated signals in order to detect possible errors. Each time a 

validation case is detected the ship crew is alerted in order to directly trigger resolution of the problem. 

The alert flag is stored in the database as to identify the invalid portion of data. An alert status is also 

sent to the cloud as to increase awareness of the shore personnel.  
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Some sensors exhibit signal instability in time, so called signal drift. Signal drift results in a shift of 

sensor’s zero level and therefore the same value of analysed quantity will be measured on different 

levels after sufficiently long time. Signal drift should be diligently taken into account when analysing 

slow-changing phenomena such as hull fouling. Sensors especially vulnerable to drift are those based 

on strain gauges (e.g. some types of shaft torque meters) and therefore need frequent recalibration  

(i.e. adjustment of zero level). Although detection of signal drift exceeds the scope of data validation, 

SeaPerformer provides functionality which helps mitigate the problem. Time counters, which alert ship 

crew and notify office team when sensor recalibration is needed can be efficiently used to minimize the 

risk of significant sensor drift. 

 

Another source of discrepancies, sometimes overlooked, results from sensor operation at low end of 

their operational range. Sensor’s error is usually provided with reference to its full scale (and described 

as % of FS). Therefore measurements of small values comparing to sensor full scale may result in 

significant errors. Furthermore sensor’s resolution should be also considered. Low sensor resolution  

(i.e. inability to present small changes of measured phenomena) makes it impossible to represent real 

dynamics of measured quantities. Although such discrepancies are beyond the data validation process 

they can be minimized by proper selection of measurement sensors. Analyses of available data sources 

is provided as the engineering package together with SeaPerformer system delivery. Enamor’s 

experienced support team verifies available data sources with respect to measurement range, resolution, 

and overall applicability for performance monitoring. 

 

2.4. Performance models 

 

As for the purpose of voyage optimization performance models shall properly describe ship’s fuel 

consumption in various operational conditions. It is crucial to adequately reflect realities of vessel 

operation in performance models as they constitute the connection between general voyage optimization 

algorithm and specific operational characteristics of the vessel. If the model fails to adequately describe 

vessel performance, the resulting route will be formally optimum but purely artificial as developed for 

the “vessel” of different characteristics. A route determined with use of inadequate performance models 

does not utilize the optimization potential to the full extend and results in higher operational and 

environmental costs. SeaPerformer uses decomposed performance models. Decomposition concerns 

main fuel consumers onboard and operational conditions: 

 

• Main engine(s) fuel consumption with respect to: 

- Calm weather and unrestricted waters – reflecting impact of ship speed through the water, 

draft and trim, 

- Wind – reflecting impact of apparent wind speed and direction as well as air physical prop-

erties, 

- Wave – reflecting impact of significant wave height, direction and period (separately for 

wind and swell waves, subject to data availability), 

- Current – reflecting impact of course corrections, 

- Water depth – reflecting impact of sea bed vicinity, 

- Water physical properties – reflecting impact of water salinity and temperature 

• Auxiliary engines fuel consumption separately determined for: 

- Port operations, 

- Transit, 

• Boilers (not used for route optimization), 

 

In case of main engines, the performance models describe amount of power required to maintain vessel 

operation at given conditions. For the purpose of voyage optimization, where fuel consumption is 

needed, it is calculated with use of specific fuel oil consumption (SFOC) based on engine manufacturer 

data and corrected for engine wear, Górski et al. (2020). 

 

Preparation of performance models is the process which undergoes in stages. Although some parts of it 
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could be automatized it still requires attention of experienced data analysts due to unstructured and  

non-standardized nature of input data. The process starts with gathering of reference data and 

information which helps to understand what the vessels technical characteristics are. Typically design 

and delivery documentation is used at this stage. These documents include: general arrangement plan, 

hydrostatics and stability booklets, propeller and rudder design, results of model tests and numerical 

analyses, engine shop tests and ship sea trials. The information has different formats highly depended 

on the shipbuilder and model testing facility practice and therefore requires special attention in 

digitalization as to maintain compatibility with data collected onboard. Reference data may include ship 

powering characteristics in a form of power-speed curves. These datasets are especially convenient since 

usually describe vessel performance in large range of speeds, drafts and sometimes for different trims. 

However, they must be used with care since power estimates may contain significant errors. For these 

reasons design data shall be validated against sea trials results for compliance at design point (design 

speed and draft). Furthermore, one shall take into account that, due to limitations of model testing 

processes, power predictions at low speeds may contain larger errors. Due to above reasons performance 

models developed based on reference data require validation and usually some degree of adjustment. It 

starts with selection of a characteristic period of operation for which vessel performance may be 

considered as reference. Three to six months period following ship delivery or hull cleaning is usually 

feasible for the purpose. It is sufficiently long for the vessel to operate in different conditions (large 

variation in speeds and drafts improves applicability of the model) and is for most cases uniform in 

terms of hull fouling impact (performance in reference period shall be stable). Data taken from the 

reference period requires preparation. First, the dataset is checked for completeness. In case of data gaps, 

subsidiary data sources (weather, bathymetry etc. services) may be used. Secondly, the dataset is cleaned 

for outliers and non-stationary conditions. Lastly, extreme weather (wind and waves) and navigation 

(shallow waters) conditions are filtered out. Remaining data is corrected to standard conditions (calm 

weather, unlimited waters) and constitute the reference dataset for validation of the performance model. 

Validation consists of calculation of the power increase in reference period with respect to the 

performance model. Resulting power increase should be small and consistent along entire reference 

period. Any larger deviation indicates deficiency of the reference model which requires adjustment. Up 

to the time of writing the paper, model adjustments are performed manually but automatization of the 

process is subject of the planned research. 

 

In case power-speed curves are not available, the performance model can be prepared directly from data 

collected in the reference period. Methods implemented by Gorski et al. (2021) or Berthelsen and 

Nielsen (2022) have been successfully used for the purpose. However, due to limitations  

of the data set, performance model received with use of collected data only suffer due to lower range of 

speeds and drafts. 

 

The last part of performance model preparation consists of defining impact of environmental and 

operational conditions. As the reference methods the following are implemented: 

 

• Wind – ITTC (2021), 

• Wave – Tsujimoto and Orihara (2019), 

• Current – own method based on the centroid drag in oblique flow, 

• Water depth – Raven (2021), 

• Water physical properties – ITTC (2021) 

 

Within IVO project Enamor develops adjustment algorithm for tuning of above methods as to better 

reflect vessel characteristics with respect to environmental impact. Works are based on tunning method 

developed earlier for the purpose of calm water performance modelling, Górski (2016). Advances in the 

subject will be reported in future editions of HullPIC conference. 

 

In parallel to the main engine fuel consumption model, one for auxiliary engines consumption is created. 

Auxiliary engine fuel consumption is modeled as the function of time but separately for port and transit 

operations. The same method as developed earlier for the purpose of CII is implemented Górski et al. 
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(2022). 

 

2.5. User interface and OV API connection 

 

Route optimization service has been included in the SeaPerformer user interface. It consists of three 

subpages. Route finder, Fig.2, allows for approximation of ship track and is used for further 

optimization. On the left side, there is a list of waypoints which are to be visited by the vessel. There 

can be more than two (as presented in example). Adding a waypoint can be done by “Add waypoint” 

button, and then searching a port by a name, code, or country, or can be also selected directly from the 

map. There are additional parameters such as speed, draft, trim, used fuels, and departure time and few 

other used less frequently. All those parameters are taken into account when selecting an initial route 

between ports. 

 

 
Fig.2: Main view of SeaPerformer when planning a route 
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Fig.3: Additional information and voyage tree 

 

As soon as an initial route is available additional information is presented in a form of voyage summary 

Fig.3. It contains departure and arrival time, counted duration of the voyage and the distance. 

Additionally, information about fuel consumption and CII is included. There is also a “voyage tree” 

which contains details divided into voyage legs. 

 

After the initial route is found, a second tab becomes active which is the “Route optimizer” Fig.4. As 

the name says this tab contains a few additional parameters needed for the optimization, such as fuel 

and charter costs, and optimization type. As soon these parameters are provided the user can initiate 

optimization process. 

 

 
Fig.4: Parameters needed for the optimization 

 

It involves interoperation between SeaPerformer and OV routing system and is asynchronous. Therefore 

the user is informed about the successful initiation of the process (i.e. input data comply with OV 

requirements). The route optimization process is monitored by SeaPerformer. As soon as results are 

available they appear in Optimization History section Fig. 5. Email notification is send in parallel. 
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Fig.5: Optimized routes history 

 

The user can select completed optimization job Fig. 6 to be shown on the map on the right. Selecting 

the job and loading it on the map shows few of the optimized routes to select from. There are few things 

to have an eye on. ETA, and the duration of the voyage, as much as difference in total costs of selected 

voyage. Each of those parameters can be important when deciding which route to select. 

 

On the map there is a difference shown between initial route (green) and optimized one (blue) often with 

visible variations depending on weather and operational parameters. 

 

 

 
Fig.6: Optimized route details and variations 

 

2.6. Optimum Voyage routing service 

 

Weather routing and voyage optimization are the common terms covering routes generated with the 

main purposes of avoiding heavy weather and optimizing the commercial outcome through the routing 

of vessels. Products and services range from low-tech manual route alterations to high-tech algorithm 

driven solutions. Common for the quality of the generated results is a high dependence to the quality of 

data fed to the product. Of greatest significance are: 

 

• Weather forecasts 

• Current forecasts  

• Weather impact on speed or power requirement 
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• Driving algorithm 

• Calm water speed / power or consumption models 

 

While the quality and reliability from weather- and current forecasts are individually expertized fields 

the remaining elements are fields of scrutiny for the individual routing provider.  

 

Optimum Voyage weather routing approaches the impact of weather as an impact on the effective speed 

a vessel will achieve. This approach mimics the actual operation of a vessel and thereby results in 

directly actionable routing options. An engine load is maintained through a specified period and weather 

impact on speed is calculated as a resulting speed loss from calm water speed. As a vessel would 

experience a loss of speed while under the influence of seas and wind the same will apply for the 

evaluation of a voyage where the effective speed also changes the time the vessel will be at the respective 

positions throughout the route and thereby the sampling of the correct forecasted weather.  

 

The magnitude of the speed loss the vessel experiences can be accounted for in a multitude of approaches 

– considering Beaufort Scale and Douglas Sea State, applying wave height and wind speed and more. 

As this weather impact not only is specific to the individual vessel but for waves also varies depending 

on the relative direction and period, both parameters in combination with the significant wave height 

are accounted for. The specific influence is modelled with vessel characteristics to compute the 

resistance incurred from waves. In a similar fashion wind is accounted for by relative direction and wind 

speed in combination with vessel main characteristics. The added level of detail increases the 

computation complexity but elevates the precision of evaluated weather impact required for an 

optimization to fully capture the dimensions of voyage evaluation. 

 

A selection of optimization algorithms is applied in a series of steps for the individual voyage 

optimization. The optimizations are free to search a non-discretized solution space to not limit to a grid 

search, where optimization potential is directly coupled to the coarseness of the applied grid. The search 

for an optimum solution is performed applying a simultaneous local and global search. The local search 

refines potential best solutions pushing the savings potential while the global search performs a broader 

search for a potential better alternative solution. This also allows for the algorithms to avoid becoming 

stuck in local minima or incorrect optimum. 

 

While weather routing has been available for the past decades through alterations of waypoints 

(latitudes, longitudes), speed / power optimization remains a relatively new discipline to be applied to 

weather routing and voyage optimization. Adding speed variation either as on fixed power change 

throughout a voyage or as variable power throughout a voyage adds an additional dimension to the 

solution space, increasing the potential voyage savings. Although speed/power optimizations are offered 

as stand-alone services the added dimension is not unlocked unless carried out in combination with the 

waypoint optimization. This effectively allows for alternate solutions where e.g. heavy weather is not 

exclusively avoided through waypoint modifications, but also with slowing down and/or speeding up. 

This also allows a route to not only search for beneficial weather in space, but also in time. The Optimum 

Voyage optimizations allow for power variations throughout a voyage when applicable to the vessel 

operation. 

 

2.7. OV API 

 

The Optimum Voyage optimization API has been enabled through the level of automation applied to 

the core of the algorithmic built of the solution. For a successful approach to an API based solution the 

full operational flow is required to retain full flexibility while remaining entirely frictionless for the user. 

This in turn has required all processes to be fully automated.  

 

Once a vessel is activated for API use available vessel characteristics are automatically sourced through 

the IMO number and the digital vessel model is generated for use in optimizations. The characteristics 

are used to automatically generate a tailored core consumption model for every vessel, and to generate 

the models applied to the calculations of added resistance from weather, and lastly to retain information 
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required to evaluate restrictive navigation. 

 

Upon activation an external consumption model for the vessel can be applied through the API. This 

process is automated in the background and will not require any action from the end user. The external 

consumption model can at any time be updated through the API which is relevant at any point an 

improved model is available. 

 

Once a user has planned a voyage, on board or ashore, the voyage can be sent for optimization with 

applicable voyage specific details. Different optimizations can be selected including: CP optimization, 

minimum cost optimization, on-time-arrival and more. 

 

Through the optimization run on cloud servers the algorithms ensure that that any planned parts of  

a voyage through restrictive navigation areas are retained to maintain any planned navigability of the 

voyage. The servers draw on the latest available weather- and current forecasts along with enhanced 

AIS to ensure that the results generated are relevant and up-to-date at all times. Once optimization 

convergence is achieved a route solution is returned to the system calling the API. 

 

The route solution includes an identified best voyage option along with weather optimized alternatives 

for different arrival times. Every option includes route specifics with waypoints, power / speed settings 

defined in RTZ-format along with total voyage break down of consumption, costs and time-series 

weather analysis throughout the voyage. 

 

As weather and actual vessel operation changes day to day users are encouraged to activate a daily 

optimization to run to ensure the user retains the full savings potential possible throughout the voyage. 

2.8. OV Integrated Consumption Models 

 

Allowing cross product integration allows for owners and operators to achieve full benefits from every 

service application. Clients already accustomed with a specific vessel performance solution relying on 

data tracked, filtered, and modelled over an extended period, are enabled to allow these models to also 

form the foundation of the digital vessel model applied in voyage optimization.  

 

A collaborative consumption model format has been developed that allows for integration of calm water 

performance models, but also models that account for the impact of weather while retaining the detailed 

weather evaluation. The format is compressed to retain detail while remaining quickly transferable 

through the API. 

 

The necessity of precise voyage consumption predictions can be debated for specific optimization types, 

including those requiring a fixed engine load throughout a voyage. The primary objective of such an 

optimization is minimized fuel consumption, assuming that no unsafe voyage option is produced. As 

such the analyzed solution space forms the foundation for relative evaluation where any consumption 

error is carried through all voyage evaluations and the minimum will remain the best solution even with 

reduced uncertainty. Any such error or uncertainty to speed-power predictions may though not only 

offset the estimated fuel consumption for a voyage but also effect the anticipated vessel position at a 

specific time, thereby further shifting sampled weather, thus carrying an accumulated error forward. 

Results thereby retain a further optimization potential enabled by precise speed-power predictions. 

 

For voyages with flexible arrival time and the ETA decided by a commercial driver, fuel consumption 

is translated to fuel cost through the applicable fuel prices. Voyage time is similarly translated to time 

cost through hire rate or TCE. Any offset or uncertainty in the underlying consumption model is carried 

through to the evaluation of total fuel cost which will impact the indicated least cost arrival time 

considering both fuel and time. Increasing the prediction accuracy through the integration of a readily 

available external consumption model will for these instances increase profitability of operation. 

 

2.9. OV Integrated Voyage Optimization 
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Integrating voyage optimization into the already established platform offered by Enamor allows the user 

a single access point for informed decision making. As the vessel performance is already present in the 

systems forming the foundation for multiple commercial decision as well as planning of coming 

voyages, extending the offering with voyage optimization becomes a natural continuation of the work 

processes. The user is allowed a cohesive flow of data, analyses, and results to be visualized.  

 

As the requirement for data transfer is at a minimum due to weather forecasts not having to be 

downloaded locally to the vessel, this can be achieved even at low data access allowing for high-tech 

voyage optimization on board vessels disregarding available hardware. 

 

The integrated solution based on continuous data collection and periodic re-evaluation of vessel 

performance takes into account changes of the vessel performance in time due to wear of ship 

components and degradation of hull surface and therefore provides better modelling of the ship operation 

and in turn more adequate voyage planning. 

 

3. Results 

 

To illustrate the potential of the optimizations, voyages carried out by three vessels over the course of 

three months, with a total of 150 voyage days were studied. During the period of analysis, the vessels 

primarily operated in the Indian Ocean, Atlantic, and the Red Sea with voyage durations ranging 5 to 

20 days. All executed voyages were carried out with weather routing already applied by a well-

recognized routing provider.  

 

 

All voyages were analyzed and subsequently re-optimized using two different optimization types: 

 

1. On-time-arrival optimization – where the achieved ETAs from the realized voyages were main-

tained. 

2. Minimum cost optimization – allowing for alternate arrival times based on the commercially 

best outcome accounting for total fuel and hire costs. 

 

To ensure the results of the re-optimizations remained like-for-like and mimicked the service offered 

the voyages were re-optimized for every 24 hours passed during the voyages. Every optimization was 

run using only the weather and current forecasts as they were available at the given time of optimization. 

It was assumed that the vessel would follow the routing advise provided through the service. Upon 

finalization the resulting routes were compared through analysis using the same consumption model, 

and differences in voyage outcomes were compared. 

 

From maintained ETA only the fuel consumption reduction was of relevance as there is zero difference 

in time spent at sea. An overall fuel consumption reduction of 4.4% was found on top of the already 

optimized voyages. The total reduction was in excess of 175MT fuel, conversely in excess of 550MT 

CO2 showing the savings in operation costs and benefits in terms of emissions. Voyage optimization 

can be efficiently used for improving the environmental performance of a vessel, also potentially 

affecting the achieved CII. 

 

For the minimum cost optimization the overall operational costs, considering both fuel and hire, were 

reduced by a factor 2.7 to the cost savings achieved by maintaining ETA.  

 

4. Summary 

 

The last decade has been a period of incredibly dynamic change in the interest in using data in the 

maritime industry. Both the scope and frequency of data collection during the operation of ships has 

increased significantly. Traditional manual data collection has been replaced by automated data 

acquisition on many vessels in operation. New build projects offered by leading shipyards feature data 

gathering as a standard. Shipowners have already accumulated a huge amount of data. At the same time, 
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the market of data-based services was developing dynamically. More and more companies offer 

specialized data processing. However, the use of data to implement the services offered still involves 

significant effort on the part of the shipowners. 

 

Enamor and Optimum Voyage identified this barrier and initiated collaboration aimed on smooth, 

automated cooperation between their respective platforms. As a result, voyage optimization services 

offered by OV have been coupled with SeaPerformer data acquisition and processing platform. Data 

preparation and exchange has been automated and are executed as background tasks. User involvement 

was minimized resulting in very intuitive, yet powerful tool. The use of data to create a performance 

model allows to better reflect the actual characteristics of the ship. As a result, the optimized route is 

better suited to the technical capabilities of the ship, ensuring lower costs of the transport task. At the 

same time voyage optimization may be used to reduce environmental impact. It is a great tool to improve 

emission metrics such as CII. 

 

Acknowledgement 

 

Authors would like to express their gratitude for a financial support received within Eurostars-3 project 

“Integrated Voyage Optimization” (proposal No. 1982), 2103-00032B (Project No. in Denmark), 

InnovativeSMEs/2/4/2023 (Project No. in Poland). This paper presents current advance in the project. 

 

References 

 

BERTHELSEN, F.H.; NIELSEN, U.D. (2022), Assessment of Ships’ Speed-Power Relationship at 

Lower Sailing Speeds, 7th HullPIC Conf., Tullamore, pp.4-15,  

 http://data.hullpic.info/HullPIC2022_Tullamore.pdf  

 

GÓRSKI, W. (2016), Role of reference model in ship performance management, 1st HullPIC Conf., 

Pavone, pp.203-214, http://data.hullpic.info/HullPIC2016.pdf  

 

GÓRSKI, W.; MICHNIEWICZ, J.; SZLENDAK, A. (2020), Engine Condition Monitoring based on 

Specific Fuel Oil Consumption Observation over Time, 5th HullPIC Conf., Hamburg, pp.112-119, 

http://data.hullpic.info/HullPIC2020_Hamburg.pdf  

 

GÓRSKI, W.; MICHNIEWICZ, J.; SZLENDAK, A. (2021), Using unsupervised machine learning for 

building ship performance reference model, 6th HullPIC Conf., Pontignano, pp.132-141, 

http://data.hullpic.info/HullPIC2021_Pontignano.pdf  

 

GÓRSKI, W.; MICHNIEWICZ, J. (2022), Continuous monitoring and predicting Carbon Intensity 

Indicator based on ship operational data, 7th HullPIC Conf., Tullamore, pp. 169-180, 

http://data.hullpic.info/HullPIC2022_Tullamore.pdf  

 

ITTC (2021), Recommended Procedures and Guidelines, 7.5-04-01-01.1, Preparation, Conduct and 

Analysis of Speed/Power Trials, Int. Towing Tank Conf. 

 

RAVEN, H.C. (2016), A New Correction Procedure for Shallow-Waters Effects in Ship Speed Trials, 

PRADS Conf., Copenhagen 

 

TSUJIMOTO, M.; ORIHARA, H. (2016), Performance prediction of full-scale ship and analysis by 

means of on-board monitoring (Part 1 ship performance prediction in actual seas), J. Marine Science 

and Technology 24, pp.16–33, https://link.springer.com/article/10.1007/s00773-017-0523-1  

 

http://data.hullpic.info/HullPIC2022_Tullamore.pdf
http://data.hullpic.info/HullPIC2016.pdf
http://data.hullpic.info/HullPIC2020_Hamburg.pdf
http://data.hullpic.info/HullPIC2021_Pontignano.pdf
http://data.hullpic.info/HullPIC2022_Tullamore.pdf
https://link.springer.com/article/10.1007/s00773-017-0523-1


200 

STW or SOG or as a Starting Point for Performance Modeling?  

An Empirical Study using Operational Sensor Data from 20 Oil Tankers 
 

Camille Colle, Toqua, Gent/Belgium, camille@toqua.ai 

Casimir Morobé, Toqua, Gent/Belgium, casimir@toqua.ai  

Michaël Deschoolmeester, Toqua, Gent/Belgium, michael@toqua.ai  

 

Abstract 

 

This study details data-driven findings based on actual operational high-frequency sensor data of over 

20 Crude Oil Tankers owned by Euronav, with the goal to decide between STW (Speed-Through-Water) 

or SOG (Speed-Over-Ground) as a starting point for accurate ship performance modeling. 

 

1. Introduction 

 

Efficiency gains are the go-to answer to reach short-term decarbonization targets in shipping. To capture 

these efficiency gains, accurate speed-fuel models of vessels are a prerequisite. The challenge of 

creating accurate speed-fuel models - also called ship performance models - lies not only in accounting 

for all the secondary factors influencing this relationship (waves, wind, currents, draft, trim, water 

depth, etc.), but also in getting accurate data on the crucial variables speed and fuel.  

 

The rise of telemetry equipment and high-frequency data collection on-board vessels has enabled many 

improvements for ship performance modeling, DeKeyser et al. (2022). Nevertheless, with sensor data 

an even more critical mindset is necessary to decide what data can be trusted. Especially when it comes 

to the speed of the vessel, a dilemma often ensues to choose for Speed-Over-Ground (SOG) data based 

on GPS-location, or to choose for Speed-Through-Water (STW) data based on the speed log. 

 

 
 

This study analyzes data of 20 oil tankers (V1-V20), with the purpose of finding a data-driven answer 

to the above dilemma. Should we use SOG or STW as a starting point for performance modeling? What 

options do we have and how can we maximize performance modeling accuracy? The 20 vessels are 

VLCC’s and Suezmax’s. On average we analyzed 1 year of sensor data for every ship. The data consists 

of measurements at 5-minute intervals. 

 

 

mailto:camille@toqua.ai
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2. Difference between SOG and STW 

 

In theory the difference between SOG and STW should only be due to currents. As a result, the 

following formula is often used to convert SOG into STW: 

 

 
 

The factor “current_speed * cos(heading - current_direction)” is also referred to as Current Product 

(CP), as it represents the vector component of the currents in the direction the ship. 

 

3. Inaccuracies for different SOG to STW models 

 

Put simply, we have two different approaches to calculate the STW: 

 

1. Simple:   STW = SOG 

2. Current Formula:  STW = SOG - Current Product (CP) 

 

For the 20 vessels, this generates the following results, on average. 

 

A table with all 20 ship-specific results can be found in Appendix A. 

 

For more information on the accuracy metrics, please refer to the Blue Modeling Standard,  

Deschoolmeester and Morobé (2023). 

 

Acc. Metric STW = SOG STW = SOG - CP 

MAPE 6.05% 5.25% 

Voyage Error 3.66% 3.73% 

R2 0.65 0.71 

 

Unexpectedly, the second approach with the correction factor for currents barely outperforms the first 

very simple approach. For the voyage error it even worsens. This means that the Current Product (CP) 

has very limited explaining power. This is an unexpected finding, as in theory the CP should explain 

all the differences between SOG and STW. 

 

Given these findings, we might need to reframe the question. Is the approach to predict STW incorrect, 

or is the value we are trying to predict incorrect? Given the known flaws of speed log sensors to measure 

STW accurately, Ikonomakis et al. (2021), a likely answer could be that STW values are simply 

inaccurate. 

 

The second part of this study explores the following hypothesis: if the inaccuracy is really due to 

inaccurate STW measurements, rather than an incorrect formula to predict STW from SOG, then this 

will be reflected in end-to-end SOG to Power modeling accuracy. Or in other words, it might be that 

the formula above predicts close to the ‘true STW value’ of the vessel, but that the measured STW value 

we validate against is simply inaccurate. If this is true, then if we would predict from SOG all the way 

to the Main Engine Power of the vessel, it would be more accurate to start modeling from a calculated 

STW instead of the measured STW. This hypothesis is tested below. 

 

4. Impact of the STW inaccuracies on Speed-to-Power modeling 

 

To validate the hypothesis above, we model the Main Engine Power, starting from SOG in three 

different ways. All three use the same modeling approach: physics-informed machine learning in 
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Toqua’s proprietary Ship Kernels, Collé and Morobé (2022). The only difference is what version of the 

STW is used as starting point. 

 

1. Traditional: Measured STW - Train Power model starting from measured STW. Generate STW 

from SOG-CP. 

2. Simple: SOG - Train Power model starting from SOG. No current corrections, so STW=SOG. 

3. Current formula: Calculated STW - Train Power model starting from calculated STW = SOG - 

CP. 

 

It is expected that the closer the approach gets to the ‘true STW value’, the more accurate the end-to-

end SOG→Power model will be. The ‘true STW value’ is unknown, so the end-to-end speed-to-power 

accuracy serves as a proxy for which approach is most accurate to predict the ‘true STW value’. 

 

For the 20 vessels and these 3 different starting points, this generates the following results, on average. 

A table with all 20 ship-specific results can be found in Appendix B. 

 

Acc. Metric Measured STW SOG Calculated STW 

MAPE 15.43% 14.15% 11.46% 

Voyage Error 8.33% 4.22% 3.12% 

R2 0.49 0.54 0.67 

 

Using SOG instead of measured STW reduces voyage accuracy from 8.3% to 4.2%. Using calculated 

STW instead of measured STW, reduces voyage inaccuracy from 8.3% to 3.1%. 

 

This confirms the earlier hypothesis. Training a model from the measured STW, leads to large 

inaccuracies. Much larger than if you would simply take SOG or calculated STW as input. However, 

most scores for the measured STW scenario are not that much worse than the other scenarios. It is just 

that some vessels (V2, V5, V14, V18, V19) have exceptionally large voyage errors for the measured 

STW scenario (12%-32%); as a result the measured STW scenario drastically underperforms on 

average. This is caused by inaccurate speed logs, which are drastically more erroneous on some ships 

than on others. This confirms the hypothesis that measured STW values are often less accurate than 

calculating STW starting from SOG. This was proven indirectly by using end-to-end speed-to-power 

modeling accuracy as a proxy. 

 

In some cases (V7, V9, V10, V11, V20) the measured STW scenario outperforms the other scenarios. 

This indicates that in some cases the STW does capture meaningful information that goes beyond what 

SOG and correction factors can account for. We believe these cases have highly accurate and well-

calibrated speed logs. But they are the exception, not the rule. 
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5. Conclusion 

 

After analyzing operational sensor data for 20 oil tankers, to analyze if SOG or STW is the best starting 

point for accurate performance modeling, we find that measured STW values are unreliable. Using them 

leads to large average inaccuracies for performance modeling (8.3% voyage error). Instead, using the 

more reliable SOG, already reduces the voyage error to 4.2%. If we then go a step further, and not 

simply use SOG, but apply corrections factors for currents to derive a calculated STW, the voyage 

inaccuracy further reduces to 3.1%. By using end-to-end modeling as a proxy, these numbers indirectly 

confirm the hypothesis that STW sensors are unreliable. The most robust estimation of the true STW 

value is found via a formula based on SOG and currents, rather than measurement devices. 
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Appendices 

 

A) SOG-STW table for all 20 vessels 

 

i. MAPE 

 

Vessel SOG=STW MAPE Current formula MAPE 

V1 4.33% 4.02% 

V2 10.17% 9.81% 

V3 6.86% 5.99% 

V4 5.68% 5.09% 

V5 6.77% 5.37% 

V6 5.53% 4.11% 

V7 5.74% 3.97% 

V8 5.01% 3.80% 

V9 3.52% 3.23% 

V10 3.84% 3.55% 

V11 6.66% 5.47% 

V12 3.96% 3.09% 

V13 4.07% 3.59% 

V14 10.23% 9.38% 

V15 5.15% 4.14% 

V16 5.06% 4.41% 

V17 5.36% 4.61% 

V18 8.88% 8.68% 

V19 10.91% 9.65% 

V20 3.18% 2.97% 

Average 6.05% 5.25% 

 

ii. Voyage Error 

 

Vessel SOG=STW Voyage Error Current formula Voyage Error 

V1 1.59% 2.37% 

V2 9.93% 10.61% 

V3 3.38% 3.90% 

V4 3.44% 3.81% 

V5 3.44% 4.05% 

V6 1.41% 1.21% 

V7 1.11% 0.68% 

V8 1.99% 2.28% 

V9 1.06% 0.89% 

V10 0.97% 0.93% 

V11 4.23% 3.47% 

V12 1.70% 1.16% 

V13 2.37% 1.65% 

V14 9.64% 9.92% 

V15 2.38% 2.45% 

V16 1.78% 2.71% 

V17 3.49% 2.82% 

V18 7.98% 8.94% 

V19 9.56% 9.59% 

V20 1.72% 1.23% 

Average 3.66% 3.73% 
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iii. R2 

 

Vessel SOG=STW R2 Current formula R2 

V1 0.76 0.80 

V2 -0.21 -0.11 

V3 0.48 0.62 

V4 0.65 0.73 

V5 0.60 0.77 

V6 0.76 0.88 

V7 0.78 0.90 

V8 0.77 0.88 

V9 0.82 0.88 

V10 0.77 0.83 

V11 0.55 0.71 

V12 0.68 0.83 

V13 0.81 0.86 

V14 0.34 0.45 

V15 0.66 0.78 

V16 0.66 0.77 

V17 0.73 0.81 

V18 0.45 0.49 

V19 -0.65 -0.21 

V20 0.83 0.83 

Average 0.65 0.71 

   

B) SOG-Power table for all 20 vessels 

 

i. MAPE 

 

Vessel Measured STW MAPE SOG MAPE Calculated STW MAPE 

V1 10.39% 12.05% 10.84% 

V2 32.23% 12.52% 9.80% 

V3 12.97% 13.22% 9.57% 

V4 12.69% 13.37% 10.54% 

V5 21.97% 18.36% 15.98% 

V6 12.30% 19.32% 11.50% 

V7 12.42% 18.81% 12.71% 

V8 12.94% 18.64% 11.77% 

V9 12.01% 14.11% 12.96% 

V10 12.60% 14.27% 12.91% 

V11 11.27% 11.29% 10.16% 

V12 8.76% 10.08% 8.74% 

V13 11.19% 11.32% 9.99% 

V14 22.26% 15.44% 13.14% 

V15 14.12% 14.35% 11.39% 

V16 13.56% 13.35% 12.13% 

V17 14.50% 14.53% 12.20% 

V18 26.61% 15.96% 12.60% 

V19 23.77% 10.58% 9.52% 

V20 10.02% 11.41% 10.70% 

Average 15.43% 14.15% 11.46% 
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ii. Voyage Error 

 

Vessel Measured STW Voyage Error SOG Voyage Error Calculated STW Voyage Error 

V1 3.48% 3.48% 2.74% 

V2 32.19% 4.76% 3.51% 

V3 3.71% 0.05% 0.32% 

V4 5.74% 4.03% 3.70% 

V5 18.20% 5.78% 5.99% 

V6 4.44% 8.16% 2.40% 

V7 2.12% 8.54% 4.12% 

V8 7.76% 5.11% 2.32% 

V9 4.15% 5.42% 5.02% 

V10 4.90% 8.47% 6.63% 

V11 1.41% 2.27% 5.33% 

V12 1.83% 1.18% 0.14% 

V13 3.75% 0.37% 1.31% 

V14 11.85% 6.59% 4.72% 

V15 5.54% 2.28% 2.39% 

V16 4.74% 2.75% 0.53% 

V17 6.06% 6.16% 4.22% 

V18 22.70% 2.19% 1.91% 

V19 21.32% 4.64% 2.85% 

V20 0.77% 2.11% 2.31% 

Average 8.33% 4.22% 3.12% 

 

iii. R2 

 

Vessel Measured STW R2 SOG R2 Calculated STW R2 

V1 0.29 0.31 0.37 

V2 -0.19 0.82 0.87 

V3 0.70 0.75 0.82 

V4 0.75 0.67 0.80 

V5 0.16 0.57 0.63 

V6 0.79 0.58 0.84 

V7 0.76 0.59 0.78 

V8 0.75 0.61 0.83 

V9 0.46 0.21 0.42 

V10 0.63 0.57 0.65 

V11 -0.01 0.13 0.37 

V12 0.40 0.29 0.54 

V13 0.86 0.86 0.89 

V14 0.14 0.34 0.52 

V15 0.72 0.70 0.81 

V16 0.76 0.78 0.83 

V17 0.29 0.24 0.51 

V18 0.38 0.69 0.81 

V19 -0.41 0.72 0.75 

V20 0.39 0.29 0.36 

Average 0.49 0.54 0.67 
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