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Abstract 

 
Over the years, the shipping industry is advancing fast as more shipping companies are relying on data 
to make informed decision in their vessel operations and business. At the same time, the need to better 
understand the data and to be able to extract meaningful accurate insights about the ships’ performance 
presents a challenge to ship owners. Fouling control coating manufacturers face a similar issue as well. 
To better understand ship’s hull and propeller condition and thus coatings’ performance, and more 
importantly to support better decision-making regarding hull and propeller management and coating 
selection, it’s important to be able to increase the performance modelling and prediction accuracy 
through adopting the latest performance analysis techniques. In AkzoNobel, we are continuously 
exploring different methodologies of analysing data provided by ship owners. One of our latest 
advances is to use machine learning techniques to improve performance analysis and facilitate a 
holistic data review. Feature engineering as one of the key steps in machine learning is investigated 
regarding whether it can improve the prediction accuracy. Preliminary results reveal that these 
techniques show promising results in extracting insights from data to understand about a vessel’s 
performance. Here, we share preliminary work and thoughts on how some machine learning techniques 
could be used to assist in hull and propeller performance review and performance prediction. 
 
1. Introduction 
 
The exponential advancement in data analytics techniques and machine learning algorithms over the 
last few years have enabled shipping companies to widen their analytical toolbox and perform different 
types of analysis. To understand about their fleet performance, shipping companies perform various 
types of analysis, ranging from basic descriptive analysis of the vessel data with data visualisation tools, 
to making inference of performance from vessel data using statistical techniques. With an expanded 
capability in data analytics techniques, shipping companies are now able to explore previously 
undiscovered information from their data and make informed decision about their business operations.  
 
One area of analytics widely discussed within the shipping industry is predictive analytics. Predictive 
analytics is the process of extracting information from data to predict future trends. In the shipping 
industry, companies are constantly experimenting with machine learning techniques to forecast future 
fuel consumption. The ability to reliably and accurately forecast fuel consumption or power 
requirements could significantly help shipping companies plan its ships’ operation, such as the 
arrangement of ship maintenance and hull cleaning. 
 
To perform predictive analysis, a machine learning framework is usually adopted and followed. A 
simple machine learning modelling framework is shown in Fig.1. It contains the essential steps required 
to perform predictive analytics. The framework can be divided into several parts: data collection and 
preparation, feature engineering, model selection, evaluation of model and making prediction using the 
trained model.     
 
Previous studies have demonstrated the use of a machine learning modelling framework to perform 
predictive analytics. Jeon et al. (2018) adopted a big data analysis framework of predicting ship’s fuel 
consumption. Gundermann and McLaughlin (2018) utilised a basic machine learning framework to 
perform predictive analysis. Though these papers explore the use of a machine learning modelling 
framework in big data vessel analysis, the particular significance and importance of the feature 
engineering step is seldom explored and discussed.  

mailto:yuhuai.seah@akzonobel.com
mailto:haoliang.chen@akzonobel.com
mailto:barry.kidd@akzonobel.com
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Feature engineering is the process of using existing information within data to identify new features by 
using some data mining technique. It involves the creation of new features by transforming existing 
features in the dataset.  Feature engineering, when done right, can result in improved performance 
accuracy of a model. An existing non feature engineered dataset can be used to train the model to 
perform prediction, but it may not contain the ideal information for the model to learn from. Feature 
engineering modifies the dataset such that the information assists the model to learn better and thus 
being able to apply what it has learnt on a new set of data with high predictive accuracy. More details 
regarding the concept and implementation of the feature engineering concept is explained and illustrated 
by Khurana et al. (2018). 
 
In this preliminary study, the applicability and impacts of feature engineering on ship performance 
modelling will be explored and discussed by applying the technique to a group of vessel datasets  
 
2. Methodology 
 
Six datasets collected from different vessel types were selected were used in the machine learning 
modelling framework. Some of these datasets record vessels’ operating information once per day (noon 
data), while others record once every 15 minutes. The different types of vessel data used enable us to 
observe how the model performs when trained with different information. Each dataset contains 
valuable operating information enabling ship owners to monitor the performance of their fleet. From 
the operating information, the operating speed, draft on sailing, wind weather condition and power 
consumption are extracted in this study.  
 
After extracting relevant data for the study, the data is processed before being used to train and test the 
model. The processing step is important to separate unwanted noise from the valuable information 
which is useful for the model to learn and hopefully provide a reliable prediction performance.  
 
A commonly used framework of machine learning modelling is shown in Fig.1. In the data collection 
and preparation process, data is selected based on the availability of information. Then, data is cleaned 
so that the quality of the data is improved. During data processing, various methods and guidelines can 
be applied to data filtration, treatment of missing values and identification and removal of outliers step 
by step. One example to follow is the data preparation and processing procedures in ISO19030. When 
the data are ready, feature engineering is performed on the wind Beaufort scale by grouping data of 
similar wind characteristic together.  

  
Fig.1: Modelling Framework for Machine Learning 
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3. Feature engineering 
 
A new feature called wind intensity is created by grouping Beaufort scale of similar characteristic 
together. This is done by performing a feature engineering technique called categorical binning. 
Categorical binning is the assignment of a general category to combine groups in which have low 
frequency and similar characteristics. Combining these groups into a general category can have a 
positive impact on the robustness of the statistical model, since the general category provides more 
information to the model so it can be predicted better than when low frequency groups are provided.  
 
The assignment of general category can vary among the different test cases, depending on the frequency 
distribution of the wind Beaufort scale data. For example, in one of test cases (as shown in figure 2), 
data belonging to Beaufort scale “0” and “1” groups can be combined to form a new category since the 
frequency distribution graphs show that both groups have low frequency relative to the rest of the 
groups, while the remaining Beaufort scale groups are not recategorized. Beaufort scale groups with 
low frequency count will be combined and assigned a new category. 

 
 

 
 
Fig.2: Frequency distribution of wind Beaufort scale of one test case and its corresponding categoriza-

tion of the Beaufort scale 
 

After performing feature engineering on wind Beaufort scale, the newly created feature comprising of 
the generalized category will be used to train the model in replace of the wind Beaufort scale. 
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Once feature engineering is completed, the selection of type of models follows. For simplicity sake, we 
choose a linear regression model for the case study. This model will then be trained using the feature 
engineered dataset and evaluated using performance metrics which indicate how accurate the model 
can predict the performance. 
 
4. Results 
 
To measure the predictive performance of the model, the dataset is split into training and testing datasets 
using the holdout method. The holdout method is a simple form of cross validation, Sammut and Webb 
(2011), and its advantage is that it is less computationally intensive and takes lesser time in computing 
the predictive error of the model. In this study, two-thirds of each  dataset will be allotted to the training 
set, while the remaining one-third will be allotted to the testing set.  
 
The performance accuracy of the regression model is measured by using common machine learning 
performance metrics. The performance metrics used in this case study are the relative root mean square 
error (RRMSE), mean absolute error (MAE) and R-square (R2). 
 
RRMSE is computed by taking the root mean square error over the average value of the observed 
information. This performance metric considers the performance accuracy of the model to be excellent 
if the RRMSE is less than 0.1, Despotovic et al. (2016). MAE is an average measure of sum of absolute 
differences between the observed and predicted values. A low MAE value implies low model prediction 
error. R2 is known as the coefficient of determination and is a descriptive measure used to determine the 
linear association between the inputs and the response variable. A high R2 value implies that majority 
of the data variability can be explained by the regression model. 

 
Table I shows the performance metrics of the regression model across different feature engineered 
datasets. For each dataset, both the performance accuracy of model when trained with featured engi-
neered dataset and raw data are measured. Datasets 1-4 are low frequency data, while datasets 5-6 are 
high frequency data. The first four datasets are selected from various vessel types (LNG, Container, 
Tanker and Bulker) and the last two datasets are selected from a cruise and tanker.  
 
Table I: Performance metrics of model when trained with featured engineered dataset (yes column) in 

comparison to when raw dataset is used (no column) 

 
The table results show that there is an improvement in the performance accuracy of model using feature 
engineered for low-frequency datasets. The RRMSE and MAPE values decrease and the R2 value 
increase. For dataset number 1, the RRMSE values of the model improved to below 0.1 when featured 
engineered dataset is used. On the other hand, performing categorical binning on high-frequency 
datasets does not have positive impact on model performance. The RRMSE, MAPE and R2 value remain 
the same despite a difference in the nature of datasets used. More studies are needed to investigate 
which features are more significant in improving prediction accuracy for high frequency data, which is 
beyond the scope of this paper. 
 
 

 

     RRMSE MAPE R^2 

Dataset 
No. 

Frequency Vessel 
Types 

No  Yes No  Yes No  Yes 

1 Low LNG 0.1002 0.0991 0.1267 0.1259 0.6461 0.6472 

2 Low Container 0.1797 0.1748 0.2863 0.281 0.5892 0.5930 

3 Low Tanker 0.1416 0.1415 0.1697 0.1695 0.3148 0.3156 

4 Low Bulker 0.0585 0.0581 0.0594 0.059 0.5991 0.6021 

5 High Cruise 0.0648 0.0648 0.0695 0.0695 0.9158 0.9158 

6 High Tanker 0.0762 0.0762 0.0961 0.0961 0.8994 0.8994 
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Dataset 1          Dataset 2 

 
   
       Dataset 3                Dataset 4 

 
  
       Dataset 5                Dataset 6 

  
Fig.3: Time series plots of power or fuel consumption for different datasets. Predicted values are in blue 

and observed values are in orange.  
 
Fig.3 shows the time series plots of the observed and predicted power across time for each dataset. 
Models trained with feature engineered high frequency datasets (dataset 5 & 6) tend to predict the power 
consumption with high accuracy, as a good proportion of predicted power overlays with the observed 
power. On the other hand, a lower proportion of overlay is seen for the models trained with feature 
engineered low frequency datasets, implying a lower prediction accuracy in the power consumption. 
 
5. Summary and Conclusion 
 
This paper introduces the concept of feature engineering and one of its techniques, categorical binning 
is applied on vessel data to explore the impact of feature engineering on model performance. When 
performing categorical binning, a new feature called wind intensity is created by combining Beaufort 
wind scale groups in which have low frequency and similar characteristics. This newly created feature 
replaces the Beaufort scale feature to form the feature engineered dataset. The model trained using 
feature engineered dataset is then compared to the model trained using non-feature engineered dataset 
using the regression performance metrics. 
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The results show that there is an improvement in model performance when feature engineered low 
frequency dataset are used to train the model. However, this is not the case when feature engineered 
high frequency dataset is used instead. It should be noted that for reporting simplicity, only the wind 
parameter was selected as an example in this study to explore the potential application and effects on 
feature engineering on vessel performance prediction. Feature selection essentially is an art of science 
and for high frequency data, other parameters could be more important and significant on improving 
the accuracy of the modeling. More studies are needed as next steps. 
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Abstract 
 
As per ISO 19030-2 Annex C, if a torque meter is not available for direct measurement of the Shaft 
Power, or not working, a method for estimating the engine’s brake power through the use of the engine-
specific SFOC reference curve is examined and analyzed. Among the challenges of any such method 
are the data reliability and accuracy, the great number of conditions to be applied and the factor that 
many of the required collected data have their own uncertainties and inconsistencies relative to sensors 
when measured. We will explore through the use of big data analytics, alternative ways for estimating 
M/E’s brake power, by using specific engine’s operating parameters that are collected through a 
LAROS data collection system. The output of this study will also define the best estimator which could 
be further used though Machine Learning for even more accurate estimations. More specific, through 
the use of up to eighteen months of operational data from 11 vessels, alternative ways of estimating 
engine’s power are compared and analyzed. For the calculation of the reference values, filtering 
techniques and regression modeling are also employed. Finally, a comparative study and conclusions 
between the alternatives and the actual shaft power measurements are critically presented, as well as, 
best practices and models about the applicability and the usability of the alternatives. 
 
1. Introduction and aim of the study 
 
According to ISO 19030 and from general working experience, ship’s speed through water and de-
livered power are the two primary parameters for measuring changes in hull and propeller performance. 
For measuring the delivered power, two are mainly the methods that ISO 19030 is suggesting: 
 

a. One Suggested method is based on calculations of Shaft Power (Ps) from measurements of 
shaft torque and shaft revolutions through a proper installed & calibrated torque meter (shaft 
power meter), as described in details in Annex B of the specific ISO. 

b. An alternative suggested method is to approximate the delivered power based on calculation of 
brake power from an engine-specific SFOC reference curve, as described in details in Annex C 
of the specific ISO. 

 
If on a vessel a relevant shaft power meter is installed, then a high frequency  automatic data collection 
system can collect / calculate the shaft power, either directly (as a direct output from the torque meter / 
shaft power meter), or through calculations from the measured shaft torque and shaft rpm.  
 
On the other hand, the measurement of the shaft power by a high frequency automatic data collection 
system with the alternatively suggested by ISO 19030 method – from the engine-specific SFOC 
reference curve, it requires the collection of data from a larger number of parameters, where some of 
them are not usually available automatically, resulting on much higher uncertainty, errors and approxi-
mations, since every parameter has its own characteristics and inconsistencies when measured. 
 
In this paper, we explore through the use of big data analytics, alternative ways for estimating M/E’s 
brake power, by using specific engine’s operating parameters that are collected through LAROS data 
collection system, with the final goal to define the best estimator for further use in Machine Learning. 
 
  

mailto:nikos.bekiaris@prismael.com
mailto:lazaros.chatziagapoglou@prismael.com
mailto:christos@prismael.com
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2. Analysis of alternative ways for calculating shaft power 
 
The direct method of measuring propeller shaft power is by an installed shaft power meter / torque 
meter connected to a high frequency automatic data collection system. Apart from that, the collection 
of additional measurements in a well time synchronized procedure is required in order to apply ISO 
19030 criteria and filters. In the absent of such a system, below alternative ways have been considered, 
analyzed and compared for a universal method to be finally suggested.  
 
Below is the theoretical presentation of each one of the explored methods, with the relevant uncertain-
ties that each method might present. 
 
2.1. Calculations of brake power from an engine-specific SFOC reference curve 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s SFOC 
reference curve, which is based on the actual shop tests of the specific engine, 
 

𝑃𝐵 = 𝑓 ( 𝑀𝐸𝐹𝑂𝐶 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)  where: 
𝑓 = 𝑆𝐹𝑂𝐶 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 

The MEFOCcorrected is the corrected MEFOC according below ambient conditions: 
 

Table I: ISO ambient conditions for F.O. consumption correction 
Condition ISO  

Cooling water inlet temp at scavenge air inlet (oC) 25 W 
Air suction ambient temp at blower (T/C ) inlet (oC) 25 A 
Barometric ambient pressure at blower inlet (mbar) 1000 P 
Fuel Lower Calorific Value (kJ/kg) 42700 LCV 

 
And the typical general approach with proper corrections is: 
 

𝑀𝐸𝐹𝑂𝐶 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑀𝐸𝐹𝑂𝐶 ×
𝐿𝐶𝑉 × [1 +

0.002 × (𝑃 − 1000) + 0.02 × (25 − 𝐴) + 0.06 × (25 − 𝑊)
100 ]

42700
 

 
For the accurate calculations of the corrected F.O. consumption, all four above mentioned parameters 
are needed to be measured. As Table II shows, though, for a 10% change of any of these four parameters, 
while the rest of the parameters remain the same, the fuel’s lower calorific value has the greatest impact. 
 

Table II: MEFOCcorrected per centage change for 10% change of ambient conditions 
Condition 10% increase % change  

Cooling water inlet temp at scavenge air inlet (oC) 27.5 0.15% 
Air suction ambient temp at blower (T/C ) inlet (oC) 27.5 0.05% 
Barometric ambient pressure at blower inlet (mbar) 900 0.20% 
Fuel Lower Calorific Value (kJ/kg) 38430 11.11% 

 
So, for any approximation of engine’s brake horse power through the use of the engine-specific SFOC 
curve, it is required to know the actual lower calorific value of the fuel in use. This value should either 
be entered manually directly into the system for the greatest accuracy – taken from the bunkered fuel 
oil analysis report, or through an approximating equation from fuel’s density: 
 

𝐿𝐶𝑉 =  (−18837 × 𝜌15𝑜𝐶
2) + 15141 × 𝜌15𝑜𝐶 + 43379  Where: 

 
ρ15οC: Τhe density of the consumed fuel oil at 15 oC in vacuum  
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Finally, the mass of consumed fuel can be obtain directly from a mass flow meter. In the event now, 
that the mass of consumed fuel is obtained from a volume flow meter, then the mass of fuel oil shall be 
calculated from the volume of the consumed fuel and the density at the actual temperature of the 
consumed fuel. 
 

𝑀𝐸𝐹𝑂𝐶 = 𝑉𝐹𝑂𝐶 × (𝜌15𝑜𝐶 − 0.0011) × 𝑉𝐶𝐹 Where: 
VFOC: The volume of the consumed fuel oil 
ρ15οC: Τhe density of the consumed fuel oil at 15 oC in vacuum  
VCF: The Volume Correction Factor. For the VCF calculation, the actual temperature 

of the consumed fuel needs to be also measured. 𝑉𝐶𝐹 = 𝑓(𝐹𝑢𝑒𝑙 𝑇𝑒𝑚𝑝) 
 
The use of this method from a high frequency automatic data collection system for estimating vessel’s 
shaft power includes below inaccuracies that should be taken in consideration during calculations: 
 

a. The uncertainties of not measuring the other factors needed for the ISO correction of the 
consumed fuel oil, due to the additional equipment that are required to be installed for their 
proper measurement. 

b. The accuracy of the installed flow meter(s). In case that the fuel oil service system is common 
for the M/E and the A/Es, then the final measured fuel oil consumption is also affected from 
the accuracy of all flow meters used for measuring the M/E’s fuel oil consumption. 

c. When the fuel oil consumption is measured from the flow meters, any leaks or drains (eg back 
wash drain from the fuel oil filter) are not possible to be measured and be excluded from the 
measured fuel oil consumption. 

d. In case of volumetric flow meters, the accuracy is also affected with the density conversion, 
especially, when more than one flow meters need to be measured. 

e. The condition of the Main Engine, which is perhaps the most important parameter for 
inaccuracies, especially for older vessels. 

f. Other uncertainties including sensors reliability, piping, distortion, noise, vibrations just to 
mention few.  

 
2.2. Calculations of brake power from an engine-specific Power vs Turbo Charger rpm curve 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s Power 
vs Turbo Charger rpm curve, which is based on the actual shop tests of the specific engines. 
 

𝑃𝐵 = 𝑓 (𝑇 𝐶𝑟𝑝𝑚⁄ )  
 
The engine’s turbo charger rpm (T/Crpm) can easily be measured from a high frequency  automatic data 
collection system, either directly from a local indicator, or through vessel’s Alarm & Monitoring System 
(AMS). In case vessel’s engine is equipped with two turbo chargers, then on the function the average 
measured rpm from the two turbo chargers was used. 
 
In the specific method, a correction of the measured T/Crpm is not required (eg ISO correction) and any 
inaccuracies can be found either in the accuracy of the indicator, or in the condition of the engine’s 
turbo charger. In this method, it is very important that the cleaning intervals of the turbocharger and 
inter-cooler are strictly kept. 
 
2.3. Calculations of brake power from an engine-specific Power vs scavenge air pressure curve 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s Power 
vs Scavenge Air pressure curve, which is based on the actual shop tests of the specific engine. 
 

𝑃𝐵 = 𝑓 (𝑆𝑐𝑎𝑣𝑝𝑟𝑒𝑠𝑠)  
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The engine’s scavenge air pressure (Scavpress) can be measured from a high frequency automatic data 
collection system, either directly from a local indicator, or through vessel’s Alarm & Monitoring System 
(AMS). 
 
The Scavpress should also be corrected according to the ambient conditions in Table III. 
 

Table III: ISO ambient conditions for SCAVpress correction 
Condition ISO 

Cooling water inlet temp at scavenge air inlet (oC) 25 
Air suction ambient temp at blower (T/C ) inlet (oC) 25 

 
Below table shows, for a 10% change of any of these two parameters while the other parameter remains 
the same, the impact on the measured Scavpress. 
 

Table IV: SCAVpress percentage change for 10% change of ambient conditions 
Condition 10% increase % change  

Cooling water inlet temp at scavenge air inlet (oC) 27.5 -0.925% 
Air suction ambient temp at blower (T/C ) inlet (oC) 27.5 1.19% 

 
The effect of the ambient conditions in the measured Scavpress is in general significant. An increase 
though in the cooling water inlet temp results to a negative change to the corrected Scavpress, while an 
increase in air suction ambient temp to a positive change. Usually, both temperatures rise or fall 
simultaneously, diminishing the effect of the ambient conditions. 
 
2.4. Calculations of brake power from an engine-specific Power vs before & after T/C exhaust gas 
temperatures 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s Power 
vs the difference of the exhaust gas temperatures before & after turbo charger curve, which is based on 
the actual shop tests of the specific engine. 
 

𝑃𝐵 = 𝑓 (𝑇𝑒𝑥ℎ 𝑏𝑒𝑓 𝑇𝐶 − 𝑇𝑒𝑥ℎ 𝑎𝑓𝑡 𝑇𝐶)  
 
The exhaust gas temperatures before and after engine’s turbo charger can be measured by a high 
frequency automatic data collection system, usually through vessel’s Alarm & Monitoring System 
(AMS). 
 
The Texh bef TC  and Texh aft TC  should also be corrected according the ambient conditions in Table V. 
 

Table 1: ISO ambient conditions for Texh bef TC  and Texh aft TC  correction 
Condition ISO 

Cooling water inlet temp at scavenge air inlet (oC) 25 
Air suction ambient temp at blower (T/C ) inlet (oC) 25 

 
Table VI shows, for a 10% change of any of these two parameters while the other parameter remains 
the same, the impact on the measured DTexh (Texh bef TC – Texh aft TC). 
 

Table VI: DTexh percentage change for 10% change of ambient conditions 
Condition 10% increase % change  

Cooling water inlet temp at scavenge air inlet (oC) 27.5 -1.067% 
Air suction ambient temp at blower (T/C ) inlet (oC) 27.5 0.991% 

 
Similarly, as Scavpress, the effect of the ambient conditions in the measured DTexh is in general high. An 
increase though in the cooling water inlet temp results to a negative change to the corrected DTexh, while 
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an increase in air suction ambient temp to a positive change. Usually, both temperatures rise or fall 
simultaneously, diminishing the effect of the ambient conditions. 
 
2.5. Calculations of brake power from an engine-specific Power vs Fuel Rack / Index position 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s Power 
vs Fuel Rack / Index position curve, which is based on the actual shop tests of the specific engine. 
 

𝑃𝐵 = 𝑓 (𝐹. 𝐼.𝑝𝑜𝑠 )  
 
The engine’s fuel rack position (for older engines) or fuel index position (for electronic engines) (F.I.pos) 
can be measured from a high frequency automatic data collection system, either directly from a local 
indicator, or through vessel’s Alarm & Monitoring System (AMS). 
 
For the specific method, a correction of the measured F.I.pos is not required (eg ISO correction), but the 
type of fuel oil, as well as the condition of the fuel pump, may have a great effect on the index, resulting 
in wrong estimation of the engine’s power. In particular, worn fuel pumps or suction valves tend to 
increase the index and will thus result in a too high power estimation. 
 
2.6. Calculations of brake power from an engine-specific Power vs M/E’s Shaft RPM 
 
In this method the brake horse power of the engine was estimated through the use of the engine’s Power 
vs rpm curve, which is based on the actual shop tests of the specific engine. 
 

𝑃𝐵 = 𝑓 (𝑆𝐻𝐴𝐹𝑇𝑟𝑝𝑚)  
 

The engine’s shaft revolutions (SHAFTrpm) can be measured from a high frequency automatic data 
collection system, either directly from a local indicator, or through vessel’s Alarm & Monitoring System 
(AMS).  
 
For the specific method, a correction of the measured SHAFTrpm is not required (eg ISO correction). On 
the other hand, vessel’s loading condition and prevailing weather conditions or extreme manoeuvering 
can greatly affect the power output of the engine, without affecting similarly the measured shaft 
revolutions. 
 
3. Vessels Selection 
 
For this statistical analysis and comparison, data from 11 different vessels have been used, both bulker 
and tanker vessels of several sizes and ages. Below table presents a summary of these vessels. All above 
mentioned vessels of the same size, are at the same time sister vessels, Table VII. 
 

Table VII: Selected vessels summary data 
A/A Type Size Built (mm/yyyy) Latest DD 

1 Tanker VLCC #1 2009 2019 
2 Tanker VLCC #2 2009 2019 
3 Tanker Suezmax #1 2009 2019 
4 Tanker Suezmax #2 2009 2019 
5 Tanker Aframax 2010 2020 
6 Bulker Capesize 2010 2018 
7 Bulker Handymax #1 2011 2016 
8 Bulker Handymax #2 2011 2016 
9 Bulker Kamsarmax #1 2018 N/A 
10 Bulker Kamsarmax #2 2018 N/A 
11 Bulker Kamsarmax #3 2019 N/A 
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For the analysis, all collected data for the last 1.5 years (were available) have been used. Due to the 
availability of specific data, not all the above mentioned alternative ways have been used for estimating 
the engine’s brake power. The methods implemented for each vessel are shown in Table VIII. 
 

Table VIII: Implemented methods for each vessel for estimating engine’s brake power 
A/A Vessel MEFOCcorrected T/Crpm Scavpress 

1 VLCC #1 Calc. Calc. Calc. 
2 VLCC #2 Calc. Calc. Calc. 
3 Suezmax #1 Calc. Calc. Calc. 
4 Suezmax #2 Calc. Calc. Calc. 
5 Aframax Calc. Calc. Calc. 
6 Capesize Calc. Calc. Calc. 
7 Handymax #1 Calc. Calc. Calc. 
8 Handymax #2 Calc. Calc. Calc. 
9 Kamsarmax #1 Calc. Calc. Calc. 

10 Kamsarmax #2 Calc. Calc. Calc. 
11 Kamsarmax #3 Calc. Calc. Calc. 

 
A/A Vessel DTexh F.I.pos SHAFTrpm 

1 VLCC #1 Calc. N/A Calc. 
2 VLCC #2 Calc. N/A Calc. 
3 Suezmax #1 Calc. N/A Calc. 
4 Suezmax #2 Calc. N/A Calc. 
5 Aframax N/A Calc. Calc. 
6 Capesize N/A N/A Calc. 
7 Handymax #1 Calc. Calc. Calc. 
8 Handymax #2 Calc. Calc. Calc. 
9 Kamsarmax #1 N/A Calc. Calc. 

10 Kamsarmax #2 N/A Calc. Calc. 
11 Kamsarmax #3 N/A Calc. Calc. 

 
4. Data Sources 
 
All required data – for conducting the statistical analysis and comparison between the different methods 
of estimating the main engine’s power – have been collected through LAROSTM©, which is a Hollistic 
Data Acquisition System, independent from main vendors. LAROSTM© is a system where wireless/ 
wired smart collectors are connected on any existing vessel’s sensors, SCADA or equipment for 
collecting the agreed datasets in a single and integrated approach and transmitting them to a centrally 
installed server. Then the collected data are analyzed and presented on vessel’s crew – if required, and 
transmitted – even in real time – to vessel’s headquarters for further and more detailed analyses and 
storing. Fig.1 shows a graphical representation of LAROSTM© system. 
 

 
Fig.1: Graphical representation of LAROSTM© system 
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The collected data from LAROSTM© system may have typical three or fifteen seconds time resolution 
stored in the database, but for this specific analysis, a time resolution of one minute has been used. The 
accuracy of all collected data from LAROSTM© system is relative to the accuracy of each sensor / 
equipment providing the specific measurement. Machine Learning (ML) and Artificial Intelligence (AI) 
through the high frequency data collections decreased significantly the uncertainty of the collected 
measurements. For this reason the vessels that were used in this analysis were also selected for the 
reliability of the manufacturer’s and the types of sensors and equipment installed. 
 
Several times, the required data have been collected from LAROSTM© system through two different 
sources (e.g. the T/Crpm

 have been collected both from the AMS’s output, but also independently from 
a local installed sensor / indicator). This factor increase significantly the accuracy of the calculations 
and allows better monitoring and sensors’ reliability of critical systems on the vessel. In this case for 
the estimation of the main engine’s power, the average value of both measurements was finally used, 
with the condition of course, that the difference between the two measurements does not exceed the 
0.3%. In Fig.2 such a case is visible through a high resolution time graph. 
 

 
Fig.2: Averaging parameter measuring from two different sensors 

 
5. Data Analyses 
 
For the analyses of the data – verification of the received data, analyses, estimation of power, 
comparisons – as well as for the graphical representations, LAROSTM© Digital Analysis Software was 
used. Below steps were followed: 
 
5.1. Collection of Data – Filtering of Data 
 
All required data for the estimation of engine’s power were collected as described in chapter 4, and 
used for the calculation of below basic parameters as analytically described in chapter 3: 
 

MEFOCcorrected: Main Engine’s corrected fuel oil consumption (kg/min) 
T/Crpm: Turbo Charger rpm (rpm) 
Scavpress: Scavenge Air Pressure (bar or MPa or kg/cm2) 
DTexh: Difference of exhaust gas temperature before and after turbo charger (oC) 
F.I.pos: Fuel Index / Fuel Rack position (% or value) 
SHAFTrpm: Propeller Shaft rpm (rpm) 

 
All above measurements are dynamically being cross checked for values between 25% and 100% of 
the relevant maximum, as in the provided engine’s specific shop test. Any values lower than the 25% 
of the possible maximum according the engine’s shop tests have been removed from calculations. For 
the filtering and cross checks, LAROSTM© Digital Analysis Software was used. Fig.3 shows such a case 
for the disregarded values, where the 25% of the max TCrpm for the specific vessel corresponds to 4210 
rpm. 
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Fig.3: Example of data filtering through LAROSTM© Digital Analysis Software 

 
5.2. Estimation of Engine’s Power  
 
For the estimation of engine’s power, the engines’ specific shop test have been used. The tabular values 
from each engine’s shop test and for each relevant parameter have been entered in LAROSTM© Digital 
Analysis Software. An example – for the Aframax vessel – of these data is presented in Table IX.  
 

Table IX: Tabular format of Main Engine’s Shop Tests for Aframax vessel. 
Main Engine's Shop Tests 

Load 
(%) 

Power 
(kW) 

SFOCISO 
(g/kWh) 

ME 
FOC 

(kg/min) 

TC 
RPM 
(rpm) 

Pscav 
(kg/cm2) 

TEXH_ 

BEF T/C 
TEXH_ 

AFT T/C 
ΔΤEXH_TC 

(oC) 

Fuel 
Index 
(%) 

Eng. 
RPM 
(rpm) 

25% 4665.0 180.45 20.20 4210 0.360 323.3 247.2 76.0 46.8 57.3 

50% 9330.0 174.96 39.18 7075 1.110 379.1 266.0 113.1 66.0 72.2 

75% 13995.0 170.37 57.22 8837 2.020 386.5 239.5 147.0 84.8 82.7 

90% 16794.0 171.93 69.30 9519 2.520 413.5 238.2 175.3 94.2 87.9 

100% 18660.0 175.01 78.38 9925 2.82 430.4 244.8 185.6 99.2 91.0 
 
From the above values and for each vessel and parameter, through LAROSTM© Digital Analysis 
Software third degree polynomials trendlines have been created through given conditions, criteria and 
filters, from which the engine’s power could be estimated.  
 

𝑃𝐵 = 𝑓(𝑥) = 𝐴3 × 𝑥3 + 𝐴2 × 𝑥2 + 𝐴1 × 𝑥 +  𝐴0 where x is the parameter used for 
estimating the engine’s power. 

 
Through these polynomials, LAROSTM© Digital Analysis Software could estimate for each vessel, each 
parameter and each measured value the corresponding engine power. 
 
5.3. Estimation of Power Coefficients  
 
The estimated engine power from each parameter and measurement was compared with the actual value 
measured from each vessel’s installed shaft power meter and the relevant coefficients in percentage 
were created for calculating the deviation between these two values – the estimated and the actual. 
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𝐶𝑜𝑒𝑓𝑓 =
(𝑉𝑎𝑙𝑢𝑒𝑒𝑠𝑡− 𝑉𝑎𝑙𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙)

𝑉𝑎𝑙𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙
× 100  

 
Six different coefficients were created, one for each parameter: 
 

ME_FOCcorr_Coeff: Estimated power from Main Engine’s corrected fuel oil consumption 
T/C_rpm_Coeff:   Estimated power from engine’s turbo Charger rpm 
Scav_Press_Coeff:  Estimated power from egnine’s scavenge Air Pressure 
DT_exh_Coeff:   Estimated power from the difference of the exhaust gas temperature 

before and after turbo charger (oC) 
F.I._poss_Coeff:   Estimated power from Fuel Index / Fuel Rack position 
SHAFT_rpm_Coeff:  Estimated power from Propeller Shaft rpm 

 
These calculated dynamically coefficients, through LAROSTM© Digital Analysis Software were further 
cross checked compared and analyzed as described below, for suggesting the best practices and models 
about the applicability and the usability of the alternatives methods for estimating the engine’s power 
through a high frequency automatic data collection system, without the use of a shaft power meter 
(torque meter). 
 
6. Results Analysis 
 
For the analysis of the results below procedure was followed: 
 

1. For each vessel the average absolute value from each coefficient was calculated, as well as its 
standard deviation for time periods of one month and one minute time resolution, in order to 
verify the continuity of the results. 

 
2. For each vessel all coefficients were plotted relative to the actual measured shaft power, in 

order to check if there are any patterns that could be distinguished, if any of the results should 
be disregarded or finally, if any ship specific general observation could be derived. 

 
3. For each vessel the average value from each coefficient was calculated, as well as its standard 

deviation for the total examined period with one-minute time resolution. Then for each vessel 
the best coefficient and the coefficient with the smaller standard deviation were specified and 
finally the best one was selected. 

 
Table X: Example of continuity check of the results 

 
 

Panamax 1

Coefficients Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev.

Fuel rack 6.87 9.70 5.61 6.37 4.11 5.99 4.16 5.80 4.60 6.30 7.17 8.10

ME FO Cons 3.47 6.03 4.72 3.84 5.01 3.80 2.14 4.05 2.95 3.47 3.07 4.42

P scav 7.28 5.12 6.46 3.75 8.96 3.30 14.83 5.55 16.82 3.40 12.52 5.89

Shaft rpm 17.66 8.36 14.21 4.51 14.66 6.74 16.04 6.10 16.86 5.02 14.99 6.69

T/C rpm 3.95 4.41 2.28 3.10 0.82 3.23 4.51 4.16 5.23 2.69 3.93 4.44

Panamax 2

Coefficients Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev.

Fuel rack 12.41 6.04 9.94 10.44 5.40 9.16 9.97 9.41 9.93 6.64 8.43 9.92

ME FO Cons 8.87 2.89 9.75 3.66 10.59 3.67 11.42 3.22 10.20 6.64 9.30 4.36

P scav 15.73 4.64 15.80 3.52 ---- ---- 16.86 3.13 17.91 4.11 14.49 5.03

Shaft rpm 16.67 5.29 14.25 5.48 16.48 5.68 11.67 5.03 16.91 5.25 14.20 6.61

T/C rpm 3.10 2.70 3.94 3.02 4.02 3.81 5.22 1.33 6.02 2.99 5.03 3.28

Panamax 3

Coefficients Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev. Value Stnd Dev.

Fuel rack 9.43 6.31 9.42 6.61 5.74 5.00 3.10 4.11 7.39 4.84 6.37 6.58

ME FO Cons 6.63 5.00 6.79 5.62 10.43 8.25 8.10 5.02 8.82 6.34 7.26 6.04

P scav 6.44 5.99 6.26 6.30 8.33 6.17 14.02 3.75 14.96 4.37 10.69 6.11

Shaft rpm 13.44 8.47 12.07 13.18 24.88 3.49 15.59 4.98 20.40 10.61 17.59 9.62

T/C rpm 4.39 4.08 4.43 3.91 5.10 3.36 2.16 2.86 3.06 3.80 3.21 4.25

TotalJanuary February March April May

Total

Total

January February March April May

January February March April May
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6.1. Continuity of the Results 
 
In the first step of the analysis, the continuity of the results was verified. For each vessel the average 
value of each coefficient, together with the relative standard deviation, was calculated for time periods 
of one month and compared with the total examined period for each vessel. From every month’s results, 
the coefficient with the lower value was highlighted and compared with the coefficient with the lower 
average value from the total examined period. In most cases, the results were the same, or sometimes, 
an alteration was noticed between the first and the second-best coefficient. But in this case, also the 
final results for the total examined period were pretty close. Part of this table is shown in Table X. 
 
6.2. Patterns / Observations / Disregarded Results 
 
In the next step of the analysis, for each vessel the value of each coefficient relative to the engine load 
for the total examined period was plotted. The time resolution of the graphs was 1 hour, while for the 
averaged hourly value at least 40 measurements should have been collected. 
 

 
Fig.4: Example graph of actual M/E load (%) vs examined coefficients 

 
After plotting all graphs, below items were observed: 
 
1. In the Capesize vessel, all coefficients had much higher values than the other vessels approximately 

by 20%, except for the coefficient for the shaft rpm, where though the calculated values presented 
very high variations, as can be noticed in Fig.5 and Table XI. 

Table XI: Average values of the calculated coefficients for Capesize vessel comparing all vessels 
Coefficients All Other Vessels Capesize vessel 
ME-FO-Cons (%) 9.4 29.3 
Pscav (%) -9.2 11.7 
RPM (%) 7.7 10.0 
T/C-rpm (%) -3.4 25.8 
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Fig.5: Graph of actual M/E load (%) vs examined coefficients for Capesize vessel 

 

 
Fig.6: Graph of actual M/E load (%) vs SHAFT_rpm_Coeff for Capesize vessel 

 
After noticing these high deviations, the managing company of the specific vessel was contacted 
and was requested to conduct a test and check the calibration of the installed shaft power meter. 
The test showed that the installed shaft power meter was underestimating the measured shaft power 
by approximate 15% and a new calibration was required. After the re-calibration of the installed 
shaft power meter, the calculated values of the coefficients were much closer to the similar values 
from the other vessels. This is visible also in below time graph. Since the available data after shaft 
power meter’s recalibration were limited, all calculated values were disregarded for the specific 
vessel. This presents also a typical reason why sensor instruments and systems should be monitored 
by independent systems that can provide sufficient information about the actual behaviour of the 
sensors in daily operation. 
 

2. The Fuel rack/index position, can be considered relative accurate, only for new electronic engines. 
For the electronic engines the deviation of the actual measured values was acceptable (average 
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absolute coefficient 7.3%), while the deviation for the older engines was extremely high (average 
absolute coefficient 60%). 
 

 
Fig.7: Graph showing the shaft power meter’s point of re-calibration 

 

 
Fig.8: Graph of actual M/E load (%) vs examined coefficients for Panamax 1 vessel 

 

 
Fig.9: Graph of actual M/E load (%) vs examined ME_FOCcorr_Coeff for Panamax 1 vessel 
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3. The suggested method from ISO for estimating the engine’s power through the M/E’s F.O. con-
sumption proved that is pretty accurate for new vessels and especially where the actual fuel’s lower 
calorific value was used. Indeed, in all Panamax vessels, this method proved to be more accurate 
comparing the Scavpress or the Shaftrpm. This can be noticed in Fig.9. 

 

 
Fig.10: Graph of actual M/E load (%) vs examined F.I._poss_Coeff for new vessel (electronic engine) 

 

 
Fig.111: Graph of actual M/E load (%) vs examined F.I._poss_Coeff for old vessel (common engine) 

 
6.3. Final parameter Selection 
 
For the final selection, for each vessel the average value from each coefficient was calculated by 
LAROSTM© Digital Analysis Software, as well as its standard deviation, for the total examined period 
and with one-minute time resolution. Then, for each vessel the coefficient with the lower average 
absolute value and the relative smaller standard deviation was specified. The parameters with the most 
accurate estimations of the main engine’s power for each vessel are presenting in Table XII. 
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Table XII: Best and 2nd best coefficients for each vessel 
  Best  2nd Best  

Aframax ME_FOCcorr_Coeff SHAFT_rpm_Coeff 
Handymax 1 T/C_rpm_Coeff Scav_Press_Coeff 
Handymax 2 T/C_rpm_Coeff Scav_Press_Coeff 
Panamax 1 ME_FOCcorr_Coeff T/C_rpm_Coeff 
Panamax 2 T/C_rpm_Coeff ME_FOCcorr_Coeff 
Panamax 3 T/C_rpm_Coeff F.I._poss_Coeff 
Suezmax 1 T/C_rpm_Coeff Scav_Press_Coeff 
Suezmax 2 DT_exh_Coeff T/C_rpm_Coeff 
VLCC 1 T/C_rpm_Coeff Scav_Press_Coeff 
VLCC 2 T/C_rpm_Coeff SHAFT_rpm_Coeff 

 
In seven out of ten vessels, the use of the T/Crpm was the most appropriate method to be used for 
estimating the main engine’s power when a shaft power meter is not installed. Moreover, in the two of 
the other three vessels, presented again the second-best selection, while only in one vessel was the third 
best selection.  
 
The selection of the MEFOCcorrected for estimating the engine’s power as ISO 19030 is suggesting is not 
very accurate for being used by a high frequency automatic data collection system. Of course, if the 
engine is new or has undertaken all proper maintenance and the measured consumption is through mass 
flow meters, the accuracy is increasing significantly, especially, if the exact fuel’s lower calorific value 
is being used. The accuracy of this method could be further increased if sensors are installed, for 
measuring also the additional required parameters for a complete ISO correction of the consumption. 
Nevertheless, the above statistical analysis shows that the use of the T/Crpm presents the most accurate 
estimator for calculating the engine’s power through the use of a data collection system, in the absence 
of a shaft power meter. 
 
This estimator, through the use of Machine Learning, can be further corrected based on other general 
vessels’ parameters (e-g. weather conditions, drafts etc.) 
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Abstract 

 
ISO 19030, developed for the measurement of changes in hull and propeller performance has been 
applied to several types of vessels especially ocean-going vessels, such as tankers, liners, cruise ships 
as well as ferries and Ro-Ros. This standard however, has not been tested on Offshore Support 
Vessels (OSVs), which include Anchor Handling Tug Supply vessels (AHTS) and Offshore Supply 
Vessels. The operational conditions of such vessels are more complicated as these include up to 20 
different types of operation, where vessel transit condition accounts for approximately 35% of time 
spent at sea. A systematic methodology is proposed to understand the vessel operational data and 
apply a careful filter of relevant data that can be practically applied for the use of ISO 19030 with 
these vessels. The outcome of hull and propeller assessment on OSVs using the proposed method 
complementing ISO 19030 is presented. 
 
1. Introduction  
 
Continuous improvement of vessel efficiency is important, besides the environmental impact 
contributed by the shipping industry due to burning of fuel that contributes to emissions, notably the 
greenhouse gases including nitrous oxide and other pollutants such as sulphur oxides, the economic 
impact indicates an annual saving of about US $ 3,000 million for the world fleet, Milne (1989),  
Townsin (2003). ISO 19030:2016 part 1, 2, and 3 provides standardised methods for the measurement 
of hull and propeller changes and outlines the four Key Performance Indicators (KPIs) for decision 
making in operation strategies to enhance energy efficiency. Almost all research conducted on 
implementing ISO 19030, is on Ocean Going Vessels (OGVs) such as oil and LNG tankers, ferries 
and cruise ships, cargo and container ships and Ro-Ro vessels. The number of operating OGVs was 
about 53,000 in 2019, Marinekommando (2019). The successful application of ISO 19030 to different 
types of OGV has shown that it is possible to measure hull and propeller condition and the impact of 
improved vessel efficiency, Adland et al. (2018), reduction of fuel cost, Nelson et al. (2013), and 
lowering the greenhouse gas (GHG) emissions, Molland et al. (2014).  
 
The standard however does not address the hull and propeller changes in other vessel types such as 
Offshore Support Vessels (OSVs). There are about 5301 OSVs in service as of 2020, and 602 OSV in 
order, with an increasing number of around 7% each year (Clarkson, 2020). This amount is close to 
the number of container vessels in the world, a total of 5269 vessels in 2019, BRS (2019). Up to 2017, 
the ratio of OSV to rigs is about 6.8 vessels (> 3000 dwt) vs floaters; and about 3.6 vessels (<3000 
dwt) vs jack-ups. With about 457 working rigs, down from 736 rigs, at its peak in 2014. Offshore 
vessels are designed to assist oil exploration and construction operations. There are a variety of 
offshore vessels, which not only help in exploration and drilling of oil but also to provide necessary 
supplies to the excavation and construction units located in the high seas. There are three main types 
of OSV, namely the Platform Supply Vessels (PSV), Anchor Handling Tugs and Supply Vessels 
(AHTS) and Offshore Construction Vessels (OSCVs). Other types of OSVs also include Seismic 
Survey ships, Inspection, Maintenance and Repair vessels (IMR), Dive support vessels, Stand-by / 
Guard vessels, Remotely Operated underwater Vehicle (ROV) support vessels and various 
combinations of these for the various tasks of various offshore platforms and subsea installations.  
 
As the OSVs increase in size, power, and capacity, they become multi-functional vessels, often 
functioning beyond their original design purpose. Since 2005, the demands of Bollard Pull have 
increased from around 150 to 200 tonnes, Ahmad et al. (2005). The propulsion system of an OSV 
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differs greatly from a typical OGV. There are three main propulsion systems using on OSVs. Diesel-
electric with advanced DP system becomes most popular in the OSVs market according to Herdzik 
(2013). Diesel-electric propulsion systems are usually equipped with a Power Management System 
(PMS) which automatically controlling start/stop which reduces fuel consumption, a key reason for 
their growing popularity.  
 
Moreover, the activities performed by OSVs are more complex, up to 22 types of operational 
activities of the OSV compared to OGV 7 main types of activities. In this paper, it is aimed at 
analyzing AHTS. AHTS is a multiutility vessel with the main function of towing and tugging, anchor 
handling, and emergency rescue, so it is installed with heavy equipment such as crane, anchor and 
winches and smart systems such as dynamic positioning systems to use the data of wind and the wave 
fluctuation and control the propellers automatically to maintain the ship's course and keep it steady. 
The operational activities are different from long voyage vessels such as navigation without load, 
loading and unloading supplies, buoy and anchor handling as well as towing and lifting. These 
flexible operations and unpredictable operation routine features determined that standard hull and 
propeller performance monitoring regime of OGVs cannot directly be applied to OSVs.  
  
One of the main challenges when referencing the ISO 19030 is that OGVs are fitted with mostly fixed 
pitch propellers (FPP) and controllable pitch propellers (CPP). FPP which fits the propulsion system 
type described in the standard. However, OSVs may use Azimuth Thrusters, Z-drive, and Voith-
Schneider propellers, with the purpose to carry out Dynamic Positioning (DP) because of the higher 
accuracy for towing and anchor handling. The thrusters are also used for manoeuvring to control the 
direction of the OSVs as a rudder, Sørensen (2011), hence the OSVs are usually without a rudder 
when compared to OGVs.  
 
Most of the energy efficiency research related to OSVs focuses on fleet size optimisation and speed 
optimisation. There is no solid research and literature available on their hull and propeller 
performance. Marine fouling is a well-known problem for OSVs. However, there is a lack of research 
regarding measuring the changes in the hull and propeller performance of OSVs to maximise fuel 
efficiency. 
 
The ISO 19030 also advises that the delivered power is seen as the primary parameter to be 
considered when assessing the hull and propeller condition. However, in a fleet of OSVs, it is 
unlikely, or industrially challenging, to convince ship owners to install a shaft meter, from the point of 
view of cost and propulsion type. Moreover, the alternative quantification from ISO 19030:3 states 
that this method is applicable, assuming that the engine is a two-stroke main engine directly driving 
the propeller with no gearbox and no shaft generator (used for power take-off). OSVs are usually 
fitted with medium speed engines with a gearbox and shaft generator. In such a case, there are no 
standards available to quantify or suggest the best practice to quantify the hull and propeller condition 
for the OSV fleet. This paper focusses on this gap by investigating the possibility of referencing ISO 
19030 to address the hull and propeller performance of these vessels. 
 
One main advantage of exploring the hull and propeller performance monitoring for OSV is the ready 
availability of data. A large proportion of OSVs are fitted with Electronics Fuel Monitoring Systems 
(EFMS) as part of the charterer’s requirement to oversee and better manage vessel activity from 
shore. The oil company usually charters the supply vessel instead of owning it, which is one of the 
highest cost elements of the operation cost for the company, which amounts to about 50% to 80% of 
the total operation costs.  
 
The aim of this work was to use the readily available operational data for OSVs to test the potential 
and to address the lack of research regarding careful measurement of changes in hull and propeller 
performance of OSVs. The work will not only maximise the fuel efficiency of the vessel but will 
contribute to lowering the impact of offshore operations on climate change. We have begun this 
process by selecting an AHTS as a case study and to demonstrate proof of concept.  
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2. Case study preparation 
 
The first part of the investigation is to compare the similarity of OGVs and OSVs in order to evaluate 
if any elements from the ISO 19030 can be adopted when addressing the hull and propeller perfor-
mance monitoring regime. The operations of an OSV involves many complex operations compared to 
a sea going vessel. As it is designed for operations in much harsher conditions, it generally experi-
ences tougher sea conditions.  One of our goals is to look at the operational data of an OSV and 
evaluate if the existing data can provide useful estimates of the hull and propeller conditions.  
 
2.1 Properties of OGVs and OSVs 
 
Properties of OSVs are compared to OGVs to rationalise the hull and propeller performance 
monitoring. Table I shows the similarities and differences of these two categories of vessels.  
 

Table I: Similarities and differences of OGVs and OSVs 
Similarities  Differences 

• Typical drydocking or hauled out 
inspection twice every 5 years  

• Similar options of coating used 
 

• Number of operational profiles 
• Types of operational profiles 
• Operations in harsher conditions 
• Propulsion system type 
• Availability of delivered power data 

 
From the aspect of hull and propeller performance evaluation, both OGVs and OSVs typically dry 
dock or hauled out for inspection at intervals of twice every 5 years to clean and re-paint the hull as 
well and cleaning the propellers where needed. The available options of coatings in the maritime 
industry provided for these two categories of vessels are the similar. Hence, it is worth exploring a 
data driven hull and propeller performance evaluation. However, due to the differences in operations 
and propulsion type and configuration, the application of purpose of the hull and propeller 
performance evaluation differs.  
 
2.2 Vessel operations 
 
For long voyage vessels, there are mainly four activities: anchoring at port, sea passenger, pilot on and 
off and manoeuvre.  For OSV, the activities depend on the type of the vessel. This paper aims at 
analysing AHTS. AHTS is the multiutility vessel including towing and tugging oil rigs or ships to the 
specific oceanic areas, anchor handling and emergency rescue, so it is installed with heavy equipment 
such as crane, anchor and winches and smart system such as dynamic positioning system to use the 
data of wind and the wave fluctuation and control the propellers automatically to maintain the ship’s 
course and keep it steady. The OSVs’ operation activities are different from long voyage vessels such 
as navigation without load, loading and unloading supplies, buoy and anchor handling and towing, 
lifting etc. These flexible operation and unpredictable operation routine features determined that 
monitor systems of long-distance sailing cannot directly be applied to OSVs. Hence, in order to 
evaluate hull and propeller performances using data, the operation where an OSV is moving at near 
steady long distances will be used for evaluation. Using the entire year (2019) of EFMS data for an 
ATHS, downloaded from the Ascenz Shipulse portal, the activities that are logged is plotted in Fig.1.   
 
The activity of interest is when the vessel is ‘sailing enroute’, typically when the vessel is moving 
from anchorage position to rigs, between rigs and vice versa. During this operation, both main engines 
are used for the purpose of propulsion. Fig.1 (top) shows that the vessel spends 31.0% of the time 
carrying out this activity, the percentage of fuel consumed during this activity is 50.5% of the year’s 
total fuel consumption, seen in Fig.1 (bottom). These pie charts were plotted using ‘Activity Manager’ 
on the EFMS, providing a clear distinction of the fuel consumption by activity. For the purpose of this 
study, fuel consumption by the auxiliary engines is not considered as only fuel used for propulsion is 
of interest when processing the hull and propeller performance analysis.    
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Fig.1: Time share on each main activity (top) and fuel share consumed during each activity (bottom) 

 
3. Data gathering 
 
ISO 19030:2 recommends automatic logging (auto-logger) of data to evaluate the hull and propeller 
performance. An increasing number of OSVs are equipped with EFMS, similar to auto-loggers for the 
purposes of transparency of fuel consumption during operations by charterer and operator. An attempt 
to understand the nature of the hull and propeller surface and the overall impact on the OSV 
performance including the complicated calculations that numerically quantifies fluid frictional drag 
and power needed to propel the vessel, the data is obtained by taking advantage of the well-equipped 
auto-logger onboard an AHTS.  
 
The details of the dataset used are found in Table II.  
 

Table II: Details of dataset used 
Data period  1 January 2019 – 31 December 2019 
Data logging interval  1 data point for each parameter every 1 minutes 
Number of tags used for data validation 112 
Number of tags used for data processing 12 
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Table III shows the propulsion system properties of the AHTS to put the data and analysis in context. 
 

Table III : Candidate vessel propulsion system information 
Main engine power (@100% MCR) 3678kW 
Quantity of main engine 2 
Auxiliary engine power (@100% MCR) 307 
Quantity of auxiliary engines 2 
Auxiliary generators Main engine driven 
Quantity of auxiliary generator  2 
Propulsion type Engines with reduction gear to screw shafts 

driving 2 controllable pitch propellers 
 
Prior to analysis data collected from the AHTS, the gathered data are processed to check for quality. 
This is done using a careful step by step data validation process that uses a statistical approach to 
identify faults followed by a check with a covariance value among respective parameters and systems, 
Lim et al. (2019). Since there are usually no delivered power parameters for OSVs, the fuel consumed 
for operational purposes is used to plot against vessel speed, Fig.2. Note that there are two engines for 
this vessel and the fuel consumption shown is calculated from the summation of fuel differences of 
inlet and outlet of both main engines in operation for the propulsion purposes. Vessel speed over 
ground is used for this analysis due to the limitation of the available data, it is recommended that 
vessel speed through water is used, where available when duplicating this methodology.  
 
The vessel has a total of five settings of speed and the three main ones (low setting indicated by dark 
blue, medium setting indicated by green, and high setting indicated by yellow) that are used for 
analytics, omitting the slowing down and manoeuvring. Twelve months of data was used from 
January 2019 to December 2019. During the ‘sailing enroute’ condition, the vessel uses three general 
engine speed settings, only data with these setting have been considered for analysis to avoid vessel 
manoeuvring profiles, and emergencies situations when vessel has to travel at adverse speed. The data 
shown in Fig.2 also considers the vessel operational breakdown, where only the vessel ‘sailing 
enroute’ operation is used to evaluate the hull and propeller efficiency properties. The coefficient 
(indicated as ‘coeff’) of each best fit cubic curve is shown for each month’s worth of data. However, a 
rough fit for January, August and December should be considered carefully since less data was 
available at lower speeds for a best fit curve.   
 

 
Fig.2: Fuel consumption vs vessel operational speed  
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4. Data analysis and discussion 
 
The concept of data analysis presented in ISO 19030:2 has to be modified to suit the application to 
OSVs. For example, 1 minute interval of logging is used compared to the 15 s intervals recom-
mended, the filtering of data when vessel is moving at straight path in sailing enroute condition to 
overcome the non existence of rudder. The contrast where the standard applies on mechanically 
directly propelled vessel whilst in comparison to the OSVs that are usually fitted with thrusters, and 
the ability to recognise when the operating engines are utilising the gearbox and shaft generator.  
 
Considering the data when the vessel is in ‘sailing enroute’ operation, only 31.0% of the overall OSV 
operation in the year 2019 is used. The filter of data by speed is avoided due to the operation where 
the OSV is required to carry out long operations for manoeuvring and standby operations by the rig 
which is serviced. The other reason to use only when the vessel is in ‘sailing enroute’ operation is that 
the fuel consumed to generate power is not used to further run the shaft generator. Hence, it can be 
assumed that the fuel energy is transferred to the thrusters for propulsion purposes.  
 
Following the rationale of data filtered presented in section 4, Fig.3 shows data when the vessel is 
moving at speed of 6 kn ± 0.1 kn. The two reference curves of six months intervals were plotted. The 
reference curves shift by 9.65 Ltr/hr for the vessel to move at the same speed, which is assumed that 
the vessel consumes additional fuel to sail at the same speed.  
 

 
Fig.3: Fuel consumption difference at two reference periods for vessel at 6 kn ± 0.1 kn 

 
There are no standards available to quantify or suggest the best practice to quantify the hull and 
propeller performance that suits an OSV fleet. In this case, the hull and propeller condition of an 
AHTS were evaluated by attempting to plot the changes in fuel consumption between two reference 
periods for the vessel moving at the same speed.  
 
This methodology adopts the same approach as ISO 19030 by comparing changes to hull and 
propeller performance using the reference period. Acknowledging that the use of proxy data is tied to 
considerable increases in the uncertainty inherent in any sensors, where SOG is used instead of STW 
and that the power delivered as calculated from fuel consumption is used instead of the delivered 
power measured from sensor on the shaft, derived from shaft torque and shaft speed. Such analysis 
can be further improved by minimising the uncertainty by evaluating the performance where similar 
draught used or kept approximately constant over the reference period of the analysis. It is also noted 
that the analysis does not consider that changes in fuel quality, the global environmental effects 
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(though OSVs usually operate at the same location to service the particular rig), and the changes of 
specific fuel oil consumption (SFOC) over time due to engine degradation. Setting the limitations 
aside, this work explores and describes the value added to the maritime industry, which is to create 
valuable insights by utilising commonly available data.  
 
5. Conclusions and future work 
 
Hull and propeller conditions were monitored closely for long voyage vessels. This work exhibits a 
first data exploration to investigate the hull and propeller performance on an OSV (particularly an 
AHTS) using readily available data. The methodological approach developed here requires additional 
refinement to be carried out as well as additional validation. Further work to be carried out is to map 
similar methodology for: 
 

• Longer duration OSV data sets 
• Larger numbers of similar types of OSVs 
• Other types of OSV and vessels that are fitted with DAS 

The next phase of the research is to look at the economic sensitivity of monitoring task specific ships 
This will also involve moving a long distance at small fraction of the operational profile. Once it can 
be demonstrated that the data gathered from the vessel can be used for the hull and propeller fouling 
measurement, a data driven decision making tool can be developed. 
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Vessel's Hull Cleaning: New Approach for Evaluation 
 

Nicolas Bialystocki, StratumFive, Shoreham by Sea/UK, Nicolas.bialystocki@stratumfive.com 
 

Abstract 
 

This paper proposes an advantageous concept in evaluation and display of hull cleaning effective-
ness. An evaluation is needed in order to give insight of the decision to carry out hull cleaning of a 
vessel. Whilst the popular way is long-time analysis using data from numerous voyages, a case study 
is described herein with only needing the correct representative voyage pre and post the event. 
 
1. Introduction to fouling and hull cleaning 
 
Fouling of ship's hull has been known to Naval Architects for more than 2,000 years, as it was found 
written in an Aramaic papyrus that a mixture of Arsenic, Sulfur and Chian Oil was applied on the hull 
to speed through the water, ABS (2011). Along the history many other anti-fouling coating ingredients 
were used e.g. waxes, poisonous oils, tar, plants resins, turpentine, naphtha and the list goes further. 
 
The aim in the search for the "perfect" coating was always to discourage attachments to the hull 
surface, including avoiding shipworms that could penetrate the ship's wooden hull. However, in as 
much as humans fight with the nature of the fouling, the phenomenon keeps rolling. More so, when a 
more effective solution was found, including biocides, it had negative effect on the marine life and 
ecosystems, thus such coatings were abolished. 
 
As a consequence, and throughout the history, hull cleaning has been a common practice in order to 
reduce drag and improve ship's hydrodynamic performance. GloMEEP (Global maritime energy 
efficiency partnerships), https://glomeep.imo.org/technology/hull-cleaning/, defines the purpose of 
hull cleaning as removing biological roughness or fouling without damaging the coating. 
 
Fouling growth on ship's hulls affect the performance of the vessel as it forms a part of the apparent 
slip. When a vessel is propelled, the theoretical speed (in an unyielding fluid) would be: 
 

𝑉𝑇 =
𝑃 × 𝑁

1852
60⁄

 [𝑘𝑡𝑠] 

Where 𝑃 and 𝑁 are the propeller's pitch and revolutions, respectively. 
 
It is noted that the speed of the vessel rarely equals to the Speed Over Ground (SOG), and that part of 
the difference can be attributed to weather (wind and waves) which the vessel encounters as well as to 
hull fouling. The apparent slip would be: 

𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡_𝑆𝑙𝑖𝑝 = 𝑉𝑇 − 𝑆𝑂𝐺 [𝑘𝑡𝑠] 

The apparent slip can be positive or negative, and in most cases it is in the range of 10-30%. This is 
because while the weather effect can be positive or negative, the fouling would be negative. Even in 
the cases of brand-new vessel, after dry-docking or after hull cleaning, it can be assumed that fouling 
to certain extant will be found and therefore will diminish the performance of the vessel. 
 
Another type speed that is normally used for vessels is the Speed Through Water (STW) which is the 
speed of advance of the vessel relative to the water, and includes the effect of the current and wake. 
Real slip of a vessel would be: 

𝑅𝑒𝑎𝑙_𝑆𝑙𝑖𝑝 = 𝑉𝑇 − 𝑆𝑇𝑊 [𝑘𝑡𝑠] 

An illustration of the various speeds used for vessels is shown in Fig.1. 
 

mailto:Nicolas.bialystocki@stratumfive.com
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Fig.1: Speeds of vessels extracted from Barrass (2012) 

 
Improving the performance of a vessel is possible by reducing her real and apparent slip, and hull 
cleaning is one of the answers to that. Hull cleaning by commercial diving is claimed to save 10% of 
the fuel bill, and by cleaning by robots between 5-15%, Fathom (2012). IMO projected 320 million 
tons bunker demand in 2020, Halff et al. (2019), which puts the hull cleaning in a favorable place 
market wise. 
 
2. Factors affecting decision to carry out hull cleaning 
 
The decision to carry out hull cleaning is affected by various considerations, some of the mains are 
described hereunder. 
 
2.1 Bunker Price 
 
Hull cleaning has its costs of the service from one side, and the time from the other. It was shown that 
the potential in fuel savings are in the range of 10%. Thus, higher bunker prices will thrust the 
decision to carry out hull cleaning forward.  
 
2.2 Environmental Rules 
 
IMO in way of EEOI (Energy Efficiency Operational Indicator), SEEMP (Ship Energy Efficiency 
Management Plan), as well as EU in way MRV (Monitoring, Reporting and Verification of CO2 
emissions) set measures are to reduce GHG (Green House Gases) emitted from shipping. All of these 
are strongly related to fuel consumption of world fleet. Thus, by carrying out hull cleaning, owners 
improve their position (and image) in meeting environmental regulations. 
 
2.3 The Market 
 
In a depressed market, an owner would seek to cut expenses. Ship's bunkers being a major 
expenditure in the transportation of goods at sea can be the way to do so, and hull cleaning can be 
therefore prioritized to achieve the goal and keep the business running. 
 
2.4 Local Regulations 
 
Ministries have the right and some have already established rules concerning hull cleaning of vessels. 
Example is New Zealand MPI (Ministry of Primary Industries) that demand every vessel calling NZ 
ports to prove that her hull was cleaned within 30 days prior to arrival to NZ. 
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3. Popular evaluation of hull cleaning  
 
Hull cleaning can be done either in a drydock or afloat. Whilst the vessel is in a drydock the standard 
procedure would account washing, blasting, washing again and then coating the hull in typically 4-5 
layers, also known as "hands", with sufficient drying time between each coat. In service hull cleaning 
from fouling can be done by either human diver or by a robot, and this typically lasts several hours, 
depending of the size of the vessel. 
 
During hull cleaning when the vessel is afloat, evaluation of the work can be done wither in live 
camera broadcasting to shore, and/or by taking photos/videos and post work analysis. Example of 
such "on spot" evaluation is shown in Fig.2 where the hull underwater parts can be compared between 
before and after the cleaning. 
 

               
 

Fig.2: Pictures of hull before (left hand side) and after (right hand side) being cleaned 
 
Common practice in evaluation of drydock and hull cleaning effectiveness on the reduction of hull 
resistance is by means of speed loss calculation along time prior and after cleaning of the hull. ISO 
19030 (2016) describes the maintenance effect on the performance of a vessel over time, leaving the 
y-axis (hull and propeller performance) to be decided by the used of the standard. 
 
As a consequence of common practice and the Standard, a vast variety of charts were developed from 
case studies and can be found in papers presented at HullPIC'18 and HullPIC'19. The performance 
indicators used are among other Fuel oil consumption, Power loss, Speed deviation, Hydrodynamic 
efficiency, Hull performance index and more. 
  
There might be however cases, where stakeholders will find interest in the evaluation and 
representation of the vessel's performance in terms of speed-consumption curves, which might be 
more intuitively related to the fuel cost, hence voyage cost. 
 
4. A case study of an alternative representation  
 
An investigation with case study of a PCTC (Pure Car and Truck Carrier) vessel was carried out, to 
find the feasibility of an alternative representation of a dry-docking / hull cleaning effectiveness. An 
algorithm was developed as described herewith. 
 
Relevant voyages that were assessed in terms of the performance of the vessel had been selected. One 
voyage before and after the hull cleaning operation, for laden and for ballast condition, under several 
restriction such as similarity of environmental condition, length of voyages and proximity to the date 
of hull cleaning from either side of the timeline. 
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NDRs (Noon Daily Reports) were used for the purpose of analysis and calculation. Speed was 
corrected to current, data was filtered due to weather and in view of inconsistencies, Bialystocki and 
Konovessis (2016). On the other hand, FOC (Fuel Oil Consumption) was normalized to 24 hours. 
Finally, curves were plotted and the results are shown in Figs.3 and 4. 
 
The analysis reflects daily fuel oil consumption reduction of between 14 ~ 20% in laden condition, 
and between -2 ~ 23% in ballast condition, dependent on the speed of the vessel.  
 

     
Fig.3:  Performance before (upper line) and after (lower lines) drydock in each laden and ballast 

condition, unfiltered 
 

     
Fig.4:  Performance before (upper line) and after (lower lines) drydock in each laden and ballast 

condition, filtered 
 
5. The benefits from using the new method 
 
The new approach for representation of ship performance by comparison and analyze voyage pre and 
post hull cleaning operation, clearly demonstrates and quantifies the reduction in fuel oil consumption 
on a specified speed. It is feasible in either laden or ballast condition. This evaluation has the 
following benefits in relation to the timeline performance indicator: 
 

• Less data - There is no need for large datasets. In fact, to get the most accurate results, the 
best would be analyzing the last and first voyage, before and after the hull cleaning, 
respectively. In most cases these voyages would be in ballast condition, thus a further search 
for laden conditions would also be needed. More data sets do not necessarily mean better 
results, as presented by Bertram (2019).  
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• Faster - Hull cleaning is a maintenance operation, which should reflect immediate 
improvement in performance. As such, data collection for long period is not needed and the 
proposed analysis can show results in very few voyages. The minimal number of required 
voyages for the analysis is four, namely two laden + two ballast. 

 
• Fuel oil consumption is IN - While most existing analyses use speed loss as performance 

indicator over time, the proposed method incorporate both speed and fuel oil consumption 
built in the final output. This gives the user of a better picture of the performance of a vessel. 

 
• Large speed range - While speed loss is in the best case normalized to a designated speed, 

and in the worst case, variation of speed is ignored, the proposed algorithm takes and reflects 
the entire peed range, even speeds less used are shown in the final plot. 

 
• Quicker economic check - Fuel oil savings can be easily translated to cost savings. On the 

contrary, other performance indicators would need some additional calculations and 
assumptions in order to obtain the economic advantage. 

 
6. Conclusions 
 
Hull cleaning is a well-known driver to improve ship's performance. While the normal practice for 
evaluation of the effectiveness of this measure is long time analysis, there is a need to provide 
estimation at early stage after the cleaning was carried out. Within this paper it was shown that 
evaluation can be done by relatively small number of voyage analysis, and the outcome of speed-
consumption curve is more intuitive to display results for the end user, in way of providing more 
workable information. 
 
7. Further work 
 
Further incremental improvement can be done to the process by fine tuning the draft/displacement 
correction to FOC, and speed correction due to wind and waves. Moreover, adaptation of the 
proposed method to a wired vessel is an additional challenge. 
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Taking In-Water Cleaning to the Next Level 
 

Aron Frank Sørensen, BIMCO, Bagsvaerd/Denmark, afs@bimco.org 
 
Abstract  
 
In January 2021, a working group consisting of shipowners, cleaning companies, ports, paint 
manufacturers and international organisations has finalised the development of an industry standard 
for in-water cleaning with capture. The aim is to benefit all stakeholders involved in in-water cleaning 
and to ensure that: (1) the planned cleaning process is safe and effective; (2) the environmental impact 
is controlled whilst preserving the properties of the anti-fouling systems; (3) approval of in-water 
cleaners is based on testing and quality management. The paper will give a brief overview of the 
industry standard and share information about a newly initiated small-scale implementation project. 
 
1. Introduction 
 
During 2018, several shipowner members informed BIMCO of incidents involving in-water cleaners 
falsifying documentation. At the same time, the number of ports allowing cleaning operations were 
decreasing and new local and regional regulations were becoming increasingly stringent with regard to 
the permissible level of biofouling on ships calling at ports or waters of a coastal state.  
 
So BIMCO took the initiative to form a working group representing the different stakeholders to 
develop a standard to improve the quality and safety of in-water cleaning with capture. In January 2021, 
the work was finalised and the following two documents that outline the performance-based require-
ments for the in-water cleaning with capture of a ship’s hull, propeller and niche areas were published: 
 

• Approval procedure for in-water cleaning companies  
• Industry standard on in-water cleaning with capture.  

 
The stakeholders are ships, cleaning companies, anti-fouling system (AFS) manufacturers, ports and 
other local authorities. The set-up ensures: 
 

1. that the cleaning system and process are tested, audited and approved in accordance with the 
Approval procedure for in-water cleaning companies by an Approval Body and an independent 
Testing Organisation. 

2. that after approval, the quality management systems of the cleaning companies are subject to 
periodic internal audits, whilst external audits are to be carried out by the Approval Body on 
an annual basis.  

3. that ships, AFS manufacturers and cleaning companies will use the requirements in the Industry 
standard on in-water cleaning with capture for planning, conducting, and reporting on the clean-
ing itself. 

4. that testing results can be utilised by cleaning companies to apply for local permissions from 
port and other relevant authorities to operate within their jurisdictions.  

 
The Industry standard is based on responsive cleaning in other words a cleaning initiated by a marked 
reduction in the ship's performance. The ship will therefore need to implement procedures to monitor 
hull performance and biofouling growth thus avoiding that the biofouling becomes severe. Inspections 
of the submerged areas to show that a cleaning is needed constitutes an important part of responsive 
cleaning. 
 
When planning in-water cleaning, the ship will use a cleaning company that has been approved in 
accordance with the Approval procedure for in-water cleaning companies.  

mailto:afs@bimco.org
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The Industry standard does not give a detailed description of the methods and/or techniques required 
for carrying out the cleaning. The AFS manufacturer also has a role to play in advising the shipowner 
and the cleaning company on the anti-fouling coating system and the recommended cleaning methods 
including brush type and water pressure. 
 
2. Inspections and planning of in-water cleaning 
 
The IMO (2011) guidelines recommend the use of a biofouling management plan and biofouling record 
book (Resolution MEPC.207(62), 2011 Guidelines for the Control and management of Ships’ 
Biofouling to Minimize the Transfer of Invasive Aquatic Species). The information in the IMO guide-
lines has formed the basis of the practical part of the Industry standard. 
 
The biofouling management plan must specify under which conditions in-water inspections should be 
conducted. Some inspections are prescheduled in accordance with the ship’s planned maintenance 
system (PMS) while others are planned in accordance with the operational profile of the ship, including 
after extended idle periods.  
 
The decision to conduct an in-water inspection should be based on, but not limited to the following: 
  

1. risk assessment of biofouling growth  
2. assessment of the propulsion power and fuel consumption over a specified period (hull perfor-

mance monitoring)  
3. statutory and class IWS (in-water survey) between dry docks  
4. availability of services provided by divers eg regular propeller polishing or cleaning or under-

water repair  
5. idle periods or specific lay ups for example as stipulated in a charter party or in a contract with 

the AFS manufacturer 
6. mandatory inspection requirements according to relevant regulatory regimes before proceeding 

to an arrival port or waters of a coastal state 
7. requested by the charterer eg due to failure of the AFS 
8. inspections carried out at planned intervals in accordance with the PMS 
9. inspections requested by the AFS manufacturer.  

 
This Industry standard introduces reference areas to serve as datum areas to be used during inspections 
and to measure the efficacy of the cleaning.  
 
During every inspection, attention should be paid to the reference areas and the information has to be 
recorded accurately. The condition of reference areas will give an indication of biofouling growth, 
therefore, an accurate inspection and recording of details will be of upmost importance.  
 
The Industry standard includes detailed procedures for the planning and execution of in-water cleaning. 
The cleaning should be seen as an integral part of the whole biofouling management process. The top 
priority of the standard is to ensure that the cleaning process is carried out safely.  
 
The figure in Annex 1 provides an overview of the communication flow between the various parties 
using this Industry standard when conducting hull inspection and/or cleaning.  
 
3. Approval of In-water cleaning companies 
 
It has been necessary to divide niche areas into different categories because the same piece of equipment 
cannot be used to clean all of them. Depending on the intended use of the system, the approval process 
may include:  
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a. areas on the flat sides of the hull 
b. curved areas used for testing, eg the turn of bilge, and angles where the orientation of the 

surface changes abruptly, such as the chine, keel and skegs 
c. niche areas, eg, propeller shafts, rudders, anodes and gratings 
d. propellers.  

 
A cleaning company can be approved for one or more of the above categories.  
 
The Approval procedure for in-water cleaning companies contains the minimum requirements and test 
protocols for demonstrating compliance with the Industry standard and describes the approval process. 
 
4. Testing 
 
In-water cleaning companies will be tested for three or four different performance criteria based on 
their individual performance/manufacturers claims. The verification testing will take place on actual 
ship surfaces (submerged hull and/or niche areas) and anti-fouling coating system (AFC) (non-biocidal 
and/or biocidal) depending on cleaning company’s claims.  
 
The capability of the cleaning system shall be tested by an independent Testing Organisation. While 
being tested, the system shall be operated in the way, it is intended to be used during normal operations. 
 
In-water cleaning companies will be tested for different performance criteria relevant to their 
declaration of the cleaning system’s operational capabilities and performance ie (A) the capability of 
the system to remove macrofouling; (B) the effectiveness of the separation and/or treatment unit system 
at removing material, and (C and D) control of the emission to the local environment from the cleaning 
unit and from the separation and/or treatment unit.  
 
The performance criteria include:  
 

1. Limits to the type and extent of biofouling that the system is able to clean from ship surfaces 
(eg a height of hard calcareous fouling, fouling ratings, percentage of surface area covered with 
soft macro fouling and hard fouling, total amount of material that can be handled, etc.),  

2. Capture and removal of material produced collected during in-water cleaning (eg largest size 
and percentage reduction of particulate matter in effluent water)  

3. Impact to local water quality (eg levels of total suspended solids and/or AFC associate biocides) 
as a result of in-water cleaning. 

 
The testing will be carried out on three different ships using a number of test samples and images. 
Approval will be given subject to the results of all three tests passing the performance criteria. 
 
5. Companies and organisations behind the standard 
 
The Industry standard has been written by an industry working group consisting of paint manufacturers, 
in-water cleaners, shipowners, ports, international organisations and authorities. The following were 
represented in the work:  
 
Akzo Nobel, BIMCO, C-Leanship, CMA Ships, DG Diving Group, Dutch Ministry of Infrastructure 
and Water Management Fleet Cleaner, Hapag-Lloyd, Hempel, HullWiper, International Association of 
Classification Societies, International Chamber of Shipping, Minerva Shipping, Portland Port (UK), 
Port of Rotterdam and PPG Coatings 
 
A reference group was asked twice to comment on the Industry standard and several parts of the stan-
dard have been updated by correspondence. Members of the reference group represented the following 
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AFS manufacturers, authorities, cleaning companies, international organisations representing ship 
owners, laboratories, research institutes, and shipowners: Bernhard Schulte Shipmanagement, Chevron 
Shipping CO – Houston, ECOsubsea AS, International Association of Independent Tanker Owners 
(INTERTANKO), Kristian Gerhard Jebsen Skipsrederi AS, Laboratory for Aquatic Research and 
Comparative Pathology, NACE International, SeaTec, SRN Group, TecHullClean Pte. Ltd. 
 
Project leader, BIMCO is the world's largest international shipping association, with around 1,900 
members in more than 120 countries, representing 59% of the world’s tonnage. The global membership 
includes shipowners, operators, managers, brokers and agents. BIMCO is a not-for-profit organisation. 
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Abstract 
 
Viscous flow simulations based on the equations of Reynolds-Averaged Navier-Stokes (RANS) have 
become an engineering tool used on a daily basis. For the hull performance, one of the main goals of 
such calculations is to determine frictional resistance, which is of paramount importance for ships 
since it directly affects their speed, fuel consumption and emissions. This paper describes a CFD 
method to predict the frictional performance for different antifouling coating in different roughness 
conditions using a ship model case. Roughness models representing different antifouling coatings 
were developed by using roughness functions determined in flow cell experiment. The developed 
roughness model was then incorporated with RANS model by means of wall function in the 
commercial CFD software, NUMECA. A Full-scale 3D container ship KVLCC2 model was used with 
different coating conditions. The results were then compared with each other to analysis the frictional 
resistance of different antifouling coating products. 
 
1. Introduction 
 
The use of antifouling coatings is an effective way to prevent the increase of frictional resistance of 
ships by inhibiting organism growth and settling on the hull. Such coatings play a huge role in 
decreasing not only the commercial costs of vessels, but also the greenhouse gas emissions of 
maritime industries and others. Giving that shipping has been, and still is, one of the most important 
and energy-efficient ways of cargo transport, there is a continually growing commercial and 
environmental interest and hence supporting R&D activities for the antifouling coating development 
and evaluations around the world.  
 
From a hydrodynamic point of view, an antifouling coating has an initial surface roughness which 
affects a ship's frictional resistance already at the first place. An ideal coating should be smooth 
enough to improve the surface properties of a hull in the as applied condition and should be effective 
against marine biofouling which occurs over time. Both aspects markedly affect the frictional 
resistance and hence fuel consumption of a ship. Nowadays, the hotspot of antifouling paint research 
lies in the antifouling properties and environmental impact of the coating, e.g., the development of tin-
free technologies, silylated acrylate technologies, reduction of biocides, metallic acrylate 
technologies, acrylic nano-capsule technology, and non-stick/fouling release silicone elastomers, 
Hellio and Yebra (2009). However, the frictional impact of these coatings moves more and more into 
focus. 
 
The International Maritime Organization has decided in its initial strategy, IMO (2018), that the glob-
al emissions are to be reduced by 50 percent by 2050, compared with 2008. This started a large re-
search activity in the field of possible technologies and the antifouling coating responsible for up to 
70% of the total drag of the vessel moved into the focus. Some attempts have been made in describing 
the impact of different antifouling technologies on the total drag of a ship. In the studies of Candries 
et al. (2003,2005) the effect of antifouling on flat plate and cylinder was examined. Efforts were made 
to link the roughness of the paint to drag and hence resistance. Two of the popular types of antifouling 
coatings, i.e. tin-free self-polishing copolymer (SPC) and fouling-release (FRC) were applied on flat 
plates and cylinders respectively, and their corresponding roughness profiles were recorded. Results 
showed that SPC exhibits more drag as compared to foul-release. This was attributed to the higher 
level of roughness. Schultz et al. (2004) studied experimentally the relation of surface roughness and 
frictional resistance for a range of modern antifouling paint systems. The results indicated little differ-

mailto:yuanwei.zhang@jotun.no
mailto:irma.yeginbayeva@jotun.no


 

42 

ence in frictional resistance coefficient (CF) among the paint systems in the unfouled condition. Sig-
nificant differences were observed in CF among the paint systems in the fouled condition for the sili-
cone surfaces showing the largest drag penalties. Holm et al. (2004) presented similar results studying 
biocidal polishing antifouling and fouling-release coating in a rotating disk apparatus. The results 
showed that the antifouling control coating showed a smaller drag penalty than the fouling-release 
coatings. They reported a 9%-29% increase in drag for the FRC with accumulated biofilms compared 
to the SPC. The study reported no surface roughness evaluations for the different experimental stages 
and fouling conditions. Therefore, no information could be obtained on the correlation of roughness 
and drag characteristics for fouled coating types. 
 
In the papers above, all the testing and measurements were conducted in small-scale panels or disks, 
while the comparison between different types of antifouling coatings is not yet available in a full-ship 
scale situation.  
 
As discussed by ITTC (2017), advances in numerical modelling methods and increases in 
computational power have made it possible to carry out fully non-linear simulations of ship motions, 
taking into account viscous effects, using Computational Fluid Dynamics (CFD).  
 
CFD is the art of replacing the integrals or the partial derivatives of fundamental physical principles in 
mathematical equations with discretized algebraic forms. The governing equations are basic physical 
principles of mass and momentum conservation. Its use in marine research has been gaining strength 
in recent years. Up to date, most CFD studies on large scale scenario were focused on the effect of 
biofouling on ship resistance, Khor and Xiao (2011), Demirel et al. (2017), Atencio et al. (2019), 
except a study conducted by Demirel et al. (2014), in which the effect of antifouling coatings on 
frictional resistance was predicted on a large-scale flat plate with the same wetted area of a large-scale 
ship.  
 
The aim of the present study is to analysis the hydrodynamic performance of existing antifouling 
coatings available from Jotun AS, and fill the gap between experimental scale drag testing and full-
scale ship resistance prediction by utilizing Computational Fluid Dynamics (CFD) method. 
 
2. Roughness function 
 
In order to understand the effect of hull-roughness on a ship’s penalty drag, some background of the 
wall-bounded turbulent boundary layer will be explained here. The mean velocity profile in the inner 
portion of a turbulent boundary layer, outside of the viscous sublayer, can be expressed as a classical 
and universal log law (Eq.1) and is independent of the flow conditions further away. 

𝑈+ =
1

𝑘
ln(𝑦+) + 𝐵        Eq. (1) 

where 𝑈+ is the non-dimensional mean velocity in the boundary layer and 𝑦+is the non-dimensional 
normal distance from the boundary.  
 
From numerical modeling point of view, the universalizability of the log law velocity profile is of 
great benefit since the velocity near the surface can be easily modelled based on Eq.(1) at any scale. 
This only applies when the solid surface is smooth and has no other dimensions or features that should 
be included in the dimensional analysis.  
 
Characterizing the drag of a rough surface implies finding the velocity decrement caused by the 
frictional drag of the surface as a function of the roughness Reynolds number. This relationship is 
commonly known as a roughness function, ΔU+ = f (k+), Clauser (1956), and is unique for a 
particular surface roughness geometry. Once the roughness function for a given rough surface is 
known, it can be used in a numerical analysis to predict the drag of any body with that particular 
roughness. 
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The most common numerical approach to model flow over rough surfaces is to modify the wall 
function formulation used for flow over smooth solid walls (Eq.1), by introducing the roughness 
function mentioned above, as Eq.(2).  
 

𝑈+ =
1

𝜅
ln(𝑦+) + 𝐵 − Δ𝑈+        Eq. (2) 

 
In the present study, 4 types of antifouling coating from Jotun, two different biocidal self-polishing 
coatings (SPC-1 and SPC-2), FRC, and a type hard coating (HC), were applied on the surface of lab-
scale panels (600×200 mm) first. The application was done after specification and the surface was as 
to be expected. To obtain the ΔU+, the full turbulent flow channel from the University of Strathclyde 
was utilized to measure the drag performance of the plates. Table I lists the roughness parameters of 
the tested coatings. In addition, 3D topographical views of the surfaces are shown in Fig.1 with an 
area of 40×40 mm. 
 

  

 
a) FRC 

 

 
b) HC 

 
c) SPC 1 

 
d) SPC 2 

Fig.1: Topographical 3D color maps and roughness/ waviness profile views of coated panels. 
Cut-off for 2D profiles 50 mm. The red line indicates the place of the taken 2D profile. 
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Table I: Roughness parameters Rq, Rt50 and Surface Skewness Sk of the different coated panels in µm 
Antifouling coating Rq [µm] Rt (µm, cut off 50 mm) 

FRC 2.54 ± 0.01 23.18 ± 8.83 
HC 2.53 ± 0.22 20.34 ± 27.73 
SPC-1  3.14 ± 0.03 24.31 ± 6.03 
SPC-2  4.19 ± 0.02 37.05 ± 1.66 

 
The roughness function (Δ𝑈+) in Eq.(2) can be obtained directly based on experimental results of the 
velocity shift by model fitting, as suggested by Anders et al. (2017). An expression of roughness 
Reynolds number 𝑘+ and Δ𝑈+ can be formulated as: 

Δ𝑈+ = 𝑎ln(k+) + 𝑏      Eq. (3) 

𝑘+ =
𝑘𝑈𝜏

𝜈
         Eq. (4) 

𝑘+ is called roughness Reynolds number and represents the ratio of a physical roughness height to its 
viscous length scale. The root mean square of the absolute height (Rq) is used as k in Eq.(4). a and b 
are fitted parameters of the model fitting. The curve fitting plots and the fitted coefficients for differ-
ent panels are shown in Fig.2. 
 

 
(a) FRC 

  
(b) HC 

 
(c) SPC1 

 
(d) SPC2 

Fig.2: Roughness function model fitting based on experimental data 
 
3. CFD model and validation 
 
The model ship KVLCC2 (Korean Very Large Crude Carrier), 326 m long was used for simulations, 
as presented in Figure 3. Data for validation are available for the KVLCC2 and was therefore used as 
test hull. The simulations were performed with NUMECA FineTM/Marine, using a steady-state, multi-
fluid model. The free surface is obtained by using the volume of fluid (VOF) method. The k-ω shear 
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stress transport (SST) turbulence model is used to model turbulence in the flow field. The flow over 
the ship surfaces is modeled by means of modifying the smooth wall function as described in the 
previous section.  
 

 
Fig.3: Side-view of the hull geometry. Waterline is located at z = 0 m 

 
A grid sensitivity study was carried in an earlier work using 4 domain resolutions containing 3 
million, 5 million, 8 million, and 11 million cells, revealing a sufficient converging for 8 million cells, 
so the used cell number was 8 million. The model was validation in advance using the experimental 
towing tank data by MOERI and is shown in Fig.4 for the KVLCC2 in full-scale. It shows the total 
drag over the Froude number, which is dependent on speed. The CFD results overpredict the 
resistance (6% maximum) compared to the scaled towing test but show similar trends as the 
experimental towing tank results by MOERI. This test was scaled in accordance with the ITTC (2017) 
procedure, which demonstrated the reliability of the CFD model. 
 

 
Fig.4: Speed-drag curve for the KVLCC2 in full-scale. Comparison between simulated and scaled 

towing tests by the ITTC (2017) procedure. 
 
4. CFD Simulation results 
 
After the validation of the CFD model, the newly developed roughness functions were incorporated 
into the wall function model to account for the roughness introduced by the antifouling coatings as 
listed in Table I. Fig.5 shows the percent increase of the total resistance of tested coatings compared 
to a hydrodynamics smooth ship hull. The simulation results of SPC1 and FRC have negative values, 
which would mean that the drags of these two cases are smaller than the smooth surface simulation. 
This drag reduction phenomena are due to the negative velocity shift (Δ𝑈+) observed from the 
experimental measurements from roughness function plot, Fig.2. The reason for this negative Δ𝑈+ is 
still under investigation. It is of note that the paint application was done in a laboratory setting and 
might have excluded environmental factors and resulted in a smoother paint application. The 
roughness Rt(50) of newly applied coatings commonly found on ship hulls are around 100-150 µm 
whereas that of the current laboratory are well below 100 µm. Hence, it is to be expected that the drag 
increase would have been slightly higher with a more realistic surface roughness. 
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The SPC1 and FRC coating reveal the better performance regarding the resistance, and HC results the 
highest drag penalty, followed by SPC2. However, these results contradict the measurements of the 
roughness parameters in Table I, where HC has the lowest Rq and Rt(50) but gives the highest drag 
penalty. This observation might suggest that using a single roughness parameter may not be enough to 
predict the performance of the antifouling coatings.  
 

 
Fig.5: Estimated percentage increase in total resistance compared with smooth surface for 15.5 kn 

 
The comparison shown in Fig.5 were for the KVLCC2 design speed of 15.5 kn. Two more velocities 
(14.5 and 16.5 kn) were calculated under the same condition. A higher ship velocity gives a slightly 
higher total resistance for all the coatings, Fig.6. However, the contribution of the frictional resistance 
decreases in the total resistance for higher speeds and the form resistance gets more dominant. It can 
also be seen that the observations from Fig.5 are valid throughout the tested speed range, indicating 
the consistence of the coating performance. 
 

 
Fig.6: Estimation of the percentage increase in total resistance compared with smooth surface 

 
5. Summary 
 
This study investigates the hydrodynamic performance of Jotun antifouling coatings on a full-scale 
container ship using CFD based on experimental results obtained from the University of Strathclyde. 
The aim is to estimate the full ship resistance caused by the antifouling coating products. Customized 
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roughness functions for different coatings were developed directly based on the turbulent channel 
experiments. The roughness functions were then implemented into the CFD code to account for the 
initial roughness introduced by coatings. The results show that the performance correlates with the 
roughness values. SPC1 and FRC have better hydrodynamic performance, while HC has the highest 
resistance even though it has the lowest roughness height. Further investigation will be forced on the 
prediction of resistance of the coatings after sea condition exposure with the slime formation and 
accumulation and on environmentally impacted applications with roughness higher than 100 µm. 
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Abstract 
 
A significant reduction in fuel can be achieved through operational changes, but to establish better 
practices, it is necessary to have equipment for evaluating the energy consumption under given 
circumstances and to be able to identify and evaluate energy-saving and cost-effective initiatives. Many 
smaller ferry companies have no tradition for documenting operations or digital performance 
monitoring and analyse of their energy and fuel consumption. Therefore, the ferry crew, rely mainly on 
their assumptions about parameters influencing the operation, and how this impact the fuel consump-
tion. The present study shows the results of analyses of more than one year of logged data from opera-
tions of an older small island ferry. The preliminary results indicate that via digital decision support 
and effective decision support the ship can reduce the fuel consumption and the emissions with 10-20%.
 
1. Introduction  
 
There have for many years been an increasing attention to sustainable maritime transport. The 
increasing focus on climate change problems have brought environmental questions and pollution 
prevention high on the international agenda and the International Maritime Organization (IMO), has 
put forward a series of measures aimed at reducing the total amount of greenhouse gas (GHG) emissions 
from ships. In April 2018 the International Maritime Organization, IMO, adopted an initial strategy 
aimed at reducing total annual GHG emissions by at least 50% by 2050 compared to the 2008 level, 
IMO (2018).  
  
The present study deals with green and energy efficient ferry operation. Ferry operators are as all other 
shipping companies interested in saving energy, not only to comply with regulation but also to reduce 
cost and to comply with the increasing demand for green transportation and sustainable transport from 
the costumers. The global ferry industry is very large, and the ferries play an essential role in transport-
ing people, cargo and vehicles. Interferry, an organisation representing the Ferry Industry World-Wide, 
estimates that there are approximately 1,300 ferries over 1,000 GT (gross tons) and thousands of smaller 
ferries globally. These vessels transport yearly 2.1 billion passengers, 250 million vehicles and 32 
million trailers. Many of these vessels are older and are therefore to be renewed and substituted by more 
carbon friendly vessels in the coming years. A large part of this reduction can be achieved by new and 
updated ship design and the introduction of new fuels or low carbon fuels, but the transition will not be 
fulfilled tomorrow, retrofitting and replacing older vessels with newer will take years. While this 
replacement process is ongoing there need to be a focus at the practical operation of the old vessels. 
Operating the vessels in an energy efficient way is very important for reaching the goal.  
  
The paper presents results develop in the EU funded project Ecoprodigi, https://ecoprodigi.eu/, where 
eco-efficiency of shipping has been improved by introducing digitalization solutions on board island 
ferries in Denmark. In accordance with IMO, The Danish Government has set the course for a more 
climate friendly future, with a target of reducing GHG emissions by 70% by 2030 and the aim of making 
shipping carbon neutral. The smaller island ferries are also part of this goal. In Denmark there are 42 
inland ferry routes operated by 52 vessels. The Island Ferries connect the Danish mainland to small 
islands of strategic importance, and their operations are supported financially by municipalities and 
government. The EU project involves four out of the 25 ferries. 
  
The aim of the present study is to present the great potential for energy savings to be achieved using 
digital performance data and monitoring tools to optimize the operational practices on board smaller 
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ferries. To illustrate and highlight the potential a case study of a small Danish ferry has been chosen. 
The crew has a lot of knowledge about the ship, route, and the operation, but need visual and accurate 
information about energy consumption and good energy practices. To establish a successful system for 
energy efficient operation, it is necessary to have equipment for evaluating the energy consumption and 
to be able to identify and evaluate energy-saving and cost-effective initiatives, monitoring systems are 
therefore a must. Even though that the importance of monitoring and analysing the performance of the 
ship is well known, only a few ferries systematically collect, store, and analyse data from the operation. 
Furthermore, research has also demonstrated that small shipping companies, as local ferry companies 
often will be, lack the resources to analyse, make decisions and implement energy efficient solutions 
Johnson et al. (2014), Poulsen and Johnson (2016).  
  
2. Ferry Operations, Digitalization and Energy Efficiency 
 
Performance can generally be defined as the amount of useful work performed by a system compared 
to the time and resources used. For a ferry the performance can be defined as resources used for a given 
voyage. It relates to the energy consumption compared to the amount of useful work to sail and 
manoeuvre the vessel through the water and supplying electricity and heat to the operation of the ship 
and comfort of crew and passengers on board. When designing a ferry, the performance and the energy 
efficiency is taken into considerations through an energy-efficient hull design, optimized hotel load 
efficiency and focus at energy-efficient engines at the right engine layout – but awareness to the daily 
operation is very important and a significant reduction in fuel consumption can be achieved through 
changes in the operational practices, see e.g., Jensen et al. (2018), DNV GL (2015), Eriksen et al. (2018), 
Viktorelius and Lundh (2019).  
 
2.1 Ferry Operation and voyage modes  
 
Ferries have a unique sailing pattern that differ from the normal operational patterns of other vessel 
types. They usually have shorter sea passage followed by longer stay in port engaged with loading and 
discharging passengers, cars and trucks. The sea passage will for many ferries, especially the smaller 
sailing near the coast, be influenced by complex navigation in congested waters with heavy traffic. The 
traffic might in periods be increased by fishing or pleasure boats sailing at random crossing the route. 
The navigation near the coast will probably be restricted because of sailing in narrow channels or the 
presence of shallow water giving a low keel clearance resulting in a relatively high speed reduction. 
The crew is therefore busy navigating the ferry and has only limited time for voyage evaluation or 
optimization. Furthermore, for the crew energy efficiency is secondary to safety on board - in operations 
where there is limited manoeuvrability due to traffic congestion, complex navigation, low water depth 
or other environmental conditions, the focus is, and will always be, on safety first. Parameters that also 
will refrain the crew and the shipping operator from thinking greener and having an energy efficient 
operation will be the large focus at passenger comfort and keeping the pre-planned schedule. 
 
A ferry sailing on a fixed route has good conditions for comparing operational parameters and thereby 
evaluate the level of energy efficiency. If a voyage having equal sailing distance and duration where 
the ship is exposed to comparable external conditions as e.g. similar wind and current, result in different 
energy consumption, a detailed analysis can identify reasons for the extra consumption.  In order to 
compare voyages, it is important that the operational condition of the vessel is known. The fuel 
consumption for the situation where the vessel is alongside in port is very different from the 
consumption when it is sailing at full speed. Therefore, for reasons of comparability, the voyage must 
be separated into clear and comparable segments. The present study uses the definition of modes, Fig.1, 
presented by Lützen et al. (2017) and Eriksen et al. (2018):  
 

- Manoeuvring where the vessel is operated under conditions restricting the vessel’s movements, 
such as arrival and departure from port.  

- Passage where the vessel is unrestricted in its manoeuvrability and able to operate at its design 
speed. 

- Harbour where the ship is stationary in port without using its own propulsion.  
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Fig.1: Modes – Harbour, Manoeuvring, Passage, Aro et al. (2020) 

 
For ferries, the total voyage time is fixed due to timetables. Spending more time in one mode means 
that less time is available for the others. Therefore, looking at one mode in isolation will not give a true 
picture of the energy efficiency of the entire voyage. But the modes can be used for sub-optimisation 
as external conditions and operational parameters within each mode are comparable. On board ferries 
the separation between the modes can with advantage be geographic positions, which will give similar 
distances for all modes – and thereby comparable modes across more voyages. 
 
As seen the whole operation is strongly controlled and regulated by the timetables, examining these is 
therefore of great importance.  Rethinking schedules and timetables will open up for energy savings, an 
issue also mentioned by Jensen et al. (2019) and Johnson and Styhre (2015). Changing the timetables 
might seem a simple solution but can in practice be very difficult as many stakeholders are involved. 
Keeping the time intervals but making room for a more dynamic planning can be considered as e.g. 
allowing shorter harbour stays in period with less passenger and cargo, to allocate more time for sea 
passage.  
 
2.2 Operational data sources and monitoring 
 
Modern ferries generate a large amount of data for a wide variety of operational parameters - 
navigational and engine parameters are monitored and displayed on the bridge. Even thought that data 
is stored in the vessel’s integrated control system, it is difficult to access, and it is often not possible to 
export data for analysis. On board older ferries operational data is only sparsely available. Minimum 
information for estimating the energy efficiency will typical be: 
 

- Navigational information as position and speed over ground available from the GPS and ECDIS 
- Relative wind direction and speed from an anemometer 
- Main engine RPMs and/or Power output from digital or analogue readings 
- Water depth will in some vessel be measured by an echosounder, but some vessels have only 

access to depth information from the chart or ECDIS 
- Fuel consumption measured by a flow meter though many vessels only monitor the fuel 

consumption by manual tank readings or by summing up bills from the weekly bunker 
purchases. 
 

Other operational parameters necessary for evaluating the energy efficiency can be available on board 
in varying number.  
 
To improve the performance or the energy efficiency of the ferry requires that the current energy 
consumption is mapped and known – then energy-saving initiatives and best practices must be 
identified. Therefore, various operations of the ship and the use of equipment must be carefully 
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examined. Monitoring systems are therefore a must. A range of commercial energy performance 
systems are available at the marked, e.g. Vessel Performance Solutions, www.vpsolutions.dk,  
Kongsberg Vessel Performance, www.kongsberg.com/digital/kognifaiecosystem/kognifai-market
place/maritime/vessel-performance, Marorka Marine Energy Management, www.marorka.com, and the 
performance monitoring system SeaTrend, www.forcetechnology.com/en/services/onboard-decision-
support-system. The problem is that these systems are mostly develop for long-distance sailing and 
cannot directly be used onboard working vessels or ferries.  Only very few systems can handle these 
vessels, one of these is developed by Insatech, www.insatechmarine.com. The company’s focus is on 
visualising data about fuel management and operation – they deliver a full package ranging from 
instrument installation, data collection and visualisation. BlueFlow, www.blueflow.se, has also 
developed an energy management package special for smaller ferries.    
 
The biggest problem is however, for both newer and older ferries, that, even when data is monitored, it 
is not stored, and very few ferry companies have resources to invest, and monitoring systems are 
therefore seldom installed in these vessels. Many of the ferry companies having installed performance 
systems struggle to find time for analysis and lack more in-depth training of crew on how to convert 
data into systematic evaluations of energy use and optimized daily operational practices. 
 
2.3 Parameters influencing Energy efficiency 
 
This section considers energy savings or energy efficiency initiatives that can be considered during all 
modes when the ship is in operation. The description will include parameters that will influence the 
performance of ferries and only parameters that are easy to measure and evaluate. It is therefore not a 
fully thorough list of parameters to be evaluated for a detailed analysis of parameters affecting the 
resistance of the vessel. The external environment conditions as wind, sea and current are unchangeable 
and the crew must adapt to the conditions at the present time. As the route normally is short and the 
time relatively fixed, it will in most cases not be possible to change the navigational conditions great, 
but it is of most importance that the crew know the influence. The course and speed must be adjusted 
by increasing or decreasing the speed to the suitable level. Fouling at the hull will have a great influence 
at the energy consumption. The smoother the hull is the lesser the resistance will be, and thereby it will 
sail faster for the same power output. The draught and trim will affect the resistance. Most vessels are 
designed for a specific amount of cargo giving a specific draught and for a given draught there also 
exists a trim, that minimises the propulsion power. For a ferry with frequent arrivals and short passages 
the trim issue will be considered during loading, but it will normally not be a parameter for optimization 
due to time limitation.  
 
During all modes a general instruction is to use the equipment most efficient. Reduce idling mode, start 
when needed and be aware of running equipment in most optimal load configuration. Be aware of the 
hotel load, turn off light, heat, and other electrical equipment when not in use.  
 
The energy consumption in harbour is relatively low compared to the consumption in other modes, but 
the length of the port stay may have a big impact on the subsequent passage, where most of the energy 
is consumed. Minimising the time in harbour and instead using the saved time for an increase in passage 
time allows for a decrease in speed and thereby a lower fuel consumption and less emissions. Therefore, 
when analysing energy-efficiency initiative in the harbour mode, it is important not just considering 
directly energy saving issues but also to consider time reduction proposals.  
 
Manoeuvring in the harbour is normally done manually and the length of the docking operation can 
vary greatly. The vessel is operated under conditions restricting the vessel’s movements and maybe also 
traffic congestion. The use of engines and thrusters must be carefully considered. The on/off switching 
must be considered such that idling is avoided. At the same time, it is also very important that the 
navigator is fully confident with the situation – safety is the most important factor. Manoeuvring the 
vessel is both time and energy consuming and more attention to the mode can probably increase the 
time for passage and thereby reducing the speed and energy consumption. It is important to evaluate 
this in more detail for the individual vessel and route. Will a short manoeuvre running the equipment in 

http://www.vpsolutions.dk/
http://www.kongsberg.com/digital/kognifaiecosystem/kognifai-marketplace/maritime/vessel-performance
http://www.kongsberg.com/digital/kognifaiecosystem/kognifai-marketplace/maritime/vessel-performance
http://www.marorka.com/
http://www.forcetechnology.com/en/services/onboard-decision-support-system
http://www.forcetechnology.com/en/services/onboard-decision-support-system
http://www.insatechmarine.com/
http://www.blueflow.se/
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high load be better than a longer manoeuvre with low equipment intensity? In the first case the vessel 
will have more time for the passage, but will this compensate for the extra energy used for the 
“aggressive” manoeuvre? 
 
During sea passage the parameters can be separated into two main topics. One regarding the engine – 
running the engine with optimal settings and adjust the speed to allow for “just in time” arrivals. 
Navigational considerations are also important for obtaining an energy efficient operation. In most 
ferries the voyage is pre-defined, and the same procedures have been followed for years. But is this the 
optimal route under all circumstances - the crew should maybe re-consider the navigation. If the vessel 
is passing areas with shallow water, it must also be evaluated if it is advisable to slow down the vessel 
in this specific area and thereby reduce the resistance. If avoiding passing these low water areas is 
possible a route change might be a good solution, but this must be analysed in more detail.  
 
2.4 Importance of Crew skills and training 
 
Monitoring systems are essential, but as it is the crew on board that operate the ship, their daily work 
practices play a significant role. It is important that the crew understand the basics of energy efficient 
operation and achieve the necessary training, which is emphasized in studies by Banks et al. (2014), 
Jensen et al. (2017) and Hansen et al. (2020). Installation of monitoring equipment on board must be 
followed by training Viktorelius and Lundh (2019) and Jensen et al. (2018), if the system is not intuitive 
to use or if the output is not meaningful for the crew, the system will not be used as expected. On board 
smaller ferries it will primarily be the crew themselves that will evaluate the output, and upon this plan 
for operational changes. 
 
3. Case study - Exploring the energy efficiency of a small ferry - Data collection  
 
A case study of a small Danish ferry is conducted to illustrate the great potential for energy savings to 
be achieved using digital performance data and operational optimization.  
 
3.1 The ship and the route 
 
The ferry, Fig.2, is sailing in the area south of the island Funen in Denmark, Fig.3. The trade is in 
between the city of Svendborg and the two smaller islands Skaroe and Drejoe. The ferry has on a normal 
day 8 voyages from Svendborg to Drejoe and return – which is expanded with an evening voyage 
Friday, Sunday and holidays. The sailing time is fixed to 75 minutes. 
 

 

Name m/f Hoejestene 
IMO 9169794 
Built/Yard 1997/ Tórshavnar Skipasmiðja 
LOA 31.00 m 
B 10.00 m 
Draught 2.10 m 
Service speed 11.6 kn 
Engines 2 x 750 kW Volvo Penta 

 

Fig.2: Ferry characteristics 

The area is heavily trafficked by smaller leisure boats in the peak period in the summer and outside this 
period there is very little traffic in the area. The ferry is staying overnight at Drejoe. The Skaroe stay 
may in the winter season be skipped in case of no passengers to and from the island. This information 
is conveyed to the vessel by a telephone call. 
 
The waters are confined with very little sea state even with high winds. The water depths are changing 
with very low water depths in some areas on the route. The current conditions change along the route 
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and is difficult to predict, due to the high dependence on the wind conditions. The magnitude of the 
current can vary up to 5 knots in peak periods. Between the two islands the ferry passes through a 
channel “Hojestene”, which is very narrow, and it is difficult for two vessels to pass at the same time. 
The water depth is very low in this area, and the vessel experience a great influence from the shallow 
water effect. The current is not pronounced in this area. 
 
 

 
 

Fig.3: The Route. Svendborg – Skaroe - Drejoe 
 
3.2 Performance data collection and visualization 
 
The fuel consumption was not measured on board when the project was initiated. As this parameter is 
essential a flowmeter was installed. All other measures were identified, and an automated data logging 
solution was installed. Data is logged and transmitted to a cloud server where it is accessible for 
researchers, crew, and route leaders via a software application developed by the University of Southern 
Denmark, Fig.4. As the vessel is relatively old, only few parameters are possible to measure and log. 
The following data were found accessible and measurable on board (all logged every 30 s): 
 

• Position (from ECDIS) 
• Heading - over ground (from ECDIS) 
• Speed - over ground (from ECDIS) 
• Dept (echo sounder) 
• Wind – direction and speed (anemometer) 
• RPM from starboard and port engine (ME tachometer) 
• Fuel consumption starboard and port engine (flowmeter) 

 

 
 

Fig.4: Dataflow – from equipment to computer 
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The current – direction and magnitude – is not measured in the area. It is possible to receive prognosis 
current information from meteorological institutes, but as the current is very wind dependent in the area 
these data must be used with caution. Current direction and magnitude can be estimated if speed through 
the water is measured. Unfortunately, a log is not installed onboard, only speed over ground is 
registered. 
 
A software module has been developed to create transparency and insights into vessel operations and 
performance. This enables the user to select and filter imported data sets with respect to a given period, 
sailing conditions and operational modes with the purpose of viewing, or plotting operational 
performance for one or more variables. The system enables the officers on board or shore staff to 
identify the most environmentally friendly way of operating the ship. The system is not a real-time 
decision support system, but a system for evaluating and reflecting on voyages in order to determine 
best operational practices. 
 
The presented study shows the results of analyses of more than one year of logged data from operations 
of the ferry. 
 
3.3 Voyage information  
 
The current analysis is based on data collected onboard during the whole year of 2020, from a total 
number of 2945 voyages. The distribution of time and fuel spent in the different modes can be seen in 
Fig.5. The distribution of the three modes passage, manoeuvre and harbour is respectively 56%, 11% 
and 34 % for the time and 79%, 13% and 9% for the fuel consumption. 
 

 
 

Fig.5: Time and fuel spent in different modes 
 

Table I: Voyage information for 2020 
 

 Voyages Average Minimum Maximum 
Drejoe-Skaroe-Svendborg 1313    

Fuel [litre]  90 64 129 
Time [minutes]  66.5 69 67.5 

Svendborg-Skaroe-Drejoe 1334    
Fuel [litre]  96 62 136 

Time [minutes]  68.5 72.5 84.5 
Drejoe-Svendborg 160    

Fuel [litre]  65 35 85 
Time [minutes]  57.5 61 60 

Svendborg-Drejoe 138    
Fuel [litre]  64 35 104 

Time [minutes]  58 63.5 59 
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The number of individual voyages including voyages where the island Skaroe has been skipped can be 
seen in Table I. The average, minimum and maximum fuel consumption and time used are also shown 
in the table. The large variation in fuel consumption – difference between minimum and maximum - 
can be due to parameters that cannot be changed such as different external conditions as wind or current, 
and traffic congestion, but it may also be due to the way of operating the ferry, this will be analysed 
further in Section 4. 
 
3.4 Challenges identified  
 
Based on interviews and observations, onboard, the researchers identified a set of challenges with 
respect to operations and energy efficiency. It was seen that the ferry crew rely on their training, 
experience and assumptions about parameters influencing the operation, and how this impact the fuel 
consumption. There has been no tradition for documenting operations or monitor the effect of actions 
taken. The effect of wind, water depth and currents have been based on assumptions and more related 
to safety, passenger comfort and schedule adherence than to performance. No documentations or 
baselines for e.g. speed or RPM versus fuel consumption are available, and therefore there has been no 
link in between engine settings and consumption. The apparent difference in fuel consumption on 
different voyages, see Section 3.3, calls for a deeper analysis of root causes. Unfortunately, factors that 
may influence the performance as e.g. navigational difficulties or late departures due to a large number 
of cars or passengers are not registered today, therefore the analyses must be based on logged data only.  
 
4. Case Study - Exploring the energy efficiency of a small ferry - Performance Analysis 
 
Four different analyses have been chosen for illustration. Analyses that will provide the crew with useful 
information and knowledge, which can help them to evaluate and improve the performance of the ferry 
in the future.  
 
The four analyses: 
  

• Baselines - creation 
• Shallow water effect on speed and fuel consumption 
• Wind effect – added resistance and fuel consumption 
• Time schedule analysis 

 
All analyses are based on data logged on board the vessel during the year 2020 – a total of 2945 voyages. 
The visualization software described in Section 3.2 has been used to extract data for further analyses.  
 
4.1 Baselines - Creation 
 
Baselines for speed and engine relationship did not exist for the vessel, therefore a new set of curves 
for were created based on measured and logged data.   
 

• Speed (over ground) versus fuel consumption 
• RPM versus speed (over ground) 
• RPM versus fuel consumption 

 
Data filtering have been applied to eliminate influencing factors from wind and water depth (heavy sea 
is normally not present in the area). The resulting deep water, calm sea baseline curves can be seen in 
Figs.6 and 7. Here data from one year of logging has been fitted by polynomials to the best curve.  
Speed/fuel polynomial of degree 3, RPM/speed degree 2 and finally RPM/fuel degree 3. Fig.6, left, 
shows the fuel consumption as function of the speed. Right diagram in Fig.6 shows the average speed 
distribution for all voyages. The fuel consumption curve is dramatically steep in the operational area of 
about 10 kn. Meaning that just a small speed increase will result in a large fuel increase. For example, 
will a speed increase from 10 to 10.5 kn gives increased consumption of approximately 20%.  
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Fig.6: Left: Fuel consumption versus speed. Right: Speed distribution 

 

  
Fig.7: Baselines for the vessel. Left: RPM versus speed. Right: RPM versus fuel consumption 

 
Fig.7 left and right show the RPM versus speed and fuel consumption respectively. The RPM curves 
will be a very useful tool for the crew on board most vessels, as it is the RPM setting that will be the 
input factor when they change the speed of the vessel.   
 
4.2 Shallow water effect on speed and fuel consumption 
 
The vessel is passing several areas where the water depth is low. The low water depth greatly influences 
the vessels speed for given RPM. Fig.8 shows the depth below keel and speed of the vessel when passing 
the “Hoejestene” channel. The figures show that passing areas with a depth between 3.5-4.5 m, the 
shallow water effect will result in a relatively large speed reduction.  
 

  
Fig.8: Left: Depth below keel, measured. Right: Vessel speed passing the channel 

 
Fig.9: shows the speed versus the fuel consumption for varying water depths. The deep-water baseline 
curve is shown for comparison. It can be seen, that if RPM (and thereby the fuel consumption) is 
maintained as given for 10 kn, it will result in a speed reduction of about 4%, 8% and 15% for water 
depths of 8 m, 6 m and 4 m, respectively. If on the other hand a speed of 10 kn is maintained when 
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passing the channel, the increased fuel consumption will be 8%, 24%, and 70% for the same water 
depths.  

 
Fig.9: Fuel consumption as function of speed for various water depths 

 
4.3. Wind effect – added resistance and fuel consumption 
 
The axial wind force acting at the ship can be determined by:  
 

𝑅𝑥 =  
1

2
𝜌

𝐴
𝐶𝑥𝐴𝑉𝑇𝑉𝑅

2    (1) 
 

ρA is the mass density of air, Cx the axial wind force coefficient, AVT the projected area of the ship above 
the waterline and VR the relative wind velocity. The axial wind force coefficient Cx can be determined 
by through model tests in wind tunnels, but in cases where these tests are not performed, the coefficient 
can be estimated by use of general equations. Here the empirical method suggested by Isherwood (1973) 
is used. Isherwood analyzed a number of wind tunnel tests on various ship types. Data from the tests 
were analysed by multiple regression techniques and was fitted to an equation for the axial wind force 
coefficient Cx: 
 

𝐶𝑥 =  𝐴0 + 𝐴1
2(𝐴𝐿+𝐴𝑆𝑆)

𝐿𝑂𝐴2 + 𝐴2
2𝐴𝑇

𝐵2 + 𝐴3
𝐿𝑂𝐴

𝐵
+ 𝐴4

𝑆

𝐿𝑂𝐴
+ 𝐴5

𝐶

𝐿𝑂𝐴
+ 𝐴6𝑀  (2) 

 
LOA is the length overall, B the breadth, AL the lateral projected wind area, ASS the lateral projected area 
of superstructure and deck cargo, AT the transverse projected wind area, S the length of perimeter of 
lateral projection (excluding waterline and slender bodies), C the distance from bow to the center of 
lateral projected area and M the number of distinct groups of masts or king posts. 
 
The constants A0 to A6 are derived from tests and can be found tabulated in Isherwood (1973). The 
specific ship related constants are determined from general arrangements drawings of the vessel. 
 

LOA B AL ASS AT S C M 
35 m 10 m 170 m2 25 m2 80 m2 80 m 17 m 1 

 
Fig.10 shows diagrams for the axial wind force coefficient and axial wind force for the ferry Hoejestene. 
Both values are shown as function of the relative wind direction. 
 
The relative wind is measured by an anemometer on board the ferry Hoejestene. Fig.11 shows the 
distribution of the relative wind parameters, direction, and speed, for the year 2020. Left figure shows 
the wind for passage through the channel “Hoejestene”, the right for the passage of the sound between 
Funen and the Island Taasinge. It can be seen that westerly winds are dominant, and that the vessel will 
be in the lee of land when passing the sound. 
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Fig.10: Left: The axial wind force coefficient. Right: The axial wind force (Hoejestene) 

 
 

  

Fig.11: Wind distribution, relative wind – left channel, right sound 
 
The extra power due to the wind resistance can be determined  
 

∆𝑃 = 𝑅𝑥 ∙ V    (3) 
 
Unfortunately, no SFOC curves are available for the engines on board but knowing the engine type and 
size a good estimate can be made for the extra fuel consumption due to wind. Figure 11 shows the fuel 
consumption as function of the vessels speed. The baseline is shown together with two examples of 
sailing in head wind with a measured relative wind at 6 and 12 m/s respectively. The figure shows that 
sailing at 10 knots and measuring a relatively wind from ahead of 12 m/s (corresponding to an absolute 
wind speed of 6.9 m/s ~ Beaufort 4) the fuel consumption will increase with approximate 8%. If a 
relative wind of 6 m/s is measured (~Beaufort 1) the increase will be approximately 3%. 
 

 
Fig.11: Fuel consumption as function of vessel speed, baseline and in head wind 
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4.4. Time schedule analysis 
 
Analysing all voyages during 2020 shows that for voyages Drejoe-Skaroe-Svendborg (both directions) 
the average fuel consumption is between 90 and 96 litres and the transit time used is below 70 minutes. 
There can be reasons for not using the scheduled 75 minutes e.g. because of extended harbour stay due 
to many passengers in summer vacation. The main reason is probably that the crew onboard are not 
aware of the sailing condition for the whole coming voyage and therefore sail with a slightly higher 
speed than necessary to avoid being late for the next arrival. Today the crew does not have any 
instruments available that can help them to evaluate the coming voyage and thereby adjust the speed to 
arrival “just-in-time”. Data shows that the ferry arrives about 5 minutes to early in most voyages. If 
these in-effective minutes are converted to sailing time – the speed of the vessel can in average be 
reduced from 10.2 to 9.3 knots and the fuel consumption by not less than 20%. Here the baseline curve 
for speed versus fuel consumption, see section 4.1, is used for estimation. 
 
The analysis shows that if the island Skaroe is skipped, see Table 1 in section 3.3, the fuel consumption 
can be reduced by nearly 30%. Additionally, for these voyages the scheduled voyage time is not fully 
used, and the vessel will often arrive more than 10 minutes before scheduled.  
 
6. Discussion 
 
To improve the performance or the energy efficiency of the ferry requires that the crew has tools to help 
them estimate the fuel consumption and to be able to identify and evaluate energy-savings and cost-
effective initiatives. The present study has shown that it is possible to provide a relative old ferry with 
enough information to estimate their performance. The crew did not have any information related to the 
fuel consumption and they relied on their assumptions about parameters influencing the operation. The 
study has shown that with just measuring a few data systematically, it is possible to provide the crew 
with valuable information. 
 
The baseline curves for speed and engine relationship were created. These curves are of greatest 
importance when estimating the vessel performance. The baseline curves are very illustrative, and they 
give the crew information about how even smaller speed reductions can reduce the energy consumption 
dramatically. Sailing at shallow water at some areas of the route must be taken into account when 
planning the whole voyage. The shallow water analysis clearly shows that it is important to consider 
the speed setting through the area. The external environment conditions as wind, sea and current are 
unchangeable and the crew must adapt to the conditions at the present time of the voyage. As the route 
normally is short and the time relatively fixed, it will in most cases not be possible to change the 
navigational conditions much, but it is of most importance that the crew know the influence.  
 
It must be remembered that the crew is very busy navigating the ship and has only limited time for 
voyage evaluation or optimisation. Furthermore, for the crew energy efficiency is secondary to safety 
on board - in operations where there is limited manoeuvrability due to traffic congestion and complex 
navigation, the focus is, and will always be, on safety first. Therefore, the above information is valuable 
for the crew and a great fuel reduction can be achieved by studying curves and evaluating the sailings, 
but to have the fully effect of the information a decision support tool would be preferable. The tool must 
be very simple to use – just a few inputs and outputs – like using an APP at their mobile phone.  
 
Not having a decision support tool, the different speed settings can be very difficult for the crew to 
estimate and they will probably be sailing too fast, which the analysis also showed. The crew is not 
aware of the conditions for the coming voyage in total and therefore sail with a little higher speed than 
necessary to avoid being late for the next arrival. The tool can help the crew to adjust the speed to a 
suitable level. If this is done properly the vessel will arrive in due time and will not use unnecessary 
energy because of sailing too fast. The ferry has a schedule with fixed timeslots, therefore reducing the 
speed in some areas will also result in a necessary speed increase in others. During shallow water 
passages the speed must be reduced, increase during deep water passage, increased during strong head 
wind slowed down during tail wind etc.  
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Re-considering schedules is today an overlooked issue for smaller ferries and a lot of energy can be 
saved allowing for longer time at sea. Keeping the time intervals and making room for a more dynamic 
planning as e.g. shorter harbour stays in periods with less passenger and cargo allowing for a longer sea 
passage or even skipping voyages with only few passengers will reduce the fuel consumption signifi-
cantly. Also, a smart and effective booking system may be useful, as knowing the number of passengers 
beforehand will give the crew good information about time required for the coming harbour stay.  
 
Training the crew in being aware of energy consumers on board and in the use of digital performance 
tools can contribute to the savings. The importance of training the energy awareness and educating the 
crew within the subject has been emphasized by e.g. Banks (2015), Jensen et al. (2018) and Hansen et 
al. (2020). Focus at energy communication is also an issue that requires training and special awareness, 
Jensen et al. (2018). Sharing knowledge and experiences is important for finding and develop new 
shaving initiative and keeping the crew involved and motivated.  
 
6. Conclusions 
 
The study has shown that digitalization of ship operations, even with very few data point, can be of 
great value when evaluating the performance of a ship.  
 
The operational of a nearly 25 years old ferry with a length of 31 meter transporting a maximum of 98 
passengers have be analysed and great energy savings potentials are found. The wind effect and the 
shallow water effect has been analysed and the importance of taking these factors into account have 
been illustrated.  
 
The importance of using the available time – not coming too early – is shown. Currently, the vessel 
typically arrives 5 minutes too early - if these minutes are converted for sailing, the fuel consumption 
can be reduced by not less than 20%. The effect of having a good booking system have also been 
demonstrated. If there are no passengers for the middle Island “Skaroe”, the arrival can be skipped, and 
the energy can be reduced by nearly 30%. Allowing for shorter harbor stays and converting harbor time 
to sailing time will be of great importance. The analysis showed that if the vessel can reduce the speed 
by e.g. half a knot – from 10.5 to 10 knots – the energy consumption is reduced by approximately 20%.  
 
The study has been conducted upon data from a small ferry sailing in Danish waters, but it is assumed 
that the findings can be used as guidance for smaller ferries and vessels with shorter sea passages 
worldwide. 
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Abstract 

 
When analysing the performance of a vessel in seaway, wind waves are taken into account in different 
ways. However, swell is usually left out of the equation. Swell can be of significant height, and 
wavelength that is close to the length of the vessel, and thus represents a significant source of added 
resistance in some cases. On the other hand, swell can be well represented with a single wave 
frequency, which makes it easier to model numerically. In this paper we will investigate how much 
speed can be lost due to swell using CFD simulations.  
 
1. Introduction 
 
Even though swell can have a significant impact on the performance of vessels at sea, it is often not 
considered when making commercial performance assessments by weather routing companies 
(WRC). Since these companies have become the de facto standard to measure the performance of 
vessels at sea, this often leads to performance claims being put forward by the characters to owners, 
that are inaccurate because the swell component is ignored. This is although vessels are often not 
warranted in swell, or where they are, that the swell factor is not calculated by the WRCs. 
 
In time-charterparties (i.e. contracts between charterers and the shipowners regarding the charter of 
the vessel), vessels are described as being able to perform in defined good weather conditions. Each 
segment of shipping has their own usual definition of 'good weather' with tankers being the simplest: 
usually just a Beaufort number. Under such conditions then good weather periods are very easy to 
observe. With dry bulk vessels, the definition of good weather is rather more involved. The definition 
of “good weather” is agreed upon in the charterparty; often by reference to Douglas Sea State which is 
a sea state of a local sea without the influence of swell. WRCs often present just a swell height in their 
reports and allow themselves to consider whether swell heights above or below a certain limit are 
considered in or out of good weather. The trouble is how to set a threshold of swell height above 
which the performance is not guaranteed. According to most charterparties, any measurable swell 
would disqualify the conditions as good weather. This is because the effects of swell are swallowed 
up in the WRC methodology, but if they would be analyzed and given a value, this would change the 
performance speed of the vessel and in most cases reduce the claim - or possibly be the difference 
between there being a claim or not. 
 
Despite this, many WRCs simply ignore the swell, Morska et al. (2010). Most WRCs issue their 
reports based on their own methodology that is only loosely based on the warranted terms that the 
owners and charterers have agreed amongst themselves in the charterparty. WRCs are usually 
employed as a subcontractor to measure a vessel's contractual performance but instead end up 
monitoring the vessel on their own terms and do not follow the actual contractual terms. Any 
arguments on the topic of the influence of swell on the vessel performance are difficult to make 
because the charterers do not, in most cases, understand how the reports of WRCs have been 
prepared. It is not easy to establish the effect of swell on ship speed, but it is certainly possible. 
However, wind waves are usually defined either in terms of mentioning a specific maximum height, 
or by reference to the Douglas Sea State itself and are therefore easier to include in 'good weather'. 
This is why voyage periods of good weather where only a significant wave height is recorded are not 
relevant when analyzing whether the vessel performs as warranted because the swell component has 
been lost in the significant wave height - being a combination of wind waves and swell. 
 
The aim of this paper is to quantify the effect the swell has on ship speed. The study is performed for 
two actual claims with two different drybulk vessels, a Handysize and a Capesize, where the goal is to 
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investigate the extent to which swell caused the claimed underperformance of the vessel. For this 
purpose, Computational Fluid Dynamics (CFD) is applied on this problem taking into account the 
nonlinear nature of the flow around the vessel and its motion in regular swell waves. Software called 
the Naval Hydro Pack is used for all simulations. 
 
2. Numerical method 
 
The Naval Hydro Pack is a CFD software based on collocated Finite Volume method which uses 
Level Set for interface capturing. Special discretisation techniques are employed based on the Ghost 
Fluid Method to guarantee high accuracy of the two-phase flow model Vukčević et al. (2017). 
 
For a simulation of a vessel in oblique regular waves, a self-propelled vessel is simulated with three 
degrees of freedom: heave, pitch and roll. The ship’s propeller is modelled using the actuator disc 
model where a pressure jump is prescribed on a circular surface representing the propeller. The key 
feature of the algorithm is the ability to assess the undisturbed propeller inflow velocity without the 
need to perform a separate open water calculation Jasak et al. (2018). For simulations in waves, 
regular waves are generated in CFD using Stokes second wave theory. Waves are introduced into the 
CFD domain and damped out of it using implicit relaxation zones,  Jasak et al. (2015). 
 
2. Approach procedure and assumptions 
 
The approach to calculating speed loss of ships in swell is outlined here, together with some important 
assumptions necessary to carry out the analysis. Given that the actual geometry of the two vessels at 
hand is not available in the form of CAD files, a similar vessel geometry is used which is scaled to 
correspond to the parent geometry. The replacement CAD geometry corresponds to the publicly 
available Japan Bulk Carrier (JBC) hull model, due to its similar hull form and characteristics 
compared to the two vessels. By applying affine transformation to the JBC model, the following 
characteristics correspond exactly between the parent hull and the JBC CAD model: 
 

• Displacement of the vessel, 
• Inertia of the vessel, 
• Overall dimensions: breadth, and draft, 
• Propeller characteristics, 

 
while small differences in length are allowed (< 0.5%). The JBC vessel has a similar stern shape and 
bulbous bow compared to both the Capesize and Handysize in this study. The following assumptions 
are posed to justify the use of another hull form for the study, rather than the geometry of the actual 
vessel: 
 

1. Swell waves have wave lengths of the same order of magnitude as the length of the vessel. 
2. Main vessel dimensions, mass and inertial properties are dominant parameters determining 

the behaviour of the vessel in these waves, rather than local details of the hull form. 
3. A relative difference in speed of the transformed JBC hull is comparable to the difference in 

speed of the parent hull, i.e. the relative differences in resistance in calm water and in waves 
are comparable, even if the JBC hull form and the parent hull form will not have the same 
calm water resistance. 

 
The procedure of determining the speed loss of the vessel in swell comprises the following steps: 
 

1. Calculating the delivered shaft power 𝑃𝐷 and RPM at minimum warranted ship speed 𝑉𝑚𝑖𝑛 in 
calm seas, 

2. Applying the RPM calculated in calm seas to swell conditions and calculating the average 
speed  𝑉𝑆 achieved by the vessel. 
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By using this approach, where the same method is used to compute the speed in calm water and in 
waves, the quality of comparison is ensured since both results are obtained in comparable conditions. 
The only difference between the results is the swell, which is absent in the calm water simulation. The 
effects of ship and propeller fouling, wind, hull production imperfections and others are mitigated, 
and their effect does not impair the quality of the present comparison. Both the calm water and the 
simulation in swell assume perfectly smooth hull (hydrodynamically smooth) without imperfections, 
and conditions without wind. This provides a leveled ground for comparison of the two calculations. 
The difference in speed therefore must be a consequence of swell alone. 
 
3. Vessel characteristics 
 
The subject of the study are two vessels: a Capesize and an Handysize vessel. Their main particulars 
are shown in Table I: and Table II, respectively. The loading conditions for both vessels are selected 
as averages reported on the voyage segments which were the subject of charter’s claims towards the 
owners. The tables also contain the particulars of the scaled JBC to fit the corresponding vessel’s 
main characteristics. It can be seen that very good similarity is achieved indicating that the hull forms 
are similar in shape, allowing for the scaled JBC to have similar length for the same displacement.  

 
Table III lists the swell characteristics for both vessels, including the height, period, length, and 
direction of the swell. The swell characteristics correspond to the actual conditions present on the 
claimed voyage periods of both vessels, as reported by the ship’s log and hindcast data. The ships are 
simulated with the rudder and a propeller. Fig.1 shows the JBC vessel with the rudder in side view. 
 

Table I: Capesize vessel main particulars 
 Original vessel Scaled JBC 

LWL 282.20 m 281.00 m 
B 45.00 m 45.00 m 
T 7.35 m 7.35 m 
∇ 75 814.8 t 75 814.2 t 

𝑉𝑚𝑖𝑛 13.0 kn N/A 
 

Table II: Handysize vessel main particulars 
 Original vessel Scaled JBC 

LWL 194.00 m 193.80 m 
B 32.26 m 32.26 m 
T 12.48 m 12.48 m 
∇ 68 009.0 t 68 009.0 t 

Trim 0.90 m 0.90 m 
𝑉𝑚𝑖𝑛 13.0 kn N/A 

 
Table III: Swell characteristics 

 Capesize Handysize 

Swell height H 1.51 m 1.70 m 
Swell period, TS 9.0 s 10.0 s 
Swell length, LS 126.50 m 156.10 m 
Swell direction 160° 337° 
Vessel’s heading 187° 293° 
Effective period, TE 6.32 s 7.85 s 

 

 
Fig.1: Side view of the vessel 
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4. Analysis and results: Capesize vessel 
 
In this section the results of the analysis of speed loss in swell for the Capesize vessel are presented. 
The simulation in calm seas is conducted with minimum warranted speed of 13 kn, while the RPM of 
the propeller is the unknown that is sought for. Along with RPM, the thrust, torque, thrust power and 
delivered power of the propeller are also calculated. Table IV: shows the results in tabular form, while 
Fig.2 shows images of the simulation: perspective view from the bow, from the stern, and top view of 
the wave field generated by the vessel, respectively. 
 

Table IV: Results of the self-propulsion simulation in calm sea for the Capesize vessel 
Propeller thrust T 859.05 kN  
Propeller torque Q 895.61 kNm  
Thrust power PT 3172.8 kW  
Delivered propeller power PQ 5944.7 kW  
Propeller rotation rate 63.36 rpm  

 

 
Fig.2: Flow field calculated for the Capesize vessel in calm seas 

 
As explained above, the RPM calculated in calm seas are applied to the vessel sailing in swell which 
was reported at the time of the voyage segment in question, shown in 
Table III. For this case, the speed loss is calculated by allowing the vessel to surge in the numerical 
simulation, i.e. the speed of the vessel is not fixed. Initial speed of the vessel is set to 13.0 kn, and the 
vessel adjusts her speed with respect to the added resistance of swell. 
 
The simulation in swell is carried out for 67.7 s of real time, which is 10.7 encounter periods of the 
swell. Speed loss is calculated for the time interval between 30 and 67.7 s, where the vessel has 
entered a regular sinusoidal pitch and heave motion, as well as speed. Fig.3 shows pitch and heave 
motion of the vessel, where the vessel undergoes small but significant motion oscillations. Roll 
motion is also shown, with very small oscillations that are insignificant. 
 
Fig.4 shows the speed signal of the vessel in swell. Here, it is clearly visible that the vessel starts 
losing speed from the beginning of the simulation, until finally it settles in a regular sinusoidal 
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oscillation without changing the mean of speed. The average speed loss is 0.67 kn, with an oscillation 
of 0.08 kn around the mean value. Thus, the ship speed in swell is around 12.33 kn. 

 
Fig.3: Motion of the Capesize vessel in swell 

 
Fig.4: Speed of the Capesize vessel in swell 
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Fig.5: Capesize vessel sailing in swell conditions 

 
Fig.5 shows images of the vessel sailing in swell conditions, where the relation between the size of the 
vessel and length of the waves can be appreciated. The length of the ship is approximately equal to 
two wavelengths, which makes the energy transmission between the wave to the ship relatively 
intense. This is the reason why despite the small wave height, the swell is reducing the speed by a 
significant 0.67 kn. 
 
5. Analysis and results: Handysize vessel 
 
In this section the results of the analysis of speed loss in swell for the Handysize vessel are presented. 
Same as for the Capesize vessel, the simulation in calm seas is conducted with minimum warranted 
speed of 13 kn, while the RPM of the propeller is the unknown that is sought for. Table V shows the 
results in tabular form, while Fig.6 shows images of the simulation: perspective view from the bow, 
from the stern, and top view of the wave field generated by the vessel, respectively. 
 

Table V: Results of the self-propulsion simulation in calm sea for the Handysize vessel 
Propeller thrust T  640.1 kN  
Propeller torque Q  470.4 kNm 
Thrust power PT 2587.2 kW 
Delivered propeller power PQ     5181.9 kW 
Propeller rotation rate 105.2 rpm 

 
As opposed to the approach used for the Capesize vessel for calculating speed loss in swell, where the 
vessel is allowed to move in the longitudinal direction in order to settle to the equilibrium speed, in 
this case a different approach is used, where the speed of the vessel is fixed, and three different speeds 
with the same imposed RPM are simulated. The reason behind this change in approach is the fact that 
the former approach proved to be inefficient due to a larger speed loss in this case, which caused the 
simulation to converge very slowly, i.e. a large amount of time would be needed for the vessel to 
change the speed and settle it. It is more efficient in this case to run several simulations with fixed 
vessel speeds, and then interpolate the tree results for the point where the average resistance is equal 
to average thrust generated by the propeller. 
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Fig.6: Flow field calculated for the Handysize vessel in calm seas 

 
The RPM of the propeller are set to 105.18, and the vessel is simulated in swell with speeds 11, 11.5 
and 12.5 kn. For the three simulations, the difference between thrust and average resistance is 
calculated. Based on this data, the speed at which this difference would be zero is assessed by using 
linear interpolation. The vessel is exposed to swell and it is allowed to pitch, roll and heave. All 
simulations are carried out for at least 5 encounter periods of the swell.  The thrust and resistance are 
averaged over these 5 periods and compared. 
 
Fig.7 shows the motion of the vessel in swell at 11.5 kn speed. The pitch and heave motion are 
significant, with pitch motion oscillating between -0.8° and 0.4° from trough to peak, and heave 
motion between -0.5 and 0.2 m. Roll shows low frequency oscillation with an amplitude of 0.6°. 
 
Table VI shows the average resistance and thrust calculated for 11, 11.5 and 12.5 kn in swell. The 
difference between resistance and thrust is also shown, which needs to be zero in order for the vessel 
to be in longitudinal force equilibrium. A negative difference indicates that there is a deficit of thrust 
meaning that the vessel will reduce her speed. Using linear interpolation it is calculated that the speed 
of the vessel in swell is 11.15 kn, making the speed loss equal to a significant 1.85 kn. 
 
Fig.8 shows the CFD simulation of the vessel sailing in swell, where it can be observed that the swell 
is larger compared to the ship comparing to the Capesize vessel simulation. In this case, the wave 
length is similar to ship length, producing a larger relative resistance and consequently reducing the 
speed by 1.85 kn. 
 
Table VI: Average resistance and thrust in swell for different speeds for the Handysize vessel. 
Negative difference indicates thrust deficit (ship decelerating), and positive denotes thrust sufficit 
(ship accelerating). 

V Resistance Thrust Difference 
11.0 kn 743.2 kN 754.6 kN 11.4 kN 
11.5 kn  750.6 kN 722.4 kN -28.3 kN 
12.5 kn 783.8 kN 659.6 kN -123.2 kN 
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Fig.7: Motion of the Handysize vessel in swell at 11.5 kn 

 
Fig.8: Handysize vessel sailing in swell conditions 
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6. Conclusion 
 
The CFD method has been applied to the problem of speed loss in swell to quantify the effect of swell 
on vessel performance for two vessels which were subjects of charterparty claims. In the numerical 
approach the two vessels were exposed to swell conditions present on the claimed voyage period, and 
the respective speed loss is calculated. The numerical procedure ensures that the calculated speed loss 
is caused only by the swell, disregarding any other phenomena that could otherwise influence the 
performance of the vessel, and isolating the swell effect on the performance of the vessel. 
 
Both vessels, one Capesize and one Handysize, had a minimum warranted speed of 13 kn. The CFD 
study shows that the speed loss of the Capesize vessel is 0.67 kn, while for the Handysize vessel it is 
1.85 kn. In both cases the speed loss surpasses the difference between the recorded ship speed and 
minimum warranted speed which is the main argument of both claims. This demonstrates that without 
swell, both vessels would have performed as warranted, i.e. with the speed above 13 kn. 
 
The results of this study suggest that more attention needs to be given to swell when observing the 
performance of the vessel, especially in the event of performance claims. The influence of swell needs 
to be considered for the performance review to be fair to both parties, shipowners and charterers. 
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Abstract 
 
This paper provides an overview of the necessary steps from data acquisition to the provision of high-
quality data via API. The continuous maintenance of the primary data sources and the validation of 
time series data is often underestimated. Problems are detected late and randomly and are mostly 
solved after a downtime period during an onboard service. To profit from the optimization potential 
which has a trustworthy database as precondition, a professional service on short notice is required - 
regardless of the ship's sailing area and position. Furthermore the travel restrictions caused by the 
Covid pandemic are playing an increasing role in remote maintenance. In addition to technical 
possibilities for creating an infrastructure in compliance with cybersecurity aspects, this paper 
reflects the technological trends in remote support and service in the maritime industry with respect 
to the autonomous operation. 
 
1. Introduction  
 
The interest in validated operating data, which will be provided for further worldwide usage via an 
API, continuously grows. In addition to the optimization potential, the need for further related 
information and recommendations for actions onboard, which are derived from the transferred data, 
also increases. Compliance with regulations and reports on emission reduction and ballast water 
treatment are just a few examples. In summary, for a validated data basis the possibility of access in 
the event of an error has become the main success factor. 
 
For an optimized vessels operation, the access option to restore the desired state in the event of 
incorrect behaviour is therefore necessary. The availability of data for reporting and operational 
optimization can be visually compared with the tip of an iceberg. The work and process steps that 
have to be carried out, however, are represented visually by the much larger part of the iceberg under 
the waterline. If the infrastructure for remote support or remote maintenance is not available or is only 
created with a delay in time, the usability of data records must be decided on a case-by-case basis. By 
experience, the data sets with invalid signal sources cannot be taken into account for machine learning 
approaches of characteristic maps, or for evaluations relating to all aspects of fleet management. 
 
2. Provide sensors and signals - Commissioning as "The Challenge before the challenge" 
 
The database for optimization potential and automated reporting without manual input requires the 
automated data acquisition of nautical data, such as ship speed, rudder angles, trim and drafts. Fuel 
consumption, main engine power and speed as well as weather information must also be recorded, 
Reimer (2020). The equipment with sensors as well as the acquisition and further processing of the 
data into a standardized and comparable database is described in detail in ISO 19030-2 (2016). For 
systems that have been installed or expanded since 2020Q1, the "challenge" begins with the commis-
sioning. Since then, international travel has only been possible under strict conditions. 
 
The individual installation work during commissioning requires the knowledge of trained service per-
sonnel. Since the infrastructure for remote support can be as individual as the systems installed on 
board, the provision of connectivity should be defined by a central place. Even if the ship usually has 
a satellite connection and the crew has LTE-capable devices, this cannot and should not be a prerequi-
site for successful commissioning. The responsibility and sovereignty over the documentation and the 
software used, taking cyber-attack vectors into account, must not be randomly. The technology trend 
of remote maintenance, which is becoming more and more prevalent, is advancing rapidly in the on-
shore industry. The infrastructure and provision of a fast Internet connection for transferring software 
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installation packages, video calls or accessing web-hosted video tutorials, are already seen as standard 
on shore. In the maritime industry, this precondition for connectivity must first be created. However, 
since the data to be acquired by the sensor system is essential for success, a solution for commission-
ing must be found by trained technicians. Solution scenarios and possible uses are described in the 
section "Remote Service Ability". 
 
3. Primary signals need to be validated and maintained 
 
After successful commissioning, the system and sensor supplier is responsible for ensuring a high data 
quality. The continuous data maintenance with fault detection and service and spare parts planning 
with its resulting activities, are ideally part of an integrated process. Recognizing implausibility in the 
sensor data poses a major procedural challenge for the operator, if the manufacturer does not have 
access to the data. However, software providers who provide optimization solutions for fleet man-
agement do not have the in-depth required system and component know-how. The technical clarifica-
tion with several involved companies often turns out to be tedious and is associated with high over-
head to the worse of the operator. Until an issue had been clarified, the data records can often not be 
trusted until they have been solved. As an example, the white paper 2020, Reimer (2020) and Harcke, 
2019) mentioned a dynamic failure of the speed through water of around 1 kn (16 kn real / 17 kn 
measured). For an exemplary 350 m sample container vessel with a design speed of 20 kn, this incor-
rect determination already results in an error in the performance determination of over 10%. This 
wrong value is higher than the optimization potential. Implausibility is usually not detectable by the 
sensor even with a self-validation, so that algorithms must be used for context validation. The more 
integrated and standardized the process from data acquisition to provision, the more efficiently it can 
be responded to. This is the only way to identify implausible data at an early stage and to take remote 
maintenance measures immediately or to initiate an on-board service. 
 
4. Bidirectional Ship-to-Shore connection required - Assessing data quality mandatory when 

converting data into information 
 

 
Fig.1: Ship-to-Shore Data Highway 

 
The technology and the cost structure allow every ship operator to transport time series data and oper-
ational information from ship to shore. It is important to ensure that the transport is encrypted. The 
use cases ‘remote support’, in which the crew carries out the tasks on board under the guidance of a 
service technician, and ‘remote service’, which enables remote maintenance with direct system ac-
cess, both require bidirectional communication. The ship-to-shore link closes the gap from data acqui-
sition on board to availability with the option of data evaluation and maintenance contracts on shore 
(see image). This allows to take full responsibility from the data source to the provision of system 
health on shore. In general, two basic ways of communication need to be considered separately: For 
continuous transfer via V-SAT for 300 signals with a minute logging interval only 0.7 MB of data 
volume is needed per day. The V-SAT connection is characterized by the high net coverage, so that in 
addition to time series data, system states can also be transmitted continuously. In the opposite direc-
tion of the data highway, system and software updates as well as remote services can be carried out in 
short cycles between shore base and ship. 
 
But every connection to the ship includes cyber risks. Protection against attack vectors in the area of 
cyber-crime requires a multi-level security concept with a focus on identity protection, access protec-
tion and integrity protection. With identity protection, the trustworthiness of the communication part-
ners (hardware components on board the ships) is ensured in the first stage. For this purpose, each end 
point of communication is equipped with a private, cryptographic key. This key never leaves the de-
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vices and therefore cannot be compromised. The device is only allowed to transfer data to or receive 
data from a cloud-based data pool if both sides have the correct keys. With access protection, a secure 
SSL-encrypted connection is established between the communication partners. This encrypted con-
nection ensures that only the two communication partners can read the transmitted data in plain text. 
A third party cannot read the data while it is being transmitted. This is a major advantage compared to 
the frequently used email traffic. In the case of integrity protection, an additional step ensures that the 
data is completely intact and corresponds to the data that was transferred to the secure transmission 
channel on board. In turn, cryptographic signatures in accordance with the RFC 7519 standard are 
used for this purpose, https://docs.hoppe-sts.com/docs/doc2#security, FAQ STS. 
 
5. Ensure continuous data availability - How does operation looks like? 
 
To ensure that the service department can respond on short notice, extensive basic information is pro-
vided when using ship-to-shore. In addition to information about the connectivity status of the ships, 
the system status of the embedded iPCs and installed components are connected to the health monitor. 
The complete data transmission with the evaluation of the data quality creates the basis for more in-
depth time series analyses. At this point, system notifications which represent the health status of the 
components on board become important. If, for example, a serial interface which provides NMEA 
sentences with important nautical data fails, the system notifications provide information directly in 
the web-based service portal. This information is actively provided before the lack of data is noticed 
in operation. 
 
6. Remote service ability 
 
In order to minimize the risk of overdue maintenance tasks caused by the Covid-19 pandemic, con-
nectivity must be established for the After-Sales-Service. Only with this precondition the crew can 
receive professional support with maintenance and repair work guidance. The downtime costs of sys-
tems usually exceed the maintenance costs many times over. The expectation for fast service is in-
creasing - so are the limiting factors for international travel activities at the moment. Customers are 
also used to remote maintenance from their private lives. Nobody wants to pay the travel expenses for 
e.g. a telecommunications technician anymore when the problem can be solved cheaper and faster by 
remote maintenance. But the requirements for remote service on board ships as moving objects in 
global operations are significantly higher. In addition to permanent data availability and connectivity 
in the area of remote service, the requirements of remote support are temporarily high bandwidths of 
>1 Mbit/s, such as those required for video telephony or the provision of larger documents or edited 
videos, Harcke (2020). In addition to the use of the V-SAT connection, an LTE connection with up to 
20 Mbit/s in coastal areas up to 25 nm away or in the port is an ideal addition. 
 
As a consequence, the first prototype of a remote connection box was created in 2020Q4, Fig.2. In the 
following use cases, the internet connection near the coast is established with the help of an industrial 
LTE router, which offers the possibility of using several SIM cards and LTE antennas of different 
frequency ranges. The system establishes the remote connection, which can be actively prevented on 
board against unauthorized access at any time by using a hardware key, reflecting the high require-
ments for cyber-security. A conformity check with regards to the use of LTE technology in relation to 
the existing regulations and rules of the classification society DNV was also carried out.  
 

• Use case 1: Remote support during commissioning  
The first application example is the use of the remote connection box including tablet when 
commissioning a newly developed sensor system in the course of a research project. Thanks 
to the possibility of direct communication with the crew, many preparations such as the instal-
lation of the sensors and control cabinets, as well as assistance with questions about laying 
around 1400 m of cable, could be carried out successfully by the crew. It was also possible to 
react in a time- and cost-effective manner to adjustments in the configuration of the system by 
means of short coordination and the exchange of edited images and voice notes. Software up-
dates for the systems on the ship could be provided on the tablet, Harcke and Reimer (2021). 

https://docs.hoppe-sts.com/docs/doc2#security
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Fig.2: Remote Connection Box with WiFi Extension 

 
• Use case 2: Remote service with updating the logging configuration of high-frequency logging 

as well as parameter settings 
In this application, it was possible to reliably provide and install updates on the embedded 
iPC HOMIP from onshore. At the customer's request, the bidirectionality of the Data Hiqh-
way was used to integrate further signal sources into the logging in order to record high-
frequency data and transmit it to shore. It is important that the updates are provided, which 
can be installed by the crew at a safe time via the touch display. This possibility provides cost 
reductions in the area of service activities for customers as well as manufacturers. 

 
• Use case 3: Remote support with engine room call 

If the inspection with entering the ship is possible for service partners under strict conditions, 
the installation of a power measurement system can be carried out with the guidance of a spe-
cially trained service technician or even the crew. In the specific example, a stable data rate of 
12 Mbit/s was achieved via the portable remote connection box on deck and a WiFi access 
point in the engine room. Video telephony and support from other service colleagues were 
possible in excellent quality. The video call and the provision of the information are carried 
out using a tablet with a safety cover. Direct use by the crew in demanding environments such 
as the engine room can provide encrypted data transfer, video telephony and digital access to 
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all system-relevant documents such as manuals and troubleshooting guides as well as video 
tutorials. The stable system with a set-up time of a few minutes can therefore also be convert-
ed into a permanently installed system to remain on board after successful initial use. This 
means that the service options can also be used after support with commissioning the system 
in the shipyard while the ship is in operation. 

 

 
Fig.3: Remote Call from Engine Room 

 
7. Provide data via API 
 
The tip of the iceberg, the pursued and visible optimization potential, can be used if the data is availa-
ble. The prerequisites for valid, available data mentioned in the text present the operators and suppli-
ers with a great responsibility, which must be met professionally. In the perfect world the operators 
have nothing to do with this required work in order to focus on the core competence of ship manage-
ment. Suppliers, who integrate the data path through to the provision of the data and thus the optimi-
zation potential, make an important contribution here. 
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Abstract 
 

A technical performance index is proposed in this paper. A procedure is developed to analyze ship in-
service measurements and calculate this index. Steps include data preparation use of data quality 
indicators, steady-state filtering and data normalization. The technical performance of a bulk carrier 
is evaluated following the proposed procedure. The objective is to set the standard for consistent and 
accurate evaluation of live technical vessel performance.  
  
1. Introduction  
 
The international shipping industry is responsible for transport of around 90% volume of world trade. 
Seaborne trade is also expected to grow in line with, or possibly outpace, the global gross domestic 
product (GDP) growth, ICS (2020). Although shipping has much lower CO2 emissions per transport 
work relative to road and air transport, it still accounts for a significant share of global emissions of 
CO2, NOX and SOX, giving a substantial environmental footprint. The emissions from marine 
shipping induces approximately 60,000 deaths globally every year, Corbett et al. (2007). As a result, 
increased scrutiny is expected to be placed upon shipping to lower environmental damaging emissions 
and local harmful pollutants. In April 2018, the International Maritime Organization (IMO) adopted 
an initial strategy on reduction of GHG emissions from ships. The strategy aims at reducing total 
GHG emissions from international shipping by at least 50% by 2050 as compared to 2008, IMO 
(2019). 
 
Both public regulators like the EU and IMO, as well as private entities, have applied several 
mechanisms for reporting emissions and rating performance. EU’s Monitoring, Reporting and 
Verification (EU MRV) of CO2 emission has been mandatory for ship larger than 5000 gross tonnage 
(GT) at any EU ports from 1 January 2018. IMO Data Collection System on fuel consumption (IMO 
DCS) has been required on ships largen than 5000 GT trading globally from 1 January 2019. 
 
IMO considers development of technical and operational energy efficiency measures for both new and 
existing vessels. Such indices can be instrumental to control and ensure an improved energy effi-
ciency performance of shipping industry. 
 
Shipping industry largely consist of shipyards/designers, shipowners, technical managers, operators, 
charterers and ports. All parties play an important role in the decarbonization of the shipping industry. 
For such energy efficiency indices to be active and effective, it is paramount that they are developed 
for and addressed towards the industry parties that can influence the index, i.e. be in control of the 
parameters that affect the energy efficiency index. The measurements and analysis done to calculate 
the index must ensure sufficient level of accuracy. Moreover, there must be a strong link between 
control and benefit to incentivize energy efficiency improvements. 
 
IMO has made the Energy Efficiency Design Index (EEDI) mandatory, and the EEDI is developed to 
ensure a continuous reduction of the carbon intensity of new ships delivered. The EEDI consist of 
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parameters measured at main engine and aux. engines shop trials, deadweight measurement, tank tests 
and sea trial. All parameters are in control of the yards/designers, and these are verified and 
certificated by a classification society prior to delivery of a vessel. The EEDI meets all the above 
criteria in terms of incentive, accuracy, responsibility and control. 
 
IMO has circulated a voluntary Energy Efficiency Operational Index (EEOI), which is proposed as an 
index to improve the energy efficiency of ship operation. The EEOI considers fuel oil consumption 
(CO2 emission), amount of cargo transported, and distance sailed (transport work). MEPC 75 (2020), 
introduced a mandatory Carbon Intensity Indicator (CII – e.g. Annual Efficiency Ratio [AER – grams 
of CO2 per dwt·mile]) and rating scheme where all cargo and cruise ships above 5000 GT are given a 
rating of A to E every year. Each ship will be required to meet the CII target rating C or better. Rating 
thresholds will gradually become more stringent, and in line with 40% reduction target in 2030. 
Klaveness (2021) supports selecting EEOI as Climate Intensity Indicator (CII), and they argue that 
AER incentivizes vessels to ballast instead of cleaning the holds and take a cargo closer to the area of 
discharge, and AER fails at identifying carbon intensive operations. 
 
The intention with the EEOI and AER is obviously good, but they do not meet the above-mentioned 
criteria for an active and effective index, as incentive, accuracy, influence and responsibility are 
problematic. 
 
The annual average EEOI for a vessel is largely controlled by the charterer/commercial operator of 
the vessel, as the annual average EEOI is determined by the amount of cargo transported, duration of 
port stays, laden vs ballast distances, operating speed and thereby fuel consumed. To some extent the 
annual average EEOI is also influenced by weather and the state of maintenance (hull and propeller 
fouling, hull and propeller damages, antifouling paint etc) of the vessel. AER has the same problems. 
 
For the shipping industry to meet the ambitious GHG emissions goals set out by IMO, it is important 
that all parties within the industry contribute. To ensure alignment of incentives between the parties it 
is important that the industry is provided with effective measures and indices directed towards the 
active parties. 
 
A technical index directed towards ship owners and technical managers is needed to complement 
design- and operational indices. Such an index should quantify the current efficiency of the vessel 
based on in-service measurements. The effects of e.g. loading condition and external factors like 
wind, waves and current must be corrected for. A procedure to analyze in-service vessel performance 
measurements and to calculate a technical performance index is proposed in this paper. 
 
Van den Boom and Hasselaar (2014) proposed power loss as Performance Indicator. In the work, the 
power corrected for wind resistance is divided by the power in calm water (taken from speed trial 
results) at the same speed, to form a ‘Performance Indicator (PI)’ in terms of percentage power loss. 
The effect of added resistance due to waves is not considered. ISO19030 (2016) and GIA (2020) 
define the technical Performance Index (PI) as the change in average speed loss in the reference 
periods(s) and the average speed loss in the evaluation period. ISO 19030 also gives one alternative 
index as the change in required power. The index calculation is based on data from planned 
measurements. All the indices can only be used to evaluate the maintenance condition and the change 
of ship efficiency of the selected ship. They cannot be used for ship efficiency comparison of the 
different ships. Moreover, they are not connected with ship emission.  
 
In order to calculate the proposed technical index, ship fuel consumption and speed curve needs to be 
analyzed based on the measured data. There are mainly three different approach types for analyzing 
measurement data: Simple statistical approach, data-driven approach and physical model-based 
approach. Bialystocki and Konovessis (2016) proposed a statistical approach to obtain ship’s fuel 
consumption and speed curve. The simple correction method was used. A data-driven approach to 
predict the propulsion power of a vessel was used by Kim et al.(2020). In the study, support vector 
regression (SVR) is used to learn from big data obtained from onboard measurement and the National 
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Oceanic and Atmospheric Administration (NOAA) database. Petersen et al. (2012) used artificial 
neural networks and Gaussian processes (GP) to analyze the ship fuel efficiency based on the 
measured data. A more rational method to analyze power is to develop numerical models for the 
relevant physical processes and to correct the monitored data by projecting them to standard 
conditions following a procedure similar to standardized sea trial speed correction, Liu et al. (2020). 
The physical model-based approach normally starts with the measured power, and normalizes the 
weather effect and water temperature effect. Some methods end up with the speed-power curve 
projected to calm water condition, seen in ISO 15016 (2015); Liu et al. (2020). Some methods end 
with the change of power or speed in calm water compared with sea trial data, refer to ISO19030 
(2016), GIA (2020), Boom and Hasselaar (2014).  
 
This paper develops a procedure to analyze ship measurement data following a physical model-based 
approach and evaluates ship technical performance of one bulk carrier by calculating the proposed 
technical index. The procedure is introduced first, then the case study for the bulk carrier is presented. 
 
2. Procedure of analyzing in-service measurement data  
 
To analyze ship technical performance using a physical model-based approach, it is necessary to have 
some ship design information, ship operation information and environment information. The 
methodology for speed performance analysis is common in sea trial tests and in-service 
measurements. However, there are essential differences between the two kinds of analysis. The 
operation condition during sea trial is well controlled and acceptance limits enforced for wind, current 
and waves. The measurement noise is reduced to a minimum and the measured data is reliable. The 
measured in-service performance is often polluted by both ship operation and environmental 
conditions, which leads to a necessary data filtering process as part of the analysis, van den Boom and 
Hasselaar (2014), Liu et al. (2020). Moreover, there is sufficient detailed information on ship 
geometry available, and all the necessary sensors are installed for the sea trial. This is not practical for 
in-service measurement, Liu et al. (2020). Therefore, when setting standard for evaluating ship 
technical performance based on in-service measurement, it is not straightforward to apply normal sea 
trial analysis. Cases where some ship geometry information or measured information are missing 
should be considered. 
 

 
Fig.1: Procedure for analyzing ship technical performance based on in-service measurements 

 
The procedure for analyzing in-service measurement data and calculating the proposed technical 
performance index is illustrated in Fig.1. The procedure includes three main steps (indicated by three 
rows in Fig.1): measurement data preparation; normalizing the effect of weather and calculating tech-
nical performance index. The measured data from different sensors is synchronized and cleaned prior 
to analysis using physical model-based approach. Normalization is used to correct for the effects of 
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wave, wind and water temperature based on the corresponding physical models and ship propulsion 
efficiency. Finally, the normalized speed-power curves are utilized for calculating the proposed tech-
nical performance index. The following sections give a more detailed description of the three steps. 
 
3. Preparation of measured in-service data 
 
Accurate prediction of vessel speed-power curves requires monitoring and recording of key para-
meters such as ship power, ship speed, ship loading condition and weather information. Different 
sensor systems will be used for measuring key parameters, and their sampling frequency could be 
different. Re-sampling and synchronization may be required.  
 
In the proposed method, the effect of water depth is not corrected for and the measured data in 
shallow water is removed. 
 
The model for normalizing weather effect is following resistance and thrust identity method (RTIM), 
Liu et al. (2020), which assumes that the ship total resistance is represented by a linear superposition 
of calm water resistance and added resistance components due to disturbance. Periods with ship 
acceleration and maneuvering should be removed from the dataset, since a more advanced model is 
needed to analyze speed-power curve given those conditions. It is beneficial to remove harsh weather 
periods as well. A cut-off criterion should be based on balancing the amount of remaining data with 
the uncertainty in predictions in strong wind or high waves. Weather filtering is not investigated in 
this paper. 
 
Measured data can be filtered through a physical or mathematical approach. The physical approach 
filters out noise by setting limits based on physical phenomena, which is easy to understand. 
However, the limit could be dependent on ship type, ship size or ship location. A mathematical 
approach purely based on data has no limit to ship type or ship size. However, physical effects that are 
not corrected for included in a parametrization will appear as noise, which cannot be removed using a 
pure mathematical approach. One example is the effect of limited water depth. 
 
Liu et al. (2020) filter the data according to acceleration, rate of course change, primary seaway 
direction and difference between speed through water (STW) and GPS speed. van den Boom and 
Hasselaar (2014) filter data by double checking the measured speed through water with speed 
estimated based on propeller torque and RPM. Kim et al. (2020) filter the data based on ship speed, 
and vessel speeds less than 6 knots were omitted. ISO19030 requires the data to be filtered according 
to Chauvenet’s criterion first, then filtered further by setting threshold values for standard error of 
mean for ship RPM, ship speed through water, speed over ground and rudder angle. 
 
Steady state detection (SSD) algorithms have been investigated in many industry applications. SSD 
can be used to detect windows or intervals when a process is operating in a steady state. Kelly and 
Hedengren (2013) summarized the previous work in the area of SSD and analyzed the limitations and 
challenges of each method. They proposed an SSD algorithm that is based on time window and 
utilizes the Student’s t test to approximately determine a probability of being at steady state for each 
window. Dalheim and Steen (2020) argued that this method is sensitive to the window length. The 
shorter window will have low probability of stationarity and the longer window with multiple non-
stationary intervals could end as stationary interval. They proposed a new method to identify steady 
state parts of time series data using a sliding window, which is adopted in this paper.  
 
3.1 Steady state selection 
 
To avoid including data collected during periods of acceleration, a steady state selection method was 
implemented based on Dalheim and Steen (2020). The method evaluates the piecewise steadiness of a 
time series signal based on a moving window approach and is suited for signals that are close to 
constant in time for the desired time interval. Once the steady state periods have been identified, the 
entire data set is filtered prior to averaging. An outline of the method follows. For a more detailed 
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overview the reader is referred to Dalheim and Steen (2020). 
 
The method assumes that the behavior of the signal can be modelled by a deterministic linear model, 
expressed as: 
 
𝒛𝒕 =  𝒃𝟎 + 𝒃𝟏𝒕 + 𝒂𝒕           (1) 
 
b1t+b0 is the linear model inside a time window with time parameter t. 𝑎𝑡  is a zero mean white noise 
with constant variance. The linear slope 𝑏1 can be estimated with least squares method. The standard 
derivation �̂�𝑏1

 of the estimated linear slope 𝑏1 can be calculated according to: 
 

�̂�𝑏1
= √

∑ (𝑧𝑡−�̂�𝑡)2𝑛
𝑡=1

(𝑛−2) ∑ (𝑡−𝑡̅)2𝑛
𝑡=1

  = √∑ (𝑧𝑡−�̂�1𝑡−�̂�0)2𝑛
𝑡=1

(𝑛−2) ∑ (𝑡−𝑡̅)2𝑛
𝑡=1

         (2)  

 
n is the total number of samples in each window. A two-tailed t-test on �̂�1, using 𝑡1 =

�̂�1

�̂�𝑏1

, is used to 

evaluate whether the slope is significantly different from zero, indicating a period of transition, or a 
window of non-steady-state signal. Since the slope can be positive or negative, we compare the 
absolute value with the t-value for the required window size and acceptance parameter alpha, 
|t1|<t(alpha, n-2). If the check fails, all the samples in the window will be marked unsteady (𝑠𝑡 = 0), 
otherwise they will be marked as steady (𝑠𝑡 = 1).The steady state probability is calculated according 
to the arithmetic average of 𝑠𝑡  for each sample point. A proportionality constant is used for 
accepting/rejecting individual points based their steady state probability; essentially dictating if the 
proportion of moving windows containing the point in question are accepted. In the application of this 
method, the length of the time windows, confidence level of Students’ t-distribution and proportion 
for accepting the sample point as steady state are adjustable.  
 
3.2 Parameter selection and configuration 
 
For the purposes of the calculation of the technical performance index the parameter selected for 
steady state filtering is the ship’s RPM. This signal is practically a piecewise constant function within 
the accepted conditions for water depth and ship speed, and as such is ideally suited for the algorithm. 
 
The algorithmic parameters needed are the size of the sliding window, the t-test confidence level as 
well as the proportionality test for the acceptance of each point. Due to the steady nature of the RPM 
signal, the t-test confidence level was set to 0.001, however depending on the choice of parameter and 
level of noise. 
 
The sliding window size should be chosen with consideration to two things: the sampling frequency 
of the parameters and the desired averaging period. The averaging period was chosen to be 1 hour, 
and the sampling rate of the various parameters was synchronized to 1 minute. In general, the sliding 
window size should be smaller than the averaging period, but large enough to contain sufficient data 
to reduce the impact of signal noise. The prototype developed used a window size of 45. 
 
The proportionality parameter used for accepting each point based on their steady state probability has 
significant impact towards the lower and higher extreme values: a proportion lower than 20% of 
accepted windows will allow more points closer to transitory periods, and a value higher than 90% 
risks rejecting points in otherwise steady states under the influence of signal noise. The developed 
prototype uses a proportionality requirement of 50%. 
 
3.3 Averaging 
 
Following steady state selection, the accepted subset of measurements can be averaged to a desired 
interval. The presented prototype uses data sampled with 1-minute frequency and averages to 1-hour 
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intervals, and this data can be used for larger timescale analysis such as daily, weekly, monthly, 
quarterly etc. 
 
For each 1-hour interval there are two cases that should be taken into consideration following the 
steady state selection procedure described. 
 
Case 1 is if there is too much data either missing or rejected by the algorithm within one interval. A 
minimum requirement for number of accepted data points within each interval is recommended, set in 
the presented prototype to 30 points out of 60. 
 
Case 2 is when an interval contains data from more than one steady state with different values, such as 
at the start and end of periods of acceleration. In this case the average will be weighted between the 
desired averages for the two steady states and should not be included. A simple elimination procedure 
to avoid this is to use the steady state t-test described above on the data for each interval, considering 
potentially missing data following the steady state selection. 
 
4. Normalizing (correcting) the effects of weather 
 
For a ship owner, it is of interest to know the ship performance in an ideal condition, without the 
disturbance of wind and waves. There are several established methods for normalizing the effect of 
weather, ITTC (2017), ISO19030 (2016), ISO15016 (2015), Liu et al. (2020), Orihara and Tsujimoto 
(2018). There are some commonalities in all the methods. They all adopt the ‘Direct power method’ 
to calculate the change of power with estimated added resistance. The open water propeller curves are 
utilized to calculate propeller efficiency, and propeller thrust coefficient KT and torque coefficient KQ 
are assumed to be parabolic functions to the propeller advance ratio J. However, the open water 
propeller curves are not always available. Thus, two new methods of normalizing the weather effects 
are developed based on the information that are typically available for a ship owner. The difference of 
the two methods will be compared in the case study later. 

 
Fig.2: Ship efficiency at different loading conditions and speeds from model test 

 
Normally ship owner has a ship self-propulsion model test report, but this rarely includes all the main 
parameters of the propeller such as propeller diameter, number of blades, area ratio and pitch. The 
first method of normalizing the weather effect is based on the self-propulsion model test report. 
Typically, four different loading conditions are tested: normal ballast, heavy ballast, design full 
loading condition and scantling full loading condition. Based on the model test results, ship efficiency 
at different loading conditions and speeds can be derived, and one example is shown in Fig.2. The 
ship total efficiency 𝜂 includes ship open water efficiency 𝜂0, relative rotative efficiency 𝜂𝑅 and ship 
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hull efficiency 𝜂𝐻 . The ship total efficiency 𝜂  at different time step can be obtained by B-spline 
interpolation on the ship displacement (𝐷𝑖𝑠) and ship speed through water 𝑉𝑊. 
 
The correction power ∆𝑃𝐷due to the weather effect can be calculated according to Eq.(3): 
 
∆𝑷𝑫 =

𝑹𝒂𝒅𝒅∙𝑽𝑾

𝜼
            (3)  

 
 𝑅𝑎𝑑𝑑 is the added resistance due to weather, which should include added resistance due to waves, 
added resistance due to wind and the change of resistance due to water temperature. The corrected 
power 𝑃𝐷_𝑐𝑜𝑟 is calculated as: 
 
𝑷𝑫_𝒄𝒐𝒓 = 𝑷𝑫_𝒔 − ∆𝑷𝑫           (4) 
 
𝑃𝐷_𝑠 is the in-service delivered power, which can be calculated with the measured shaft power and the 
transmission efficiency. The influence of weather on ship propulsion efficiency is not considered in 
this method, and the effect of this assumption will be discussed in the case study. 
 
When propeller main parameters are also available, more advanced method is investigated to consider 
the change of propeller efficiency due to weather influence. In this method, the open water propeller 
efficiency needs to be estimated. Wageningen B-series polynomials express the thrust and torque 
coefficients in terms of the blade number, pitch-diameter ratio, blade area ratio and advance 
coefficient, which is derived from open water characteristics of 120 B-series propeller model tested at 
the Netherlands Ship Model Basin in Wageningen, Bernitsas et al. (1981), Carlton (2008). The 
propeller models used in the model test are very old. However, the derived polynomials were 
optimistic for the old propellers, since propeller roughness and the cavitation effect were not 
considered. According to authors’ knowledge, Wageningen B-series polynomials can approximately 
estimate the propeller efficiency of the existing propellers. Therefore, the propeller thrust coefficient 
KT and torque coefficient KQ at different advance ratio J are calculated with Wageningen B-series 
polynomials. Fig.3 shows an example. The KT, KQ and load factor of propeller 𝜏 =

𝐾𝑇

𝐽2  at different 
advance ratio J are saved as tables for interpolation. For later reference, these are denoted KT-J curve, 
KQ-J curve, and -J curve. 
 

 
Fig.3: Propeller thrust coefficient KT and torque coefficient KQ at different advance ratio J calculated 

with Wageningen B-series polynomials 
 
The in-service propeller torque coefficient 𝐾𝑄_𝑠 can be calculated according to Eq.(5). 
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𝐾𝑄_𝑠 = 𝑃𝐷_𝑠 ∙ 𝜂𝑅_𝑠/(2𝜋𝜌𝑛3𝐷5)          (5) 
 
The relative rotative efficiency in service 𝜂𝑅_𝑠 is obtained by B-spline interpolation on the model test 
results with ship displacements and speeds. 𝜌 is water density. n is shaft speed, and D is propeller 
diameter. 
 
The in-service advance ratio 𝐽𝑠is obtained by linear interpolation on the open water KQ-J curve with 
in-service propeller torque coefficient 𝐾𝑄_𝑠. 
 
𝐽𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑝𝐾𝑄−𝐽(𝐾𝑄_𝑠)           (6) 
 
Where the open-water KQ-J curve is calculated with Wageningen B-series polynomials. Since the 
measured speed and wake fraction have large uncertainties, the speed of flow through the propeller is 
calculated according to: 
 
𝑉𝑎 = 𝐽𝑠𝑛𝐷            (7) 
 
 
The in-service thrust coefficient KT can be derived by linear interpolation on the open-water KT-J 
curve with 𝐽𝑠. 
 
𝐾𝑇_𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑝𝐾𝑇−𝐽(𝐽𝑠)           (8) 
 
The in-service open water propeller efficiency 𝜂0_𝑠 can be calculated as: 
 
𝜂0_𝑠 =

𝐽𝑠

2𝜋

𝐾𝑇_𝑠

𝐾𝑄_𝑠
            (9) 

 
Then the in-service propulsion efficiency 𝜂𝑠can be obtained as: 
 
𝜂𝑠 =  𝜂0_𝑠𝜂𝑅_𝑠𝜂𝐻_𝑠           (10) 
 
𝜂𝐻_𝑠is the ship hull efficiency, which is calculated with 𝜂𝐻_𝑠 =  

1−𝑡

1−𝑤
. The thrust deduction t and wake 

fraction w are also obtained with by B-spline interpolation on the model test results at different 
displacements and ship speeds. 
 
The in-service load factor of the propeller 𝜏𝑠can be obtained as: 
 
𝜏𝑠 =

𝐾𝑇_𝑠

𝐽𝑠
2             (11) 

 
The total ship resistance 𝑅𝑠 is equal to propeller thrust, which can be calculated according to: 
 
𝑅𝑠 = 𝜏𝑠(1 − 𝑡)(1 − 𝑤)2𝜌𝑠𝑉𝑤

2𝐷2         (12) 
 

The corrected total ship resistance 𝑅𝑠,𝑐𝑜𝑟 is calculated by subtracting the estimated added resistance 
due to weather from 𝑅𝑠: 
 
𝑅𝑠,𝑐𝑜𝑟 = 𝑅𝑠 − 𝑅𝑎𝑑𝑑           (13) 
 
The corrected propeller load factor 𝜏𝑠,𝑐𝑜𝑟 can be calculated according to 
 
𝜏𝑠,𝑐𝑜𝑟 = 𝑅𝑠,𝑐𝑜𝑟(1 − 𝑡)(1 − 𝑤)2𝜌𝑠𝑉𝑤

2𝐷2         (14) 
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The corrected propeller advance ratio 𝐽𝑠,𝑐𝑜𝑟 can be calculated by interpolating the -J curve with 𝜏𝑠,𝑐𝑜𝑟 
.The corrected thrust coefficient KT_s,cor and corrected torque coefficient KQ_s,cor can be obtained by 
interpolating the KT-J curve and KQ-J curve with 𝐽𝑠,𝑐𝑜𝑟. 
 
The corrected propeller open water efficiency 𝜂0_𝑠,𝑐𝑜𝑟 can be obtained: 
 
𝜂0_𝑠,𝑐𝑜𝑟 =

𝐽𝑠,𝑐𝑜𝑟

2𝜋

𝐾𝑇_𝑠,𝑐𝑜𝑟

𝐾𝑄_𝑠,𝑐𝑜𝑟
           (15) 

 
The corrected propeller efficiency 𝜂𝑠,𝑐𝑜𝑟 is calculated as: 
 
𝜂𝑠,𝑐𝑜𝑟 =  𝜂0_𝑠,𝑐𝑜𝑟𝜂𝑅_𝑠𝜂𝐻_𝑠          (16) 
 
It is assumed that the relative rotative efficiency and ship hull efficiency are not influenced by added 
resistance due to weather. The corrected shaft speed ncor can be obtained according to Eq.(17). 
 
𝑛𝑐𝑜𝑟 = 𝑉𝑎/(𝐽𝑠,𝑐𝑜𝑟𝐷)           (17) 
 
 𝑉𝑎is the the water speed through the propeller, which is calculated with Eq.(7). The correction power 
∆𝑃𝐷due to the weather effect can be calculated according to Eq.(18): 
 
∆𝑃𝐷 =

𝑅𝑎𝑑𝑑∙𝑉𝑊

𝜂𝑠,𝑐𝑜𝑟
+ 𝑃𝐷(1 −

𝜂𝑠

𝜂𝑠,𝑐𝑜𝑟
)          (18) 

 
The corrected delivered power 𝑃𝐷_𝑐𝑜𝑟can be obtained: 
  
𝑃𝐷_𝑐𝑜𝑟 = 𝑃𝐷_𝑠 − ∆𝑃𝐷           (19) 
 
In the second normalization method, the effect of added resistance due to wave and wind should be 
corrected first according to Eqs.(5)-(19). With the corrected delivered power 𝑃𝐷_𝑐𝑜𝑟  and corrected 
shaft speed ncor, the effect of water temperature and water density should be corrected following the 
same procedure using Eqs.(5)-(19). The evaluation of added resistance due to wave, wind and water 
temperature is discussed in the following subsections. 
 
4.1 Added resistance due to waves 
 
Added resistance in a sea state is normally calculated by integrating the Added Resistance Operator 
(ARO) with the wave spectrum in an actual sea state. The ARO is the Quadratic Transfer Function 
(QTF) of the mean force along the longitudinal axis of the ship.  
 
There are mainly four groups of methods for obtaining the ARO of added resistance in regular waves: 
experimental methods, Computational Fluid Dynamics (CFD) simulations, theoretical methods based 
on potential flow and empirical formulas, ITTC (2018). The first two requires detailed hull 
geometries. Experimental results are often considered as providing ‘true’ values, although there are 
measurement uncertainties, especially in short waves, Larsson et al. (2010), Guo and Steen (2011). 
Model tests in oblique wave conditions must be performed in an ocean basin, which makes the tests 
more expensive. CFD simulations have been verified to predict ship added resistance with high 
accuracy, Sadat-Hosseini et al. (2013), Ozdemir and Barlas (2017). However, CFD is still time 
consuming and expensive. Some theoretical methods based on potential flow can also predict added 
resistance due to waves with acceptable accuracy, ITTC (2018), Kim et al. (2017). However, most of 
them also need the detailed ship geometry, which is not available for ship owners.  
 
The empirical formulas only take some main ship parameters as input and can be used at low cost. 
Although they cannot capture the effect of detailed geometry on added resistance due to waves, some 

https://www.sciencedirect.com/science/article/pii/S0029801817303530#!
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of them can give reasonable results in the given limited ranges. MARIN (2016) developed STAWAVE 
formulas based on an extensive database of added resistance due to waves measured by MARIN. 
These formulas are accepted for predicting added resistance by ISO 15016 (2015), ISO19030 (2016) 
and ITTC (2017). STAWAVE-1 is limited to sea states where ship heave and pitch motion can be 
neglected. The influence of ship motions and ship forward speed on added resistance are considered 
in STAWAVE-2. The application of STAWAVE-1 and -2 is limited to waves in the bow sector (less 
than ±45° off the bow). The measured data with waves from outside the bow sector has to be dropped 
if STAWAVE methods are used to predict ship added resistance due to waves.  
 
Liu and Papanikolaou (2016) derived a new empirical formula based on experimental data of 
different hull forms, which could be used for different ship forward speeds in head sea. They extended 
the formula to arbitrary wave heading in Liu and Papanikolaou (2020). This method is adopted here. 
The added resistance in irregular sea is calculated with 
 
�̅�𝑎𝑤𝑖𝑟𝑒𝑔 =  2 ∫ 𝑆(𝜔)

𝑅𝐴𝑊(𝜔)

𝜁𝑎
2 𝑑𝜔

∞

0
         (20) 

 
𝑆(𝜔) is the wave spectrum. A JONSWAP spectrum is implemented, which can be expressed as: 
 

𝑆𝐽(𝜔) = 𝐴𝛾  𝑆𝑃𝑀(𝜔)𝛾
exp (−0.5(

𝜔−𝜔𝑝

𝜎𝜔𝑝
)2

)         (21) 
 
𝛾  is the peak enhancement,  𝐴𝛾 = 1 − 0.287ln (𝛾) , 𝜎  is the spectral width parameter. 𝑆𝑃𝑀(𝜔)  is 
Pierson-Moskowitz spectrum, which can be written as: 
 
𝑆𝑃𝑀(𝜔) =  

5

16
𝐻𝑆

2𝜔𝑝
4𝜔−5exp (−

5

4
(

𝜔

𝜔𝑝
)−4)        (22) 

 
𝜔𝑝 = 2𝜋

𝑇𝑝
⁄ , 𝑇𝑝  is wave peak period. 𝐻𝑆  is significant wave height. 𝜔  is wave frequency. More 

details can be found in DNV Recommended Practice C205.  
 
The added resistance due to waves is dependent on wave direction, wave peak period, significant 
wave height and ship speed. It will take a long time to calculate the added resistance using Eq.(20)-
(22) at each sample data. Random forest algorithm is adopted to model the added resistance in 
irregular sea with unit significant wave height at different wave directions, wave peak periods and 
ship speeds. The sample data used for Random forest algorithm is calculated with Eq.(20). According 
to Taskar and Andersen (2021), changing the peak enhancement factor in JONSWAP spectrum did 
not show much influence on the added resistance. It is sufficient to use a single wave spectrum for the 
combination of wind sea and swell sea with 𝛾 = 1 for the computation of added resistance in waves. 
The samples are calculated with a single wave spectrum with 𝛾 = 1. The effect of significant wave 
height will be handled when the normalization is performed.  
 

  
Fig.4: The comparison of added resistance from Random forest algorithm (shown with ‘x’) and added 

resistance from theoretical calculation (shown with ‘o’) at different directions (Left: the 
comparison at Fr = 0; Right: the comparison at Fr = 0.146) 
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The verification of the Random forest algorithm is shown in Fig.4. The comparisons confirm that the 
Random forest algorithm is a fair approximation of the theoretical model. 
 
4.2 Added resistance due to wind 
 
Added resistance due to wind is calculated according to 
 
𝑅𝑤𝑖𝑛𝑑 =

1

2
𝐶𝑋(𝜃𝑟𝑒𝑙)𝜌𝑎𝑖𝑟𝑉𝑤𝑟𝑒𝑙

2 −
1

2
𝐶𝑋(𝜃0)𝜌𝑎𝑖𝑟𝑉𝐺

2        (23) 
 
𝜌𝑎𝑖𝑟 is air density and 𝑉𝑤𝑟𝑒𝑙 is relative wind speed. The calculation of relative wind speed is done 
according to ISO15016 (2015). 𝑉𝐺  is the ship speed over ground. 𝐶𝑋(𝜃𝑟𝑒𝑙)  is longitudinal wind 
coefficient at relative wind direction 𝜃𝑟𝑒𝑙. 𝐶𝑋(𝜃0) is longitudinal wind coefficient in head wind. The 
wind coefficient is evalulated with regression formula proposed by Fujiwara et al. (2005, 2006), 
which is also recommended by ISO15016 (2015) and ITTC (2017).  
 
4.3 Added resistance due to water temperature and water density  
 
The predictions done for speed power trials are usually based on a temperature of 15°C and water 
density of 1026 kg/m3. To compare the in-service performance with the design condition, the effect of 
water temperature and water density is corrected for according to ISO15016 (2015). 
 
The added resistance due to water temperature and water density is calculated from 
 
𝑅𝐴𝑆 = 𝑅𝑇0(

𝜌𝑆

𝜌𝑆0
− 1) − 𝑅𝐹(

𝐶𝐹0

𝐶𝐹
− 1)         (24) 

 
Where 𝑅𝑇0 , 𝜌𝑆0 and 𝐶𝐹0 are the total resistance, water density and frictional resistance coefficient at 
the reference water temperature and water density. 𝑅𝐹 , 𝐶𝐹  and 𝜌𝑆  are the frictional resistance, 
frictional resistance coefficient and water density at the actual water temperature and water density. 
The frictional coefficients 𝐶𝐹0 and 𝐶𝐹 are calculated according to the ITTC’57 formula. Most of the 
time the in-service loading condition would be different from the loading conditions in sea trial, so 
that the resistance curve is not readily available. Therefore, the total resistance at reference water 
temperature and density 𝑅𝑇0 is calculated as: 
 
𝑅𝑇0 = (1 + 𝑘)𝐶𝐹0 + 𝐶𝑊          (25) 
 
Where the form factor 𝑘 is calculated according to the Holtrop (1984) method. It is assumed that 
wave making resistance 𝐶𝑊is not influenced by water temperature and density, and it is calculated 
based on the measurement. 
 
5. Proposed technical performance index 
 
After the effects of weather (wind, wave, water temperature) is corrected, the measured in-service 
data is available for evaluating a proposed vessel technical index (VTI), which is defined as: 
 
 𝑉𝑇𝐼 = 𝐸𝐸𝐷𝐼 ∙

𝑃𝐸

𝑃𝐸𝑟𝑒𝑓

=
𝑃𝑜𝑤𝑒𝑟∗𝑆𝐹𝐶∗𝐹𝐶

𝐷𝑒𝑎𝑑𝑤𝑒𝑖𝑔ℎ𝑡∗𝑠𝑝𝑒𝑒𝑑
∙

𝑃𝐸

𝑃𝐸𝑟𝑒𝑓

        (26) 

 
𝐸𝐸𝐷𝐼 is the ship design index by IMO. 𝑃𝐸 = 𝑅𝑠𝑉 is the effective power in service, which is corrected 
to calm water condition: 
 
𝑃𝐸 =  𝑃𝐷_𝑐𝑜𝑟𝜂0_𝑠,𝑐𝑜𝑟𝜂𝑅_𝑠𝜂𝐻_𝑠          (27) 
 
𝑃𝐸𝑟𝑒𝑓

=  𝑅𝑟𝑒𝑓𝑉 is the reference effective power at the corresponding ship speed, which is derived 
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from sea trial data. 
 
The ratio 𝑃𝐸

𝑃𝐸𝑟𝑒𝑓

 is used to indicate the ship hull and propeller condition in operation. The ship hull and 

propeller roughness will increase this ratio value, and the ship owner can decide when to take 
corrective measures based on this value. It should be noted that the speed range cannot be too large in 
the calculation of this ratio, since this ratio is equivalent to the ratio of ship resistance coefficient and 
ship resistance coefficient is dependent on ship speed. The difference of ship resistance coefficients at 
different speeds cannot be neglected if the ship speed range is too large. The total ship resistance 
coefficients from model test report can be used as a reference to choose the reasonable ship speed 
range in the analysis. EEDI is used as baseline for comparison with other ships.  
 
6. Case study 
 
A bulk carrier, Table I, was chosen as case study to calculate the VTI index following the proposed 
procedure. The measured in-service data includes four voyages, Fig.5.  
 

Table I: Ship main parameters  
Lpp 225.10 m 
Breadth 32.26 m 
Design Draft 12.20 m  
Design Displace Volume 76535 m3 
Ballast Displace Volume 47173 m3 

 

 
Fig.5: The travel dates, displacements, and routes of four different voyages 

 
Table II: The measured parameter used for data analysis 

Parameters Unit Method 1 Method2 
1 Speed Through Water knot x x 
2 Speed Over Ground knot x x 
3 Course Over Ground Deg. x x 
4 Time Dates x x 
5 Vessel Heading Deg. x x 
6 Shaft Power kW x x 
7 Shaft Revolutions rpm   x 
8 Relative Wind Speed m/s x x 
9 Relative Wind Direction Deg. x x 
10 Wave Height m x x 
11 Wave Direction Deg. x x 
12 Wave Period s x x 
13 Water Depth m x x 
14 Water Temperature °C x x 
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The measured parameters used for two types of data analysis are given in Table II. The water 
temperature for the studied ship is not measured directly during the operation but retrieved from 
Copernicus database, https://marine.copernicus.eu. All the parameters are synchronized at 1-minute 
frequency. 
 
The measured data is first filtered according to water depth, and only measurements in deep sea are 
used for further analysis. The measurement data with low measurement quality indicators is also 
excluded before the dynamical window method is used to select steady state time window and remove 
ship acceleration/deceleration periods. The steady state selection and 1-hour averaging are performed 
following the procedure given in Section 3. The raw data and selected data of the measured shaft 
speed, shaft power and ship speed through water during four different voyages are illustrated in Fig.6. 
In the application of dynamical windows, the confidence level α of Student’s t-distribution is 0.01, the 
length of time window is 45 min. The threshold value for accepting each sample as steady is set to be 
0.5.  
 
The results show that the dynamic window method can remove the acceleration/deceleration periods 
very well. The transition periods of shaft speed are removed, and the change of the ship speed is due 
to the weather disturbance. 

 
(a) Voyage 1 

 
(b) Voyage 2 

https://marine.copernicus.eu/
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(c) Voyage 3 

 
(d) Voyage 4 

Fig.6: The comparison of raw data and the selected data of four different voyages (‘Raw data’ 
represents the raw measured data with filter on measured power range and measured data 
quality; ‘Selected data’ shows the selected data using the dynamical time window; 
‘1h_average’ gives the one hour mean value for analysis) 

 
With the selected 1-hour mean value, correction of weather disturbance and water temperature effect 
is performed with the two different methods that are discussed in Section 4. The corrected power as a 
function of ship speed through water is illustrated in Fig.7. ‘Shaft power (kW)’ gives the measured 
shaft power. ‘Simple Corrected power (kW)’ is the corrected ship shaft power using the first 
normalization method, given by Eq.(3)-(4). ‘Propeller Corrected power (kW)’ represents the corrected 
ship shaft power using the second normalization method, given by Eq.(5)-(19). ‘Speed/power curve’ 
shows the speed-power curve derived from sea trial data, which is obtained by interpolating shaft 
power as a function of speed and the given loading condition. ‘Speed/power curve_admiral’ and 
‘Speed/power curve_surf’ are the power-speed curves derived from sea trial data using admiral 
method and scaled wetted surface area method. In the calculation, the first step is to find the one 
loading condition in the sea trial report that is closest to the real ship loading condition. The power-
speed curve at selected loading condition is used as a basis for further calculation. The admiral 
method calculates power according to 
 
𝑃 =  𝑃𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙(

∇

∇𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙
)2/3          (28) 

 
∇ is the displacement of the ship, ∇𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙 is the displacement in the sea trial report that is closest to 
ship displacement ∇. For the scaled wetted surface area method, the power is calculated with 
 
𝑃 =  𝑃𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙

𝑆

𝑆𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙
          (29) 
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𝑆  is the ship wetted surface area and 𝑆𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙  is the wetted surface that is corresponding to 
∇𝑠𝑒𝑎−𝑡𝑟𝑖𝑎𝑙 in (28).  
 
The results show that ‘power-speed curve’ is very close to ‘Speed/power curve_suf’ in all four 
different voyages, which indicates that it is reasonable to derive the reference power from sea trial 
data using interpolation.  
 
Since the measured data is selected based on fixed RPM, the shaft power decreases with the increase 
of ship speed. This is because of weather. The added resistance due to weather reduces ship speed and 
increases the output shaft power. The power corrected with both normalization methods increases 
with the increase of ship speed. The corrected power with Eqs.(5)-(19) gives lower value than that 
with Eqs.(3)-(4). This is expected, since Eq.(19) considers the change of propeller efficiency due to 
waves, while Eq.(4) does not. The power with Eqs.(5)-(19) has larger scatter, which could be partly 
due to that the propeller model introduces some uncertainty. This needs further investigation. 
 

    
 

Fig.7: Ship shaft power vs ship speed through water using the two different normalization methods  
 
The ratio 𝑃𝐸

𝑃𝐸𝑟𝑒𝑓

=
𝑉𝑇𝐼

𝐸𝐸𝐷𝐼
 at four different voyages is illustrated in Fig.8. ‘VTI/EEDI’ is the power ratio 

of effective power calculated directly from measured power to reference power. The weather and 
water temperature effects are not corrected. ‘Cor_VTI/EEDI_Simple’ represents the ratio of effective 
power corrected with Eqs.(3)-(4) to the reference power. ‘Cor_VTI/EEDI_Propeller’ gives the ratio of 
effective power corrected with Eqs.(5)-(19) to the reference power. The ship stayed in port for long 
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time between voyage 3 and voyage 4. Thus, the results in voyage 4 is analyzed separately. The power 
ratio trend is also given in Fig.8. The results show that the ship roughness increases approximately 
linearly at the first three voyages. Roughness effect increases faster in voyage 4 after long time stay in 
port.  

 
Fig.8: The change of Power ratio with time 

 
7. Conclusions 
 
A technical performance index is proposed in this paper, which can be used to check the ship hull and 
propeller condition. EEDI value is included as a coefficient in the index to make the index comparable 
amongst different ships. Moreover, a procedure is developed to analyze ship in-service measurements 
and calculate this index.  
 
The technical performance of a bulk carrier is evaluated following the proposed procedure. The 
measured data used for analysis includes ship speed through water, shaft power, shaft speed, wind and 
wave information. The water temperature is derived from the Copernicus database. All the measured 
data is synchronized at 1-minute frequency. The measured data is first filtered based on water depth 
and measurement quality indicators. Then the dynamical window method is used to remove ship 
acceleration/deceleration periods. Finally, the clean data is averaged on 1-hour interval for the 
weather normalization. 
 
The effects of wave and wind on ship power are first corrected for. Then the effect of water 
temperature and water density is corrected to get speed power curves in standard calm water condition 
with water temperature of 15°C and water density of 1026 kg/m3. Two different normalization 
methods are tested. The results show that both normalization methods can capture a reasonable 
relationship between the shaft power and speed. The correction power is larger when propeller model 
is used in the normalization, since the effect of weather on propeller efficiency is considered in this 
method. The results of this method have larger scatter, which needs further investigation. 
 
After normalizing for the weather effect, the correlation between power and ship speed seems 
reasonable. The technical performance index can capture the change of ship hull and propeller 
condition, which indicates that the proposed procedure for analyzing ship technical performance is 
very promising. 
 
There is still scatter in the corrected power speed data. More study on the data preparation and 
weather normalization should be performed. 1-hour data is averaged for the analysis, and the effect of 
time window length should also be studied further. Analyzing ship engine and propeller efficiency 
based on in-service data will be the next topics. 
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Abstract 
 

Through cross-disciplinary research a novel interactive tool has been developed, HullMASTER, which 
enables shipowners, operators, and authorities in the Baltic Sea region to make evidence-based 
decisions on strategies and policies related to ship hull maintenance. This novel tool is deployed as a 
standalone app (source code in MATLAB). Modelling is based on cost-effective approximate prediction 
methods (Granville method), as well as on empirical fouling data. Validation of HullMASTER 
predictions for hull-and-propeller performance shows ~80% agreement against nearly 40 vessel-years 
of performance data (fleet of 9 vessels). Further, three types of hull coating were compared in a 
demonstration case: a copper-based antifouling coating, a biocide-free foul-release coating, and an 
inert abrasion-resistant coating. In this demonstration, the foul-release coating is shown to be the most 
sustainable alternative for a 10,000-DWT cargo ship in terms of pressure on the environment and 
health. These societal savings are aligned with potential economic savings for the shipping operator. 
 
1. Introduction 
 
Shipowners and operators are well aware of the economic importance of well-maintained underwater 
hull and propeller surfaces for vessel energy efficiency (Adland et al., 2018). However, dry-docking 
decisions may currently lack independent and objective evidence in the selection of a fouling-control 
strategy for a given vessel, Safinah Group (2020), while having economic consequences for the 
following 2-5 years of vessel operation or even longer in some cases, Bebić et al. (2018). Maintenance 
strategies include selecting from different coating types, for example between conventional biocidal 
copper-based coatings and biocide-free alternatives, frequency of docking, frequency of in-water 
cleaning, and hull pretreatments (full blasting or spot blasting). The optimal answer depends on ship 
size, speed, activity profile, salinity etc. A knowledge gap is identified on how to support operators in 
making these decisions. Consequences of sub-optimal decisions are beyond sheer economics, with hull 
maintenance being a low-hanging fruit for decreasing shipping’s pressure on climate, human health, 
and marine water quality, Wan et al. (2018), Ytreberg et al. (2021). 
 
In a cross-disciplinary research effort, Chalmers University of Technology, together with SSPA Sweden 
AB and University of Gothenburg, has developed an interactive tool – HullMASTER, Hull MAinte-
nance STrategies for Emission Reduction – to equip shipowners, operators and other stakeholders with 
evidence on economic and environmental cost-and-benefit of different ship hull maintenance strategies. 
The tool is freely available as a standalone executable Windows-based program, Fig.1, in which the 
user specifies main vessel particulars, engine and fuel details, as well as route details. The user is then 
able to customize their hull maintenance strategies, i.e. scenarios for type of coating, surface preparation 
in dry dock, dry-docking frequency, and in-water hull cleaning frequency, and compare scenarios in 
terms of both economic and environmental performance. The environmental impact includes both 
emissions to air from burning fuel and emissions to water from antifouling paint’s biocide release. This 
paper focuses mainly on the validation of the hull performance aspect. To assess the different strategies, 
the tool includes models for fouling growth rate, hull roughness as an effect of fouling and maintenance, 
and finally the effect on propulsion power consumption. The current scope of the tool is restricted to 
vessels operating exclusively in the Baltic Sea region, but the authors envision future extension of the 
tool to include other marine regions worldwide. 
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mailto:maria.lagerstrom@chalmers.se
mailto:lena.granhag@chalmers.se
mailto:sofia.werner@sspa.se
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In the current paper, the principles behind development of HullMASTER as a decision-support tool are 
presented and discussed, including validation against hull-and-propeller performance data (nine vessels, 
nearly 40 vessel-years) and a demonstration case (one vessel). 

 

 
 

 
Fig.1: HullMASTER’s user interface, a free-license standalone Windows executable for calculating the 

economic and societal cost of biofouling and fouling control. 
 
2. Materials and Methods 
 
2.1. Fouling growth model 
 
How quickly biofouling is established and growing on a hull surface depends on many parameters. In 
this study, a model for fouling growth is developed for the Baltic Sea and Skagerrak Sea (North Sea) 
accounting for the type of coating, seawater salinity, fouling pressure and idling time.  
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Uzun et al. (2019) fitted Gaussian curves to the time-series of fouling growth at different locations, 
each for Equatorial and Mediterranean waters. In the present study, data from previous idle-panel 
studies in the Baltic Sea region are complemented with new data for several types of coatings, as 
described below, and data are also fitted using Gaussian curves, which helps easily define the severity 
of fouling accumulated over time for a given location, as exemplified in Fig.2. The US Navy’s Naval 
Ships’ Technical Manual (NSTM) fouling rating is chosen, as this has been previously correlated to 
propulsive penalties via determination of an equivalent hydraulic sand-grain roughness height, ks, 
Demirel et al. (2017), Schultz (2007), Uzun et al. (2019), i.e. the height of sand grains that leads to the 
same frictional penalty as a given hull condition. The NSTM fouling rating is reported in a 0-100 scale, 
where 0 is a clean coating (ks ~30 µm) and 100 represents a heavily fouled surface, with all types of 
fouling present (ks ~10,000 µm, according to Schultz (2007)). It is noted that NSTM fouling rating and 
ks are correlated exponentially, as detailed below, Eq.(1). 
 

 

 
Tjärnö (26 psu) 

 
Kristineberg (23 psu) 

 
Askö (6 psu) Askö (6 psu) 

Fig.2: Location of marine field stations and respective fouling pressure an inert coating. Gaussian 
curves are fitted to sampled fouling rating datapoints. Ongoing data collection is obtained from 
Tjärnö, Kristineberg and Askö. Data from Saltholmen (Gothenburg, Sweden) is obtained from 
Oliveira and Granhag (2020) and currently used for modelling antifouling and foul-release 
coatings (not shown). Salinity data originates from IMR (2012). The map is produced in Ocean 
Data View, Schlitzer (2018). 

 
In previous studies conducted in the Baltic Sea region, panels with area ~100-200 cm2 and coated with 
different types of hull paints were submerged at sea to determine the performance of fouling-control 
coatings and in-water maintenance events, Oliveira and Granhag (2020), as well as fouling pressure, 
Wrange et al. (2020), i.e. the severity of fouling developed on inert surfaces submerged at sea for a 
given period of time. Similarly, in the current study, panels are submerged at three different locations, 
Tjärnö and Kristineberg on the West coast of Sweden (salinity 23-26 psu) and Askö on the East coast 
(~6 psu, Fig.2), bearing three types of coating: conventional biocidal copper-based antifouling, biocide-
free foul-release, and an inert coating. Fouling data is fitted using Gaussian curves, Uzun et al. (2019), 
resampled at all time steps available, and linearly interpolated between 4 available geographical 
locations: Tjärnö (26 psu), Kristineberg (23 psu), Saltholmen (19 psu), Oliveira and Granhag (2020), 
and Askö (6 psu). Salinity is currently the best predictor for fouling pressure in the Baltic Sea region, 
Wrange et al. (2020). Given the currently low number of geographical locations, Fig.2, preliminary 
analysis has shown a linear interpolation to be the most reasonable approach to account for salinity 
effect on fouling pressure. Finally, fouling is assumed to only settle and develop (grow) when a vessel 
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is idle, following the same approach as in Uzun et al. (2019). Effects of seasonality are not addressed 
explicitly in HullMASTER, meaning that e.g. high fouling growth rates in the summer cannot be exactly 
timed by the user. Still, the average effect of seasons in fouling growth is included implicitly in the 
results, as panel data ranges both summer and winter seasons. 
 
2.2. Hull roughness condition 
 
Hull roughness condition is expressed as hydraulic sand-grain roughness height, ks. Roughness is 
assumed to build up within a dry-docking interval, i.e. the period between two dry-dockings, from an 
initial coating roughness height to a hull condition where fouling has a predominant effect. Hydraulic 
sand-grain roughness height, ks, is not the same as Average Hull Rougness (AHR): the latter is the 
physical peak-to-valley height, whereas the former is a hydrodynamically-determined value, Oliveira 
et al. (2020). 
 
Initial coating roughness height is assumed in HullMASTER according to values presented in Table I, 
where initial coating condition is the smoothest for a foul-release coating after full-grit blasting (as low 
as 0 µm, i.e. hydraulically smooth) and increases for other coating types and touch-up coating 
maintenance. The highest initial roughness is obtained for “Light cleaning”, Leer-Andersen (2018), i.e. 
an imperfectly in-water-cleaned hull surface, assumed to correspond to the case of reactive cleaning on 
calcareous forms of fouling, with e.g. barnacle baseplates remaining after the cleaning, Table I. 
 
Table I: Equivalent hydraulic sand grain roughness height ks values for initial coating roughness, 

converted from power or frictional penalties given in cited sources, using the method detailed 
in Oliveira et al. (2020). IWHC = in-water hull cleaning. 

Initial condition ks [µm],  
Lower 
bound 

ks [µm],  
Average 

ks [µm],  
Upper 
bound 

Source, coatings and treatments 

Full grit blasting: 
foul-release coating 

0 15 30 Jotun Silicone: Seaquantum, Leer-
Andersen (2018) foul-release, normal 
application, Yeginbayeva and Atlar (2018) 

Full grit blasting: 
polishing 
antifouling and 
inert coating 

30 40 60 Jotun: Antifouling Seaforce 60, Leer-
Andersen (2018), linear polishing polymer, 
normal application, Yeginbayeva and Atlar 
(2018)  

Touch-up: foul-
release coating 

35 40 45 Foul-release, mimicked hull roughness, 
Yeginbayeva and Atlar (2018) 

Touch-up: 
polishing 
antifouling and 
inert coating 

30 65 150 Jotun: Rough antifouling Seaforce 60, and 
flaked paint, Leer-Andersen (2018), linear 
polishing polymer, mimicked hull 
roughness, Yeginbayeva and Atlar (2018) 

Proactive IWHC, 
negligible wear 

same as  
out-
docking 

same as  
out-
docking 

same as  
out-
docking 

Currently assuming no further coating 
deterioration 

Proactive IWHC, 
moderate wear 

50 80 150 High pressure cleaning, Leer-Andersen 
(2018)  

Reactive IWHC, 
high wear 

70 150 300 Light cleaning, Leer-Andersen (2018)  

 
Adding to this initial coating roughness height, hull roughness due to fouling is modelled based on data 
from Schultz (2007), using a fitted curve (correlation coefficient R2 = 0.96): 
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𝑘𝑠,𝑓𝑜𝑢𝑙𝑖𝑛𝑔 =  46.927 × 𝑒  0.056614 ×(𝑁𝑆𝑇𝑀 𝑓𝑜𝑢𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔)                              (1) 
 

2.3. Modelling of powering penalty 
 
Hydraulic sand-roughness height, ks (not to be confused with AHR), is translated into propulsion 
penalties using a flat-plate similarity-law scaling method, Granville (1958) method. According to the 
current version of the Granville method, Demirel et al. (2017), Schultz (2007), the flat-plate Kármán-
Schoenherr friction line is offset by +ΔU+κ[log(10)]-1 along the Reynolds axis (Reynolds number based 
on vessel speed and length), where ΔU+ is the roughness function at a given roughness Reynolds 
number, i.e. based on roughness height and viscous length scale, Demirel et al. (2014). The method 
relies on iterative estimation of the hull’s average roughness Reynolds number ks

+ (and the respective 
ΔU+ value) for a given sand roughness height ks [µm], vessel speed 𝑉, and waterline length LWL, until 
results converge to ship-scale Reynolds number, as described in more detail and validated elsewhere, 
Demirel et al. (2017), Oliveira et al. (2018), Song et al. (2021). 
 
The Granville method allows calculation of towing resistance penalty due to hull roughness, ∆𝑅 in kN. 
This change in towing resistance is currently translated to shaft power penalty, ∆𝑃 in kW, assuming 
negligible effect of hull roughness on propulsive efficiency 𝜂𝐷, Oliveira et al. (2020): 

 
∆𝑃 =   

∆𝑅(𝑘𝑠)×V

𝜂𝐷
                                                              (2) 

 
2.4. Validation of hull-and-propeller performance predictions 
 
Data contributions were kindly made by four collaborating shipping operators in the RoRo and RoPax 
segments (Roll-on/Roll-off Cargo and Vehicle/Passengers, respectively), consisting of auto-logged or 
voyage performance data for nine vessels, or a total of nearly 40 vessel-years, Table II:. From Table 
II:, it is important to retain that reported data varied across the fleet in regards to availability and 
reliability of primary parameters speed through water (e.g. unreliable STW for vessels A and B, so 
speed over ground SOG is used as a proxy) and delivered power (e.g. shaft torque meters unavailable 
on vessels C and I, so fuel consumption FC is used for deriving a proxy). Unavailable secondary 
parameters also presented challenges for most of the vessels (D-I). Further, the source of curves for 
baseline power-speed performance spans from simple empirical methods, based on vessel main 
particulars, Holtrop and Mennen (1982), to detailed model test and sea trials, representing conditions 
close to those observed during vessel operation. Vessel performance data is further filtered for vessel 
displacement within 5% of reference displacement value (in metric tons) and vessel speed is then 
corrected using the Admiralty formula, ISO (2016), and filtered to the speed range of the reference 
baseline power-speed curves. Finally, wind, rudder angle and depth data, or else estimated by the crew 
onboard (except for vessels D, E and F, ‘Other’: wind data sourced from land-based weather stations 
located within 2 nautical miles) was used for filtering out rough weather datapoints (wind speed > 7.9 
m/s, or Beaufort > 4), shallow water effects, and changes in course, ISO (2016). Finally, data logging 
frequency corresponded to 10-min averages and standard error (vessels A, B and C, which “can be 
useful for analysis” according to ISO, 2016), ISO 19030 part 2-compliant data-logging frequency 
(vessels D, E and F) or ISO 19030 part 3-compliant data-logging frequency (vessels G, H and I). 
 
In regard to coating systems applied during dry-docking maintenance, some vessels had been recently 
retrofitted with a different coating type (“→” indicates coating retrofit): 
 

• Vessel A: antifouling polishing coating (AF) → abrasion resistant coating (inert) 
• Vessel B: antifouling polishing coating (AF) →  hybrid foul-release (hybrid FR) 
• Vessel C: antifouling polishing coating (AF) → copper-free polishing coating 
• Vessel D: antifouling polishing coating (AF) (no retrofit) 
• Vessel E: antifouling polishing coating (AF) (no retrofit) 
• Vessel F: antifouling polishing coating (AF) (no retrofit) 
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• Vessel G: antifouling polishing coating (AF) (no retrofit) 
• Vessel H: antifouling polishing coating (AF) → hybrid foul-release (hybrid FR) 
• Vessel I: silicone foul-release coating (FR) (no data prior to retrofit), with hull water pressure 

washing every subsequent dry-docking (no hull blasting), 
 
where antifouling polishing coatings are conventional biocidal coating containing copper(I) oxide and 
zinc oxide (among other booster biocides), silicone foul-release coatings are biocide-free coatings, and 
hybrid foul-release coatings contain a booster biocide, in this case copper pyrithione at ≤10% w/w. 
Since there is currently no available field panel data for the latter hybrid coatings, hull performance is 
compared to the closest coating type available in HullMASTER, i.e. a biocide-free foul-release coating. 
 
Table II: Vessel performance parameters, autologged or manually logged as voyage reports. Data for 

vessel I is from Kowalski (2020), who kindly shared raw data to validate HullMASTER. 

Vessel 
Area of 
opera-
tion 

Primary parameters Secondary parameters 
Data 
size and 
rate 

baseline  
power- 
-speed 
curve 

Speed 
[kn] 

P [kW] FC 
[kg/h 
or 
L/h] 

Wind  
speed  
[m/s], dir. 
[°] (or 
Bft) 

Rudder 
angle 
[°] 

Sea 
depth 
[m] 

Draft 
and 
Trim[
m] 

A 
190-m 
RoRo 
Cargo 

Kattegat 
Sea and 
North 
Sea 

SOG + (L/h) + + + + 5.2 
years @  
10-min 
A±SE 

Model test 

B 
190-m 
RoRo 
Cargo 

Kattegat 
Sea and 
North 
Sea 

SOG + (L/h) + + + + 5.3 
years @  
10-min 
A±SE 

Model test 

C 
180-m 
RoRo 
Cargo 

Baltic 
Proper 

SOG N/A L/h + + + + 4.5 
years @  
10-min 
A±SE 

Sea trial 

D 
100-m 
RoPax 

Danish 
Straits 

SOG + (L/h) Other N/A N/A N/A 1.5 
years @ 
Every  
15 s 

Sea trial 

E 
95-m 
RoPax 

Danish 
Straits 

SOG + (L/h) Other Azimuth N/A N/A 1.8 
years @ 
Every  
15 s 

Model + 
Sea trial 

F 
95-m 
RoPax 

Danish 
Straits 

SOG + (L/h) Other Azimuth N/A N/A 2.3 
years @ 
Every  
15 s 

Model + 
Sea trial 

G 
220-m 
RoPax 

Kattegat 
Sea and 
Danish 
Straits 

STW + (L/h) + N/A + Only 
trim 

3.5 
years @ 
Every 
minute 

Model test 

H 
230-m 
RoPax 

Kattegat 
Sea and 
Danish 
Straits 

STW + (L/h) + N/A + Only 
trim 

3.5 
years @ 
Every 
minute 

Empirical 

I 
140-m 
RoPax  

Baltic 
Proper 

SOG N/A kg/h BF N/A N/A + 11.8 
years @ 
Each 
sea 
passage 
(2 day-1) 

Empirical 

Legend: + variable available and included in the analysis, () variable available but excluded from the analysis, 
SOG – speed over ground, STW – speed through water, Other – from sources external to the vessel (oceanographic 
and land-based weather data), Azimuth – thruster azimuth angle used instead of rudder angle, P – shaft power, FC 
– fuel consumption, BF – Beaufort scale, A±SE – average ± standard error, N/A – not available. 
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Finally, for the current validation purposes, percentage powering penalties relative to smooth hull 
condition, 𝑃𝑑𝑖𝑓𝑓, defined as: 

 
𝑃𝑑𝑖𝑓𝑓[%] =

𝑃𝑟𝑜𝑢𝑔ℎ ℎ𝑢𝑙𝑙−𝑃𝑠𝑚𝑜𝑜𝑡ℎ ℎ𝑢𝑙𝑙

𝑃𝑠𝑚𝑜𝑜𝑡ℎ ℎ𝑢𝑙𝑙
× 100 =

∆𝑃

𝑃𝑠𝑚𝑜𝑜𝑡ℎ ℎ𝑢𝑙𝑙
× 100                               (3) 

 
are used in validating HullMASTER predictions against measured performance (in-service data). 

 
2.5. Emission factors and Pricing 
 
Emissions to the atmosphere are modelled according to methods presented in IMO’s 4th greenhouse gas 
study, IMO (2020), for calculating specific fuel oil consumption and emission of greenhouse gases and 
air pollutants, per ton of fuel or per engine break power, as applicable for each substance.  
 
Regarding emissions to the marine environment, copper and zinc release rates from a biocidal polishing 
antifouling coating are currently modelled as a function of salinity, for each of immersion periods 0-14 
days and 14-56 days separately, Lagerström (2020), paint product: Micron Superior), and with time 
decay based on time-resolved release rate data, Valkirs et al. (2003).  
 
Dry-docking and in-water hull cleaning prices are derived from multiple sources (local operators and a 
shipyard, as well as previous studies, Bebić et al. (2018), Hansen (2013), bunker costs are estimated for 
Ultra-Low Sulfur Fuel Oil (ULSFO) based on historic data in the period 2014-2020,  DNV GL (2020), 
Ship & Bunker (2020).  
 
Besides economic costs for operators, societal costs are also accounted for, based on willingness-to-pay 
surveys on citizens living in the Baltic Sea region, among other damage-cost estimates, for impacts on 
human health, climate, marine eutrophication, and marine ecotoxicity, Nordhaus (2017), Noring (2014), 
Noring et al. (2016), Ytreberg et al. (2021). 
 
3. Results and Discussion 
 
3.1. Model validation 
 
Validation scenarios are detailed according to maintenance and operation of nine vessels, Table III. 
Scenario details concern maintenance interval, average cruising speed, typical idle/active profile, and 
salinity in visited ports. Additionally, HullMASTER accounts for type of dry-dock maintenance, 
coating, one-off idle periods (exceptions from schedule), and in-water cleaning events (if any). 
 

Table III: Vessel maintenance, activity, and route details for validation of HullMASTER 

Vessel 

Average 
dry-docking 
interval 
[years] 

Average 
speed 
[knots] 

Typical idle 
period [days] 

Typical active 
period [days] 

idle 
time 

Seawater 
salinity 
range 
[psu] 

A 2.0 19.0 0.72 1.28 36% 19 – 22 
B 2.0 19.0 0.72 1.28  36% 19 – 22 
C 2.8 21.5 0.31 0.69 31% 2 – 14 
D 2.0 10.5 0.54 0.46, with shorter  

10-min stops and  
20-min trips 

69% 12 – 13 

E 2.0 10.5 0.009  0.011 45% 12 – 13 
F 2.0 10.5 0.009  0.011 45% 12 – 13 
G 3.0 17.5 0.42 0.58 42% 14 – 19 
H 3.0 17.5 0.42 0.58 42% 14 – 19 
I 1.9 14.0 0.23 0.27 46% 5 – 9 
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Dry-docking intervals are comparable across the fleet (2-3 years). Differences are observed in average 
speed (10-22 kn) and idle time (30-70%), which are relevant in testing HullMASTER in different 
operational profiles. However, vessel speed and idling time are moderately correlated (R2 = 0.57), i.e. 
a higher average speed tends to co-occur with shorter total idling, so it is not possible to separate these 
two factors in respect to fouling growth. In modeling fouling growth, HullMASTER accounts solely 
for total idling time, route and maintenance details, whereas vessel speed is only accounted in further 
translating a hull roughness condition into powering penalty (Granville method). 
 
Examples of time series for percentage powering penalties 𝑃𝑑𝑖𝑓𝑓 are shown in Fig. for vessels A, B and 
I, respectively. Dry-dockings are marked by vertical solid blue lines and in-water hull cleaning events 
are marked by vertical dashed blue lines. 

 
Fig.3: Hull-and-propeller performance: vessel A (190-m RoRo, coatings: AF – AF – Inert). Vertical 

lines indicate dry-dockings (solid) or in-water cleaning events (dashed). Legend: 
 ––– HullMASTER (average and 95% confidence intervals), ---o--- 3-month averages obtained 
from filtered vessel performance data (•). 

 
Fig.4: Hull-and-propeller performance: vessel B (190-m RoRo, coatings: AF – AF – hybrid FR). 

Vertical lines indicate dry-dockings (solid) or in-water cleaning events (dashed). Legend:  
––– HullMASTER (average and 95% confidence intervals), ---o--- 3-month averages obtained 
from filtered vessel performance data (•). 



 

103 

 
Fig.5: Hull-and-propeller performance: vessel I (140-m RoPax, silicone FR coating). Original data 

reported in Kowalski (2020). Vertical lines indicate dry-dockings (solid) or in-water cleaning 
events (dashed). Legend: ––– HullMASTER (average and 95% confidence intervals), ---o--- 3-
month averages obtained from filtered vessel performance data (•). 

 
For vessel A, Fig.3, it is observed that 3-month moving average values (---o---) fall almost entirely 
within the 95%-confidence prediction intervals from HullMASTER (–––), except for the last period. 
Uncertainties in HullMASTER prediction include uncertainties in initial roughness height, Table I, 
replicate variability in idle panel data (quadruplicates), embedded seasonal variability, and interpolation 
uncertainty in fouling data. In the first 2 dry-docking intervals, an antifouling coating with initial touch-
up condition applies. In the first dry-docking event, power penalty estimates based on in-docking 
inspection of NSTM fouling rating (X, Granville method) and peak-to-valley hull roughness survey on 
the out-docking vessel (+, Townsin’s formula, ITTC (2014)) are also in close agreement with 
performance predicted by HullMASTER. Upon the second dry-docking, vessel A was retrofitted with 
an inert abrasion resistant coating, with no fouling control properties. Out-docking performance initially 
improved compared to previous homologous out-docking period, from 11% → 6%, this being due to 
full sandblasting of the hull down to bare steel on the second dry-docking. However, performance 
rapidly deteriorated for this inert coating, as shown by both measured and predicted performance. A 
single in-water cleaning event seems to have granted no significant improvement in performance. 
Towards the end, a prolonged idle period of ~4 months is qualitatively captured in predictions from 
HullMASTER, even though predictions are somewhat lower, Fig.3. 
 
For vessel B (Fig.4), the first 2 dry-docking intervals are identical to those of vessel A, as expected 
since these two vessels are sister vessels operating in the same route. Good agreement between 
measured and predicted penalties is also found here. Vessel B was retrofitted with a hybrid foul-release 
coating in the second dry-docking, following full sandblasting, which resulted in a drastic decrease in 
out-docking powering penalty compared to previous homologous out-docking period, 11% → 2%, with 
sustained low powering penalty of ~5% throughout the last dry-docking interval. Such low values of 
measured penalties agree well with a lower penalty and slow deterioration in performance predicted by 
HullMASTER for a foul-release coating, on this specific vessel and route, Fig.4, even though the actual 
coating was not a biocide-free but instead a hybrid foul-release coating. 
 
Long-term performance of a foul-release coating has been tested on vessel I for a total of nearly 12 
years, Fig.5, during which the coating was only maintained by hull water pressure washing at each of 
the five dry-dockings, according to the original study, Kowalski (2020). Measured performance seems 
to suggest a typical saw-shaped curve for propulsion penalties, where dry-docking events contribute to 
bringing propulsive penalties down (on average). For vessel I, HullMASTER closely follows these 
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trends, except in the first dry-docking interval where HullMASTER seems to underestimate propulsive 
penalty for the newly applied foul-release coating. However, confounding factors, such as varying 
engine performance (shaft power is estimated here based on fuel consumption, as a proxy), might still 
be affecting measured performance for vessel I, as seen by unexplained peaks at t = 1550 and 2295 
days. Still, on average, there seems to be good agreement with predicted penalties.  
 
Results for all nine vessels are shown in Fig.6, as 3-month averages before/after maintenance events. 
In this plot, powering penalties predicted by HullMASTER are plotted against measured performance. 
Plotted dashed line corresponds to an ideal 100% agreement between predicted and measured penalties. 
Agreement between predicted and measured propulsive penalties, i.e. overlapping 95% confidence 
intervals, is observed in 34 out of 43 control points, meaning that there is no statistical difference 
between HullMASTER predictions and measured performance in ~80% of the current validation cases. 
A higher amount of detail and improved models may be required to increase prediction success rate. 
Nevertheless, an 80% agreement with measured performance provides sufficient assurance to conduct 
a demonstration case on possible future application of HullMASTER. 
 

 
Fig.6: Validation of HullMASTER’s predicted hull-and-propeller performance against measured 

performance (R2 = 0.56, with statistically significant slope: p-value = 10-8 < 0.05). Y-axis error 
bars represent HullMASTER uncertainties, including uncertainties in initial roughness height, 
replicate variability in idle panel data, and seasonal variability. On the x-axis, error bars 
correspond to 95% confidence intervals for 3-month onboard performance data (filtered data). 

 
3.2. Demonstration case: 10,000 DWT General Cargo Ship 
 
For a demonstration case, a general cargo ship is selected, since dry cargo vessels are the single largest 
contributor to biocide emissions from antifouling coatings (copper and zinc) in the Baltic Sea region, 
while being among the top three emitters of CO2 in the region, after RoPax and tankers (HELCOM, 
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2019). A 10,000-DWT vessel (wetted surface area ~3330 m2) was selected based on median engine 
power and country of domicile, control or registration around the Baltic Sea, IHS Markit (2020). 
 
Three scenarios are defined as summarized in Tabke IV. Scenario 0 is a baseline, or business-as-usual 
scenario (BAU) for an antifouling biocidal polishing coating, with initial full-blasting of the hull, and 
touch-up of the coating every other docking, Gundermann and Dirksen (2016). Dry-docking interval is 
2 years, with full re-blasting of the hull down to steel every 4 years (i.e. every other docking). Scenario 
1 is a foul-release biocide-free coating, also with initial full-blasting of the hull, and touch-up of the 
coating on every subsequent dry-docking. Dry-docking interval is also 2 years, but full re-blasting 
occurs only every 10 years for this foul-release coating, Kowalski (2020). Finally, Scenario 2 is an inert 
biocide-free abrasion-resistant coating, also with initial full-blasting of the hull, and touch-up of the 
coating on every subsequent dry-docking. Dry-docking interval is again 2 years, with full re-blasting 
every 10 years, similar to the foul-release coating. However, for this inert coating, in-water hull cleaning 
is required, being automatically triggered according to criteria adapted from US Navy, Naval Sea 
Systems Command (2006), in this case whenever confidence intervals for NSTM fouling rating reach a 
maximum frNSTM of 40 (small calcareous fouling). 
 
Table IV:  Scenarios used in HullMASTER demonstration case (10,000 DWT General Cargo Ship). 

BAU – business-as-usual, IWHC – in-water hull cleaning. 
Scenario Coating Lifetime First  

dry-docking 
Subsequent 
dry-
dockings 

Dry-docking 
frequency 

IWHC 

Scenario 0  
     Baseline, 
BAU 

antifoulin
g 

4 years 

Full grit 
blasting Touch-up 2 years 

None 

Scenario 1  
     Biocide-free 

foul-
release 

10 years None 

Scenario 2  
     Biocide-free 

inert 10 years US Navy 
criteria 

 
For the current demonstration purposes, the vessel operates a pendulum route between Kiel and 
Gothenburg (14-19 psu), at an average cruising speed of 12 knots, and idle/active cycle of 0.53/0.8 
days, i.e. a percentage idle time of 40%.  
 
In Fig.7, the simulation process is illustrated for a foul-release coating (Scenario 1) in converting fouling 
data from panel studies to propulsion penalties on an active vessel. Raw data for NSTM fouling rating 
versus idle time is linearly interpolated for local port salinity and Gaussian curves are fitted to salinity-
interpolated datapoints (lines in Fig.7a), including 95%-confidence intervals for uncertainties due to 
replicate variability in idle panel data, and seasonal variability. Then, accounting for idling periods, 
over which fouling develops according to Fig.7a, and periods of vessel transit, when fouling settlement 
is halted, an estimate of fouling growth is obtained for the active vessel over time, resetting on each 
dry-docking event, i.e. every 2 years (Fig.7b). This fouling rating curve for the active vessel, where a 
maximum NSTM fouling rating of ~20 corresponds to advanced slime, is then converted to equivalent 
roughness height (Fig.7c), according to Eq.(1) and initial coating roughness estimates, Table I. Finally, 
using Granville method, powering penalties, Fig.7d, are estimated based on vessel details and hull 
roughness height ks versus time, Fig.7c, here with a maximum ~15% penalty relative to a smooth hull, 
Fig.7d. 
 

Hull surface-related operator costs (Fig.8) are calculated based on powering penalties, dry-
docking costs related to hull coating maintenance and in-water hull cleaning costs, as plotted in Fig.8 
for all three scenarios (results presented in €2020). In this line plot, it is observed that the foul-release 
coating (Scenario 1) is initially more expensive (on average), due to higher investment on the first 
application, but it becomes more cost-effective than the inert coating (Scenario 2) within the first year, 
and breaks even with the BAU antifouling coating (Scenario 0, Baseline) within 3 months after the first 
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touch-up. Also, the expected lifetime of coating systems will affect average annual costs, where foul-
release (Scenario 1) and inert coatings (Scenario 2) have a longer expected lifetime, Fig.8., i.e. less 
frequent full sandblasting. However, uncertainties need to be further addressed, as discussed at end of 
this section. 

 
Annual hull surface-related societal costs, i.e. costs related to emissions resulting from hull roughness 
penalties (difference to a smooth hull) and antifouling biocide emissions, and cost differences between 
scenarios, are presented in Figs.9 and 10, respectively, including 95% confidence intervals to enable 
assessment of results’ significance. 

 
 

 
a)  

 
b)  

 
c) 

 
d) 

Fig.7: From hull fouling to powering penalty on a 10,000 DWT General Cargo Ship: a) NSTM fouling 
rating for idle conditions; b) NSTM fouling rating for active vessel; c) equivalent sand roughness 
height; d) percentage power penalty, Pdiff. Results are for a foul-release coating, which has an initial 
equivalent roughness height ks in the range 0 to 30 µm (full grit blasting of the hull). 

Activity and maintenance profile 

ks = f ( coating condition, NSTM fouling rating ) 

Granville method 
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Fig.8: Time series for hull surface-related average costs for operators, including hull maintenance and 

roughness-related bunker expenses (430 €2020/ton ULSFO): Scenario 0 – antifouling biocidal 
coating; Scenario 1 – foul-release coating; Scenario 2 – inert coating with in-water cleaning. 
Scenario 0 (biocidal antifouling) has a shorter lifetime of 4 years: docking cycle is assumed to 
repeat thereafter. 

 

 
a) 
 

 
b) 
Fig.9: Hull surface-related societal costs [€2020/year] to health, climate, eutrophication and ecotoxicity, 

a) linear scale and b) logarithmic scale. Scenario 0 – antifouling biocidal coating; Scenario 1 – 
foul-release coating; Scenario 2 – inert coating with in-water cleaning. 

 

 
Fig.10: Hull surface-related annual cost difference for operators and society, as well as total cost 

(society + operators), calculated as difference to baseline Scenario 0 (antifouling biocidal 
coating), where Scenario 1 is a foul-release coating, and Scenario 2 is an inert coating with in-
water cleaning. 
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From Fig.9, it can be concluded that the main societal issue with BAU antifouling biocidal coatings, 
for this specific vessel and route, deals with marine ecotoxicity, where damage costs are at ~145-260 
thousand €2020/year, resulting from emission of ~100 kg Cu and ~20 kg of Zn on an annual basis. This 
marine-ecotoxicity cost is followed by pressures on climate due to hull roughness-related bunker 
penalties and consequent CO2-equivalent emissions, at ~2.5-130 thousand €2020/year, and pressure on 
human health due to other air emissions, at ~5-76 thousand €2020/year. Since the purpose of this tools is 
to compare different scenarios, the focus is on difference in cost rather than the total cost. Pressures on 
climate and human health relate only to the fuel consumption allocated to hull roughness penalty, so 
the total air emissions would be higher, including other resistant components (wave-making, smooth 
viscous resistance, wind, weather). Still, the single largest impact of selecting a BAU antifouling 
coating, for this specific vessel and route, is the pressure of biocide release on the marine environment, 
i.e. chemical pollution. 
 
Since biocide emissions are null for Scenarios 1 and 2, these scenarios have zero impact on marine 
ecotoxicity, Fig.9. Also, air emissions are lower for Scenario 1 compared to Scenario 0, due to improved 
performance of the foul-release coating, but increase slightly for Scenario 2, due to faster fouling growth 
rates on the inert coating and the selected in-water cleaning scheme. On the latter, it is noted that in-
water cleaning, which is triggered in this example based on an NSTM fouling rating of 40 (small 
calcareous fouling), is performed at a rate of 1 cleaning per dry-docking interval, more precisely ~ every 
18 months, with room for further increase in frequency, depending on constraints related to economics 
and logistics. 
 
Finally, cost comparisons can be drawn referring to Fig.10. According to these results, Scenario 1 
significantly reduces the burden of hull condition and fouling-control strategies on society, as compared 
to Scenario 0, by ~75-460 thousand €2020 in annual savings, while resulting in mean savings for shipping 
operators at ~30 thousand €2020 / year. However, confidence interval for the latter economic results still 
includes zero, meaning that uncertainties are larger than the differences between scenarios. Thus, 
retrofitting this vessel from a biocidal antifouling to a foul-release coating would bring about significant 
savings for society, with marginal gains for shipping operators. Both societal and economic interests 
seem to be aligned, as mean results are both below zero, Fig.10, Scenario 1. 
 
For Scenario 2, the mean result for the operator is above zero, meaning an economic loss for the 
operator, although a null cost difference is still within uncertainty. In this scenario, confidence interval 
for societal cost difference also spans across zero, meaning arguable gains for society. In this case, there 
seems to be a misalignment between economics (operator) and societal values, as mean cost difference 
results have opposite signs. However, results must be interpreted with caution, considering large 
uncertainties involved. The latter are due to uncertainties in fouling growth modeling, as discussed 
before, but also in pricing estimates. 
 
From the above validation and demonstration, HullMASTER is suggested as a valuable tool in 
evidence-based comparison of fouling-control strategies, duly acknowledging uncertainties in available 
data and pricing of economic and societal components. Future work is required in further reducing 
model uncertainties and developing model corrections that account for vessel speed, namely adjusting 
fouling growth and biocide release rates to hydrodynamic conditions, as well as further taking seawater 
temperature and pH into account. Finally, future extension of the tool to include other marine regions 
worldwide, as well as development of metrics and a valuation framework for biosecurity (transport of 
non-native invasive species), are all seen as mid-term goals. 
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Abstract 

 
Identifying the true performance of vessels and documenting the effect of new technologies to improve 
that performance requires accurate data related to vessel propulsion, vessel operation and the weather 
surrounding the vessel. It has been particularly challenging to get hold of accurate speed-through-
water data, and without this parameter, obtaining accurate insight into vessel performance is not 
possible. However, recent technology advances have significantly improved the accuracy of speed-
through-water data. This paper will discuss how the availability of accurate speed-through-water data 
combined with a set of other parameters can be used to estimate the actual performance of a vessel. 
This insight can also be used to identify the effect of various measures to improve vessel efficiency and 
to optimize how the vessels are operated. Ultimately, this is a powerful technology targeting the present 
large focus on sustainability and reduced emissions within the shipping industry.
 
1. Introduction 
 
The shipping industry is a key part of the modern global infrastructure. It is also a main piece of the 
foundation for the world economy and offers the cheapest mode of transportation per ton of goods. On 
the downside, shipping also contributes to a significant amount of the global air pollution of substances 
such as sulfur dioxide, nitrogen oxide and particulates as well as to global emissions of carbon dioxide. 
It is therefore crucially important to find ways to reduce the energy consumption and the associated 
emissions from the shipping industry. 
 
Ship designers and builders, ship owners and operators and ship charterers (as well as regulators and 
the global community in general) are all interested in improving ship performance, i.e. making sure that 
ships have an optimal transportation efficiency. There is a multitude of both emerging and mature 
technologies targeting this challenge. Such solutions include new types of hull and propeller designs, 
new coatings, improved engines and powertrain components as well as various types of sails, rotors, 
air lubrication systems, hull cleaning methods etc. In addition to this there are many initiatives focusing 
more on the operational side of shipping, including speed reduction, improved route and logistics 
planning strategies etc.  
 
Before continuing, let us for a moment consider an analogy: A ship has some similarities with a factory 
where a certain amount of input factors is used to produce a certain amount of output factors or products. 
The efficiency of a factory can be measured in how good it is at using the input factors to produce the 
output factors. For a ship, the efficiency can be measured in how good it is at transporting a certain 
amount of cargo over some distance. The key inputs would be the fuel and the cargo, and the output 
would be the resulting speed of the vessel. In practice there are many more input factors related to the 
vessel condition (e.g. hull fouling), the vessel configuration (e.g. trim and ballasting) and the weather 
conditions (e.g. waves, wind and current). Still, the speed of a vessel can be seen as a measure of the 
output or transport efficiency of a vessel at a given input of fuel, cargo, weather, trim etc. 
 
Taking the factory analogy a step further, it seems obvious that any attempt at optimizing the production 
of a factory requires accurate data on both inputs and outputs. Without knowing exactly how many 
components come off the assembly line, it is hard to specify the return on an investment in optimization. 
It would also be difficult to quantify the improvement resulting from a change of the production process. 
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Modern factories and factory automation systems are therefore highly instrumented, providing a lot of 
accurate data to facilitate monitoring and optimization of the production process.  
 
However, the analogy between a factory and a ship often fails when it comes to the availability of 
accurate ship data throughout the chain from input factors to output factors. There is a wide range of 
instrumentation and methods in use and the accuracy can vary widely from poor to good. Coriolis mass 
flow meters measure the fuel oil consumption by the various engines while shaft power meters measure 
the propulsion power generated by the engines. The displacement or cargo weight can be measured by 
a variety of sensors and systems or can even be manually assessed based on the load lines on the vessel 
hull. Also, the trim configuration of the vessel can often be measured.  
 
There are however some crucial parameters that have low accuracy in many, if not most, cases. The 
weather conditions affect the vessel performance to a great extent. Often, the wave information is 
manually assessed by the crew or based on weather models. Manually assessed data will typically 
contain significant inaccuracies whereas model data is based on coarse grids with limited accuracy. The 
wind speed and direction is measured by various types of anemometers, but the flow of air can be 
influenced by the vessel itself, and care has to be taken to correct the measurements taken at the sensor 
height to a more vessel-relevant reference height of, say, 10 m. Finally, the most important measure of 
the vessel output, the Speed Through Water (STW), is often measured with poor accuracy or estimated 
with fairly low accuracy based on GPS data and forecast models with coarse grids.  
 
Measurements of ocean surface current from moving vessels by traditional underwater (in-situ) 
instrumentation are associated with numerous challenges. STW data from such underwater speed-logs 
is heavily influenced by noise and offsets, where many of these effects are due to disturbances generated 
by the vessel itself, Antola et al. (2017), Baur (2016), Bos (2016), Fritz (2016). 
 
Accurate and reliable STW and wave measurements based on radar technology have recently been 
made available from Miros, Gangeskar (2018,2019). This has the potential to significantly push modern 
vessel performance management towards greater insights while also offering a possibility to utilize 
accurate STW data operationally in real-time. 
 
A further aspect is that many vessel performance optimization initiatives are based on noon data, i.e., 
with one data point per 24 hours. This data point might be the average over this period (e.g. the fuel 
consumption) or the value observed at some point in time, typically at the end of the period (e.g. wave 
height). All these parameters are likely to vary significantly during the 24 hours and the result of using 
noon data can be that the resulting analysis is not accurate enough.  
 
The crucial data point STW, which is the vessel speed relative to the water, is equal to the Speed Over 
Ground (SOG) when there is no ocean surface current present. SOG is easily measured by means of a 
GPS receiver. STW can be derived from SOG and ocean surface current models, but accuracy is then 
limited by the model. STW, however, has not been accurately measured until recently, Gangeskar 
(2019). There are quite strong and complex surface current patterns all over the world’s oceans. Studies 
have shown that although models can indicate how these patterns behave, they are based on coarse 
grids and are unable to accurately predict the current at a specific location at a specific time. Without 
accurate data on STW, it is not possible to accurately determine the performance of a vessel. 
Consequently, the lack of accurate STW data leads to challenges related to the following topics: 
 

• Evaluation of hull and propeller designs 
• Evaluation of hull coating efficiency related to friction and anti-fouling properties 
• Evaluation of the efficiency of hull and propeller cleaning procedures 
• Vessel performance estimations at a specific vessel speed, draft, trim and weather state 
• Evaluation of performance relative to contractual agreements (claims) 
• Accurate and reliable voyage optimization 
• Speed optimization 
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The situation is similar for ocean waves, where neither manually assessed nor model-based wave 
heights, directions and periods are accurate enough to provide detailed insight into vessel performance. 
The weather (ocean waves, ocean currents and wind) therefore has a significant impact on ship 
performance. On top of this comes effects induced by the water temperature, water salinity and the 
water depth. The vessel needs to spend energy to counter the forces inflicted by the environments. In 
some situations, it might also gain some energy from the environment.  
 
With accurate STW data it is possible to investigate in detail how the various input factors influence 
the efficiency of a vessel. In a given situation, the STW (i.e. the transport efficiency) depends on the 
influences of the vessel state and the sea state. With accurate wind, wave and current/STW data, the 
added power (or resistance) coming from these influences can be estimated via a process called weather 
normalization. A set of well-known methods can be applied for this purpose (e.g. ISO-15016-2015). 
When subtracting the main influencing factors from the environment, the focus can then be shifted to 
the vessel. The main vessel factors influencing performance are the hull and propeller performance. 
With the appropriate instrumentation (e.g. mass flow meters and shaft power meters) it is possible to 
separate the two effects.  
 
Based on the above it would be possible to assess the performance of a vessel continuously and compare 
it with the ideal condition, i.e. when the vessel was new, or with other vessels. There are numerous 
baseline indices developed already, e.g. EEDI (Energy Efficiency Design Index) and EEXI (Energy 
Efficiency Existing Index), which may be relevant in such a context. 
 
This paper presents a description of an instrumentation system that provides reliable wave, current and 
STW measurements, based on an X-band radar. Furthermore, a full system taking into account all the 
main data points for vessel performance management is outlined. Finally, the paper will investigate the 
sensitivity of a vessel performance indicator to inaccuracies in the significant wave height and STW 
data.  
 
2. Measuring waves, currents and STW based on imaging X-band radar 
 
There have been significant improvements within radar-based sea state measurements recently 
Gangeskar (2017,2018a,2019), Gangeskar et al. (2018). The latest solutions in radar-based sea state 
measurements can measure both ocean waves and ocean currents accurately under widely varying 
conditions and with high availability and reliability.  
 
The Miros Wavex solution bases its measurements on radar images covering local areas of interest, in 
a distance of a couple of hundred meters in front of the vessel. Fig.1 illustrates how configurable 
measurement areas can be extracted from polar radar images for wave, current and STW measurements. 
The images are processed using dedicated algorithms to obtain real-time wave spectra, integrated wave 
parameters, surface current vectors and STW data, Gangeskar et al. (2018), Prytz et al. (2019). During 
the recent years, considerable works have been carried out to improve data quality under various 
conditions, and to test and verify the high measurement accuracy provided by Wavex, Gangeskar 
(2017, 2018a,b,c, 2021), Prytz et al. (2019), Svanes Bertelsen et al. (2020). 
 
Specialized DNV type-approved hardware is connected to the analog video signal output from a marine 
navigation X-band radar to obtain digitized images. Digitized images can also be acquired directly from 
radars with digital data output (Internet Protocol radars). In addition, Wavex utilizes certain radar image 
meta-data from a GPS and a gyro compass. For further details on the basic components of a Wavex 
system on a moving vessel, refer to Prytz et al. (2019) and Svanes Bertelsen et al. (2020). 
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Fig.1: How measurement areas can be extracted from a polar radar image 

 
3. A system for vessel performance management  
 
When working with vessel performance management, it is important to determine what level of 
accuracy is required. A high level of insight will require accurate data with a high resolution in time 
combined with extensive knowledge about the involved processes from input factors to output factors. 
Using noon data with typically one data point per parameter per 24 h might be ok for some more 
superficial investigations, but to make significant advances there is a need to get data with resolution 
down to minutes or even lower. A further crucial point which is sometimes forgotten is the need to have 
a technology platform supporting an easy flow of real-time information from end to end, supporting 
efficient automatic and manual handling of data.  
 
In practice there is a need to combine equipment and systems from many suppliers as there is no solution 
that fits all purposes or that can handle everything. With the use of modern technology, it is now easier 
than ever to integrate systems together and share information in a robust manner. In this way, a joint 
effort between suppliers of the various bits and pieces necessary for vessel performance management 
can be readily achieved. An example of such a system for vessel performance management is shown in 
Fig.2, where the Miros Mocean IoT system is used to collect a set of key data points which can be used 
by the system or be transferred to third-party systems either onboard or onshore. In other situations, the 
data flow might be reversed, the third-party systems might collect some of the data points and transfer 
these to the Miros Mocean system, either onboard or onshore.  
 
4. Data analysis 
 
This section contains an initial investigation of the sensitivity of a vessel performance analysis to the 
accuracy of some of the key the input parameters. The primary objective is to illustrate how data 
accuracy influences what level of vessel performance accuracy can be achieved. 
 
4.1. Inaccuracies associated with various types of data and data sources 
 
Svanes Bertelsen et al. (2020) presented results from comparisons of measured data and model data 
from four voyages made by a dry bulk carrier. The measured data was collected using a Miros Wavex 
system to collect accurate wave, current and STW data and a traditional speed-log to collect current 
and STW data.  
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Fig.2: A vessel performance management system centered around the Miros Mocean IoT system. In 

this case, the Miros Mocean system collects data from many sources and can distribute this to 
other systems, either onboard or onshore. In other scenarios, the 3rd party systems might collect 
some (or all) the data points and distribute these to the Miros Mocean system. In this way, a high 
level of flexibility and adaptability is achieved, with easy collaboration with other stakeholders. 

 
When comparing the measured current data from the Miros Wavex system and the speed-log, the 
resulting RMS deviation was found to be 0.47 m/s (0.91 kn) whereas the mean deviation was -0.43 m/s 
(0.84 kn).  
 
Similarly, when comparing the measured wave height data from the Miros Wavex system with the 
model data, the resulting RMS deviation was 0.47 m and the mean deviation was 0.17 m. The model 
data had a time resolution of 6 hours and had a limited spatial resolution in the order of tens of 
kilometers. The measured data was averaged over the same time span to facilitate the statistical 
comparison. 
 
It is possible to perform a simple but realistic sensitivity analysis of how sea state data accuracy will 
affect a vessel performance analysis by defining a vessel performance indicator (VPI) as follows:  
 

𝑉𝑃𝐼 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑤𝑒𝑟
 

 
Based on data from tank tests and sea trial, a cubic spline interpolation allows the expression of 
reference power for any combination of speed through water and displacement within certain bounds. 
Interpolated level curves from the surface, along with recorded points for the BW RYE vessel are shown 
in Fig.3. 
 



 

117 

 
Fig.3: Reference power curves for different displacements as functions of STW. Scattered points 

represent tank test/sea trial data. 
 
From the above, a value for VPI = 1 would make vessel performance identical to the vessel design or 
newbuilt condition. A VPI > 1 means that the performance of the vessel is lower than when the vessel 
was newbuilt, due to fouling or other types of degradation effects. A VPI < 1 could be possible if means 
to improve performance has been applied, e.g. a more optimal propeller, sails or a hull coating providing 
less friction. 
 
Weather has a significant effect on the VPI (i.e. bad weather typically requires the vessel to use more 
power to keep the same speed). The VPI was therefore normalized for weather to eliminate the weather 
effects as much as possible. Inaccuracies in the input parameters will have an influence on the accuracy 
of the VPI. The focus in this investigation was on the influence of the accuracy of the significant wave 
height and the STW parameters. For significant wave height, the analysis was performed with the 
following five different datasets: 
 

• The measured data from the Miros Wavex 
• Two adjusted datasets with constant offsets of -0.2 m and 0.2 m  
• Two adjusted datasets with constant offsets of -0.5 m and 0.5 m  

 
The rationale behind the dataset with an offset of 0.2 m is that the specified accuracy of wave height 
for the Miros system is ± 0.2 m. Based on Svanes Bertelsen et al. (2020), a constant offset of 0.5 m was 
selected to illustrate the inaccuracy that can be expected from using model data. A similar inaccuracy 
or worse can be expected when relying on manually assessed noon data.  
 
For STW, the analysis was performed with the following five different datasets: 
 

• The measured data from the Miros Wavex 
• Two adjusted datasets with constant offsets of -0.05 m/s (-0.1 kn) and 0.05 m/s (0.1 kn)  
• Two adjusted datasets with constant offsets of -0.4 m/s (-0.8 kn) and 0.4 m/s (0.8 kn) 

 
The verified, in-operation accuracy of current and STW for the Miros system is ± 0.05 m/s (± 0.1 kn). 
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Based on Svanes Bertelsen et al. (2020), a constant offset of 0.4 m/s (0.8 kn) was selected to illustrate 
the in-operation accuracy of a speed-log. A similar inaccuracy or worse can be expected when relying 
on model data, which often fails to describe the current conditions accurately in time and space, as 
described by Gangeskar et al. (2018).  
 
4.2. Data preparation process 
 
Before doing the analysis, the data went through a data preparation process consisting of filtering, 
synchronization and averaging. This was done to simplify the analysis process and to ensure that only 
valid, high quality data was used. The data preparation process is outlined in Fig.4 and is described 
further below. 

 
Fig.4: Data preparation process 

 
The raw data was logged from several onboard sensors. The Miros Wavex system was used to measure 
the significant wave height and the STW. Data was also collected from the vessel speedlog, 
anemometer, shaft power meter, GPS and gyro. The water temperature was not measured directly, but 
retrieved from the Copernicus database (https://marine.copernicus.eu/). The water depth data was 
obtained from the GEBCO gridded bathymetric dataset (https://www.gebco.net), a global terrain model 
for ocean and land, providing elevation data, in meters, on a 15 arc-second interval grid.  
 
Each data parameter was filtered based on the criteria specified in Table I: 
 

Table I: Data filtering specification 
Parameter  Unit Filter values 
Shaft power kW [2745, 8839] 
Water depth m [70, ∞> 
Water temperature °C [0, 31> 
Wave parameters m, s, ° Data validated by the automatic data quality control STW m/s 

 
The shaft power filtration was chosen based on the available range in the speed-power curves coming 
from the vessel tank tests and sea trial, Fig.3. Only values within this range would be selected for the 
vessel performance analysis.  
 
The water depth filter was set to only allow data from locations where the water depth was more than 
70 m to eliminate possible shallow-water effects that could distort the analysis. 70 m was selected to 
make sure that the ISO-15016-2015 water depth requirement was fulfilled with some margin in all 
loading conditions.  
 
The water temperature requirement was also based on the procedures outlined in ISO-15016-2015. 
 
The significant wave height and STW parameters from the Miros Wavex went through the system’s 
automated data validation and quality control process to ensure that only good quality data was used in 
the analysis. For the speed-log data, there was no data quality parameters available.  
 
After the filtering, the data was synchronized to get the timestamps (the timestamps were slightly 
different since the data was measured by different types of equipment and systems. The parameters 
were therefore resampled to make sure that all parameters had the same timestamps with 1-minute 
resolution. The resampling method used was a simple arithmetic mean for magnitudinal parameters 

Raw data Filtering Synchronizing
Steady-state 

filtering
Averaging

Vessel 
performance 

analysis

https://marine.copernicus.eu/
https://www.gebco.net/
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(significant wave height, wind speed, shaft power, STW, etc.),| and a slightly more involved angular 
mean for angular parameters (peak wave direction, wind direction, vessel heading etc.).  
 
A steady-state selection procedure, Dalheim and Steen (2020), was carried out to determine the one-
hour windows where the ship RPM was practically constant to exclude data obtained during transitional 
periods. The data was then averaged over these one-hour windows using the same averaging 
methodology as the data synchronization step. The averaged, steady-state data was then ready to be 
used in the subsequent vessel performance analysis. 
 
4.3. Weather normalization 
 
Weather normalization is about eliminating the effect of the weather on the energy consumption of a 
vessel. There are many weather-related properties that have an impact on vessel performance, such was 
ocean waves, ocean current, wind, water temperature and salinity.  
 
In this paper, the data was normalized for the influences of wind, waves, water temperature and water 
density. The added resistance due to waves was estimated using the results from Liu and Papanikolaou 
(2016). Further details on the weather normalization procedures used can be found in Guo et al. (2021). 
 
Weather normalization is not an exact science as the models involved can only be expected to describe 
the weather effects to some degree of accuracy. However, these are well-known models utilized for 
vessel performance investigations and are therefore relevant in this study. 
 
4.3. Impact of inaccurate measurements on the VPI 
 
The VPI serves as a real-time indicator of the performance of the vessel, normalized for weather. The 
weather normalization is necessary because weather has a large impact on the performance of a vessel. 
The influence of the weather blurs the influence from the vessel (e.g. hull degradation) and make it 
impossible to determine whether a certain performance degradation is due to the weather or the vessel 
itself, or alternatively, which portions of the deviation from the ideal condition can be described to 
either the weather or the vessel.  The following figures show a calculation of the VPI, along with plots 
of VPI calculated with constant offsets in STW and significant wave height for data collected during 2 
voyages of the vessel BW RYE. Voyage I was a ballast voyage between Singapore and Australia in 
February 2020 whereas Voyage II was a laden voyage from the Panama Canal to Chile in May 2020. 
 

 
Fig.5: VPI calculation of Voyage I in ballast condition, demonstrating the impact of an offset in 

significant wave height. The blue dots show the VPI based on the measured values, the green 
dots show the VPI calculated with a significant wave height of ±0.2 m and the orange dots 
show the VPI calculated with a significant wave height of ±0.5 m. The grey line at VPI=1 
represents the reference performance of the vessel in perfect weather (from tank tests and sea 
trial data). 
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Figs.5 and 6 show how the calculated VPI varies with inaccuracies in the significant wave height 
parameter, where the inaccuracies are modelled as constant offsets, both in the positive and negative 
direction. The impact on the VPI of changes to the accuracy of the significant wave height is noticeable. 
By analyzing the VPI time series, it can be found that an offset of ±0.2 m in the significant wave height 
leads to an average offset of 2.6% in the VPI, whereas an offset of ±0.5 m leads to an average offset of 
6.5% in the VPI. 
 

 
Fig.6: VPI calculation of Voyage II in loaded condition, demonstrating the impact of an offset in 

significant wave height. The blue dots show the VPI based on the measured values, the green 
dots show the VPI calculated with a significant wave height of ± 0.2 m and the orange dots show 
the VPI calculated with a significant wave height of ± 0.5 m. The grey line at VPI=1 represents 
the reference performance of the vessel in perfect weather (from tank tests and sea trial data). 

 
Figs.7 and 8 demonstrate how the calculated VPI varies with inaccuracies in the STW parameter, where 
the inaccuracies are modelled as constant offsets, both in the positive and negative direction. The impact 
on the VPI to inaccuracies in the STW appears to be significantly larger than for inaccuracies in 
significant wave height. An analysis of the VPI time series shows that an offset of ±0.05 m/s (±0.1 kn) 
in the STW leads to an average offset of 2.8% in the VPI, whereas an offset of ±0.4 m/s (±0.8 kn) leads 
to an average offset of 23% in the VPI. 
 

 
Fig.7: VPI calculation of a Voyage I in ballast condition, demonstrating the impact of an offset in STW. 

The blue dots show the VPI based on the measured values, the green dots show the VPI calculated 
with an STW ± 0.05 m/s (±0.1 kn) and the orange dots show the VPI calculated with an STW of 
± 0.4 m/s. (±0.8 kn) The grey line at VPI=1 represents the reference performance of the vessel 
in perfect weather (from tank tests and sea trial data). 
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Fig.8: VPI calculation of Voyage II in loaded condition, demonstrating the impact of an offset in STW. 

The blue dots show the VPI based on the measured values, the green dots show the VPI calculated 
with an STW ± 0.05 m/s (±0.1 kn) and the orange dots show the VPI calculated with an STW of 
± 0.4 m/s (±0.8 kn). The grey line at VPI=1 represents the reference performance of the vessel 
in perfect weather (from tank tests and sea trial data). 

 
5. Discussion 
 
Further analysis using data from more journeys will have to be done in order to investigate the 
sensitivity of the VPI further, but the analysis presented above gives a clear indication of how important 
data accuracy is, particularly for STW. The scenarios used here have been quite simple, since only one 
parameter at a time was assigned an offset error. In practice, also wave period and wave direction are 
used by the weather normalization methods, and these parameters will also have a certain inaccuracy, 
leading to inaccuracies in the VPI. Thus, it is likely that the inaccuracies related to waves are larger in 
practice than what is reported here. 
 
Measured data can have both constant offsets and noise so the analysis of just the offset part is too 
simple to get the full picture. The different types of errors might also have different implications 
depending on how the data is intended to be used. Finally, it should also be investigated further how 
the various inaccuracies add up.  
 
6. Conclusion 
 
Weather conditions have a significant influence on the in-operation performance of a vessel. This paper 
has investigated how the accuracy of a vessel performance analysis depends on the accuracy of the two 
key input parameters significant wave height and STW. The investigation was partly motivated from 
the fact that more accurate measurement technologies have become available recently, so it was of 
interest to see to what extent this is important for modern vessel performance management. 
  
To accommodate the analysis, a VPI index was defined as the ratio of the measured power and the 
reference power based on sea trial and tank test data. It was found that while the VPI is quite sensitive 
to realistic inaccuracies in the significant wave height data, it is far more sensitive to realistic 
inaccuracies in the STW parameter. From this it can be concluded that the accuracy gap between 
traditional methods and the best available instrumentation solutions is significantly greater for STW 
than for significant wave height and other wave parameters. For the voyages analyzed in this paper, 
accurate STW data was shown to lead to an uncertainty in the VPI of ±2.8 % while data from traditional 
methods would lead to an uncertainty of ±23 %. This clearly shows the large impact of inaccuracies in 
STW data and the importance of using sufficient accurate technologies to measure this parameter. 
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Thus, inaccurate STW data has a very large influence on the accuracy of the VPI. Consequently, the 
practical implication is that an accurate, in-operation quantification of technical vessel performance is 
difficult or even impossible to obtain without very accurate STW data as exemplified by the Miros 
Wavex system. 
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Abstract 
 

Vessel performance solutions often require high frequency data to be collected on the ships, including 
flowmeter data. The data collection comes at a high cost and requires long implementation projects 
due to the lack of industrial standards regarding digital technologies and protocols in the maritime 
industry.  Flowmeters also create an extra risk as the whole system relies on their accuracy which 
requires regular calibrations and maintenance. In this paper we demonstrate how vessel performance 
can be measured using voyage reports from the crew or from automatic voyage reporting systems. 
This solution does not require the installation of any data logging hardware onboard the ship. We 
will focus on creating a speed fuel consumption model using only publicly available data and vessel 
noon reports for fuel consumption. 
 
1. Introduction 
 
Leg performance analysis objective is to explain the various factors that influence the fuel 
consumption of a vessel during a voyage. The main ones will be weather conditions but other factors 
such as hull condition, draft or engine usage will have an impact. Correlating the influence of each of 
these factors with the fuel consumption of the ship is a statistical exercise that usually requires very 
good quality and high frequency data as an input. Each vessel being unique in terms of hull 
performance and systems, performing this statistical analysis on every vessel is highly cost and time 
consuming. 
 
The alternative we suggest is to use noon to noon voyage report data (aggregated data for short 
voyages), in order to perform this performance analysis. The basis for this work relies on the low 
frequency to high frequency modeling solution already presented, Antola et al. (2017). 
 
In the following, we present a vessel performance analysis over 12 months performed using noon 
reported data from a real vessel. We will fusion this data with high frequency navigational and envi-
ronmental condition data from AIS and weather hindcasts. This enables us to create a model that will 
infer the high frequency live fuel consumption of the ship in any environmental conditions. To vali-
date the model, we will check how accurate the fuel consumption prediction is against the past 
reported data from the vessel. Finally, we will go through some valuable applications of this method-
logy, like analyzing the changes in the hull and propeller performance of the vessel over time. 
 
2. Gathering multiple sources of data 
 
2.1. Ship characteristics 
 
Ship characteristics can be obtained from various online databases or shared by the shipowner. In 
most cases, data can be found from public data sources. Main dimensions needed are vessel main 
dimensions, vessel type, and information about the expected draft range. 
 
2.2. AIS data 
 
Automatic Identification System (AIS) data can be obtained from providers that store and sell the data 
from all vessels. Data from AIS is usually not as good quality as an onboard logger would provide. In 
this study we want to check what is the difference between AIS reported SOG and data collected 
onboard the vessel in order also to evaluate the relevance of using AIS data as an input.  

mailto:cedric.deymier@wartsila.com
mailto:matti.antola@wartsila.com
mailto:daniel.schmode@wartsila.com
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The input provided by AIS data is: 
 

• Vessel Maritime Mobile Service Identity (MMSI). 
• Navigation status: E.g., "at anchor", "under way using engine(s)", "not under command", etc. 
• Rate of turn: right or left, from 0 to 720 degrees per minute 
• Speed over ground: 0.1-knot (0.19 km/h)  
• Longitude: to 0.0001 arcminutes 
• Latitude: to 0.0001 arcminutes 
• Course over ground: relative to true north to 0.1° 
• True heading: 0 to 359°  
• True bearing at own position: 0 to 359° 
• UTC seconds: The seconds field of the UTC time when these data were generated. A com-

plete timestamp is not present. 
 
This data is shared every 2 to 10 s by the vessel, which is considered high frequency in the case of the 
modeling we want to create. Data intervals up to 5 minutes would be acceptable. 
 
AIS data can sometimes be missing due to a lack of satellite coverage of the vessel, leading to gaps in 
the database. Some geographical locations are more prone to showing missing data, such as SE Asia 
due to an overload of vessels transmitting at the same time. 
 

 
Fig.1: Vessel route over one year based on AIS location data 

 
2.3. Weather hindcast data 
 
Environmental conditions in high frequency are also needed as an input to our model in order to 
evaluate the impact of waves, wind and current on the fuel consumption of the vessel. We use 
hindcast data obtained from weather providers. Hindcast data includes extra observational data that 
was time-delayed and therefore not available to the original forecast run. This means that hindcast 
data is more accurate than archived forecast data. The resolution and frequency depend on the model 
used. In our study we use the NOAA GFS model and we query the weather conditions based on the 
location of the vessel according to AIS data.  
 
2.4. Vessel noon reports 
 
The only input provided by the ship is draft and the fuel consumption for propulsion and for service 
power by noon to noon period or by (short) leg, with corresponding start and end time In this study 
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we use data from a vessel with one main engine for propulsion and auxiliary engines for service 
power. 
 
The needed data must be shared by the shipowner. However, this does not require any additional 
workload from them as this reporting is already needed for EU-MRV or IMO DCS regulations. Most 
operators use digital tools to create those reports already, making it simple to extract and reuse. 
 

 
Fig.2: Reported daily average fuel consumption from noon reports 

 
3. Model creation and validation 
 
3.1. Checking input data 
 
Once all needed data has been collected and merged, it is interesting to check if the noon reported 
data and the AIS data show some inconsistencies.  
 
One way to investigate this is to plot the average SOG over each leg according to AIS data and 
compare to the noon reported data. We can observe on the following graph that several legs show 
major inconsistencies and should be excluded from our analysis.  
 

 
Fig.3: AIS vs Noon reported SOG 

 
After looking into the data quality, we make the choice to remove all legs where the difference 
between AIS data and noon report data for the SOG is more than 2 knots in absolute value. This 
leaves us with more than 200 legs, which is enough to create the model and removes a lot of 
inaccuracies from the input data. The result is visible in Fig.4. 
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Fig.4: Effect of removing all legs with non-consistent reported SOG (difference > 2 kn on average) 
 
A second check we perform is looking into the average fuel consumption per nm reported by the 
vessel against the one we calculate using AIS data. This helps to identify potential gaps in the data 
where the distance performed by the vessel is incorrect due to a lack of AIS data. 
 
3.2. Model creation 
 
Antola et al. (2017) presented a sensor fusion model that used speed over ground, forecast data, and 
average fuel flow from noon reporting. We will refer to this model as fuel flow model (FFM). In the 
following we will verify if the FFM can predict the fuel consumption of the vessel using AIS and 
weather hindcast data as an input. We provide this data as an input to the FFM model. The model 
takes around one month of data to learn from the input data and improve its predictions. 
 
3.3. Model validation 
 
In order to validate the model, we plot the speed fuel curve of the vessel based on noon reported data 
and the modeled fuel consumption. The result shows a less scattered curve with less noise at lower 
speeds compared to the values reported by hand. Some of the outliers in the noon reports might be 
some reporting human errors. The modeling is not impacted by those errors. Note that the remaining 
scatter in the modelled data is caused by varying draft and weather. Scatter caused by misreporting is 
significantly reduced. 
 
Finally, the fuel consumption can be normalized by excluding the impact of environmental 
conditions, Fig.5. The green curve represents the calm sea fuel consumption of the vessel. Changes 
along time of this curve are one way to track the evolution of hull and propeller performance of the 
vessel. 
 
4. Model applications 
 
4.1. Hull & propeller performance change 
 
Having modelled the efficiency of the vessel in calm sea conditions makes it possible to assess the 
changes in the performance of the vessel along time. As input data is fuel flow and speed only the 
hull and propeller and engine performance can be monitored. One possible improvement would be to 
use power data in order to be able to monitor only hull and propeller performance. 
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Fig.5: Modeled and noon reported fuel consumption over speed 

 

 
Fig.6: Calm sea power at 20 kn evolution over time 
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The main application of this feature is to monitor the changes in performance following sea changes, 
dry docks, paint applications, or the installation of an energy reduction device onboard the ship, Fig.6. 
 
4.2. Speed variations and weather conditions impact 
 
FFM model provides good inputs to assess how a previous voyage was executed. In fact, it is possible 
to model what would have been the optimum speed and fuel consumption of the vessel according to 
the executed route and weather conditions. 
 
First step is to assess the speed profile of the voyage, looking into speed or power variations. Those 
changes should be avoided in order to perform a minimum fuel consumption in a just-in-time arrival 
context. In case we observe such variations, the FFM model allows to calculate how much fuel was 
overconsumed and what is the margin of improvement for the vessel. 
 
The impact of weather conditions on the fuel consumption of the vessel can also be calculated from 
the model. This feature provides a possibility to assess when did the weather create some 
overconsumption and to what extent. The crew can use this knowledge to improve its weather routing 
for each specific vessel. This kind of benchmarking can be displayed as in Fig.7, where the crew can 
review the voyage performance and understand how to improve on the next voyage. 
 

 

 
Fig.7: Impact of weather on a given route along time 
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4.3. Fuel planning for next voyage 
 
The fitted model can be used to predict the fuel consumption of the vessel in any weather conditions. 
It can replace empirical speed loss tables used in weather routing today. It is also possible to simulate 
the cost of using a given vessel in a sea area based on average weather forecasts per season. This 
applies well to a ferry operator for example. 
 

 

 
Fig.8: Example of passage planning using FFM model 

 
5. Conclusions and outlook 
 
We verified that using AIS data and weather hindcasts as inputs to the FFM (fuel flow model) 
presented by Antola et al. (2017) is possible and assessed the performance and applications of the 
model with such inputs. 
 
The model successfully captures the behavior of the ship and impact of the weather conditions and 
draft on its performance. An important data cleaning and filtering work is needed prior to using the 
data. Despite this effort, AIS data seems not reliable enough to reach the full potential of the model 
when compared to other studies such as presented by Schmode and Antola (2020). 
 
Navigational data logged in high frequency by using existing navigational equipment is a more 
reliable data source to feed the FFD model. This is the way the Wärtsilä Fleet Operations Solutions 
system works, and this approach has proven to be robust and reliable. FFD model is then used to 
benchmark past voyages performance and accurately plan the most optimal routes for future voyages. 
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Hull fouling analysis and quality-check of fuel consumption reporting is also performed 
automatically. 
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Abstract 

 
Ship performance evaluation in most cases is based on a reference model. Reference model describes 
ship performance in conditions which define base for performance evaluation. Usually the reference 
model describes new, clean ship in calm weather and deep waters. Comparing current ship 
performance to its reference, one can evaluate performance drop e.g. due to ship and propeller fouling. 
Traditionally the model has a form of speed-power curves obtained in a course of towing tank tests at 
ship design stage. More often modern computational techniques such as CFD are employed for this 
purpose. Both methods however require reliable resources and considerable efforts to provide data 
suitable for reference model preparation. Within the presented study the method of reference model 
preparation based on data collected during ship operation is examined. Method employs various 
machine learning algorithms. It starts with unsupervised data clustering in order to detect most 
common operational patterns. Each cluster is evaluated with respect to outliers and preprocessed in 
order to get consistent input for further analyses. After data cleaning separate local reference model is 
built for each cluster. General reference model allowing for performance evaluation in different 
operational conditions is prepared by automatic selection of relevant local model enriched with 
appropriate smoothing algorithms. Entire process is realized with minimal user input and does not 
require additional information (model tests or CFD results) except data collected during ship 
operation. Method has been validated against operational data obtained prior to and following the ship 
cleaning events for various ship types. Promising results allowed the application in SeaPerformer 
where it become a valuable tool for ship performance assessment in case standard data sources for 
building reference model are unavailable. 
 
1. Introduction 
 
The vessel, being a complex system described by various data can be now closely analysed and 
evaluated. Especially with modern technologies enabling to gather signals from the machine almost in 
real-time. Now since we are able to present, via data collection and visualization, how the ship is 
operating at any given moment, we could also be able to create and use references for performance 
evaluation. And that brings us countless benefits, especially for more economical and environmentally 
conscious vessel operation.    
 
2. Importance of reference model 
 
Reference models prove to be very useful when observing and evaluating a ship's performance. Their 
role is to present the best results under the defined conditions that the ship can achieve. And this allows 
for comparison between actual and desirable performance.    
 
There are a few methods for creating ship reference models. E.g. at the vessel’s design stage by 
conducting measurements in the model basin, or by carrying out numerical calculations using CFD 
method. Useful are also reports from sea trials created shortly after the ship is built and leaves the 
shipyard - that is when during tests it can achieve the best results which are then recorded and set as its 
reference model. 
 
The main problem with those approaches is that there are not many varied tests undertaken and they do 
not cover the whole spectrum of conditions under which the ship may be sailing. This way we get for 
example one reference model for fixed water depth and wind speed and directions with no universal 
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information on how to shift the model when any of those change during exploitation. 
   
This lack of data can lead to misleading results with insufficient accuracy when comparing reference 
models to observed ship's results. In an ideal situation, we should be able to see when the vessel is 
losing its efficiency, but with models too general we cannot be sure whether it is the case of actual 
failing or of model misrepresentation.    
 
Our first approach was to shift the existing reference model's curve in order for it to better suit the data, 
Fig.1. We used our collected data points, filtered them with regards to the environmental conditions, 
and tried to fit the model to their shape.  
 

 
Fig.1: First approach – Shifting reference model’s curves 

 
The biggest challenge at this stage was the quality of data points. During our work, we noticed that 
vessel speed measurements have way more noise and outliers than engine speed measurements. Thus 
why for our research we focused on the latter.      
 

 
Fig.2: Curves for drafts 
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We hoped to spot dependencies with how our curve shifts depending on trim and draft it is being 
adjusted to. As presented in Fig.2, unfortunately, it was not the case – models for drafts selected for 
particular trim do not fall in a logical sequence. Even though these results turned out to be inconclusive, 
the experiment brought us to another, main idea of this paper. 
 
3. Motivation and method  
 
Difficulties faced in traditional approach to model preparation and importance of reference model in 
performance analyses influenced our research direction. The team aimed at the development of the 
method enabling the creation of the reference model with the use of data collected onboard. It was 
assumed that the user shall not be engaged in the process as far as possible. 
 
Building the reference model starts with the definition of the time period of vessel operation. Selection 
of the period is arbitrary – it is up to the user to select a period which shall be considered as the reference. 
Although there are no formal contraindications in the selection of reference periods, some general 
guidelines shall be considered: 
 

• Ship performance in reference period shall be consistent i.e. selection of period in which per-
formance changes substantially (either due to maintenance procedures e.g. hull cleaning or due 
to natural process e.g. fouling) shall be avoided. The reference model is built of local models 
each defined for different draft and trim. Each of the local models shall describe the same vessel 
performance, 

• Both periods of “good” (new ship, ship after cleaning) or “bad” performance (vessel with heavy 
fouling) can be used as long as not mixed within one reference period. Although both options 
are feasible, interpretation of results will be different since relative performance is presented, 

• Periods of continuous operation in bad weather and/or shallow waters shall be avoided. Periods 
of operation in weather and bathymetry conditions that may affect vessel performance will be 
removed. In case these are prevailing conditions of operation final dataset after filtering may 
be insufficient for the purpose of building the model, 

• Operational conditions of the vessel in the reference period shall be representative of the gen-
eral operational pattern. In case the vessel in reference period operates in unique conditions 
which are not used in other periods of operation such reference period, although formally cor-
rect, is not useful. 

 
Once the reference period is selected, underlying data are processed in order to build a reference model. 
The first phase of processing consists of environmental and bathymetry filtering. Any data point which 
was recorded in bad weather conditions or in shallow waters will be removed from the dataset. Filtering 
conditions depend on the vessel’s operational characteristics and are stored as a part of ship settings. 
An essential part of model preparation comprises of identification of the frequently used operational 
conditions. The process is commonly denoted as grouping or clustering. This machine learning 
technique results in the identification of data points of similar features. Thanks to the similitude 
revealed in the clustering process data points belonging to one cluster can be described by a common 
model and used for performance evaluation. 
 
There are more than ten different clustering algorithms practically used in machine learning problems 
and implemented in software packages such as scikit-learn, Pedregosa et al. (2011). Therefore an 
essential part of this study was the determination of the most suitable one. The selection of the 
appropriate algorithm was performed in two stages. At first general features of the algorithms were 
evaluated with respect to the unique properties of the reference model identification task. Secondly, 
initially selected algorithms were exercised with vessel data in order to confirm their robustness and to 
tune the algorithm’s parameters in order to achieve desirable performance irrespectively of the input 
data. Algorithm fine-tuning was an essential part of ensuring method interoperability i.e. ability to work 
properly with data belonging to vessels of different types, sizes, and operational characteristics without 
a need of user intervention. 
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Let us first discuss the general features of clustering algorithms and describe an intuition behind the 
initial selection. The following criteria were analysed with this respect: 
 

• Flexibility in selecting clustering features i.e. ability to cope with different sizes of feature array, 
• Efficiency i.e. providing a reasonable time of computations for moderately large data sets, 
• Scalability i.e. ability to work with datasets of different sizes and ranges, 
• Compatibility of algorithm parameters with model identification problem. 

 
Clustering features i.e. dataset variables used to identify similitude among groups were identified as an 
important factor in searching for favourable clustering algorithm Although ship draught and trim were 
considered as mandatory parameters it was observed that some algorithms perform weakly with rela-
tively small feature array. On the other hand, for some other algorithms, it was relatively complicated 
to modify implementation in order to use a larger feature array. 
 
Initial tests with real ship operation data allowed us to identify that size of the dataset varies in the range 
of a couple of thousands up to about one hundred thousand data points. Already lower boundary posed 
efficiency problems (resulting in an unacceptable time of computations) for some algorithms while the 
upper limit revealed that additional methods for optimizing execution time were necessary. In order to 
cope effectively with large datasets, a random sampling technique was implemented. A fixed number 
of data points were selected at random which allowed preserving features of the problem and greatly 
reduce computational effort at the same time. 
 
Resampling dataset to the fixed size allowed overcoming the scalability challenge but the problem of 
ship-specific ranges of feature array variables needed to be solved. Analysed features (e.g. draft and 
trim) vary in ranges specific to a particular ship and as a result, clustering algorithm parameters needed 
to be modified when executed for a different vessel. An obvious solution was to implement normaliza-
tion on features array. However, due to its computational effort, algorithms that perform well without 
it were preferred. 
 
Finally, clustering algorithms were analysed with respect to their input parameters and ability to cope 
with complicated cluster boundaries. Data visualization revealed that clusters in the draft–trim space 
form centroid-like shapes, often unsymmetrical and skewed. Adding dimensions to feature arrays 
makes the problem even more non-linear. Another limiting factor in the selection of clustering method 
stemmed from the inability to determine the cluster number a priori which is the mandatory parameter 
for some clustering algorithms. Therefore, among a dozen of popular clustering methods, only a few 
could be implemented. The most widely described clustering algorithm – k-means, Fig.3 (left), was 
rejected due to difficulty in handling non-linear boundaries and a need of defining a number of clusters 
as the input parameter. The latter problem can be solved by multiple runs of algorithms with different 
cluster numbers and the application of clustering quality measures. However, the inability to cope with 
non-linear divisions among clusters makes k-means incompatible with the analysed problem. A similar 
problem with non-linear boundaries was identified for the spectral clustering method, Fig.3 (right). 
 

 
Fig.3: K-means (left) and spectral (right) fail to handle non-linear boundaries 
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Hierarchical clustering was another group of algorithms tested in a conjunction with ship conditions 
identification problems. Although different linkage types were exercised (including average, complete, 
and ward) none of them performed well. In the case of complete and average linkage types, artificial 
boundaries were observed while algorithm based on ward type of linkage was difficult to adjust. Set of 
parameters that resulted in fair clustering for a dataset of one vessel resulted in inappropriate clustering 
for another vessel. Ward linkage-type was found very sensitive for a number of data points in the dataset 
and required manual tuning for each case. 
 
Another interesting alternative was the implementation of density-based clustering algorithms such as 
DBSCAN and OPTICS. The latter is a generalization of a more established DBSCAN algorithm. 
OPTICS allows for relaxation of DBSAN’s density parameters thus was believed to be applicable for 
vessels of different types and sizes. The initial results were very optimistic. Clusters of vessel 
operational parameters were clearly identified with just a few cases where cluster identification was 
doubtful, Fig.4 (left). Despite very promising initial results algorithm validation on different vessels’ 
datasets was not successful. Although different sets of OPTICS parameters were exercised it was not 
possible to find a universal one that results in proper clustering for different vessels or even in the case 
of different operation periods of the same vessel. An example of poor OPTICS clustering, Fig.4 (right) 
exhibits a tendency of excluding a major part of the dataset (identified as outliers and enclosed in cluster 
-1). This example was obtained by application of the same algorithm parameter as in the successful 
case. 
 

 
Fig.4: Successful (left) and poor (right) implementation of OPTICS clustering algorithm 

 
Despite unfavourable results of OPTICS algorithm validation, density-based clustering was considered 
as the most capable as far as the identification of non-linear boundaries. Therefore, further studies were 
undertaken to implement DBSAN algorithm. The major difficulty was in defining the appropriate value 
of the algorithm’s density parameter. The universal value which allows for clustering data of different 
ships was not found therefore another approach was implemented to allow automatic (unsupervised) 
clustering. Different density parameter values, within a given range, were subsequently used in order 
to perform clustering. Each case quality of clustering was evaluated and clusters that received the 
highest score were selected as the result. Few clustering quality measures were evaluated, i.e. silhouette, 
Rousseeuw (1987), Calinski-Harabasz (1974), and Davies-Bouldin, Thomas et al. (2013). 
 
None of these single measures were found universally applicable, Fig.5. Therefore, for the purpose of 
selection of the optimum value of density parameter, a combined quality measure was employed. Scores 
obtained with Calinski-Harabasz and Davies-Bouldin were averaged and used as the final quality 
criteria. 
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Fig.5: Clustering evaluation according to different scoring methods 

 
 

 
 

Increasing density parameter value 
Fig.6: Clustering results for different density parameter (optimum enlarged) 

 
Density value determines the level of detail of our clustering, Fig.6. It states the distance at which points 
can still be classified to the same group. That being said, we can see that with a small density value 
there are more separate clusters while with the bigger values those merge into wider and more general. 
Both of those extreme cases are unfortunate, because a bigger number of aggregation may lead to 
unnecessary computations while too small a number can make our model not precise enough. 
 
Application of DBSCAN algorithm with adjustable density parameter according to combined quality 
measure has been proven to work efficiently with datasets obtained for different vessels, Fig.7. It can 
be observed that the algorithm is able to detect outliers (cluster -1) which is an important feature for 
analyses of highly scattered data. 
 
As soon as clusters are properly identified, a reference model for each group can be prepared. It has 
been decided to define linear models although performance data (especially main engine power vs ship 
speed or engine rpm) exhibit highly non-linear character. The linearization method is not described 
within the present paper. However, interested readers may refer to Journée and Meijers (1980). 
 
In order to match each test data point with the corresponding reference model, certain mapping between 
points and models is required. As the clustering method does not provide any explicit way for the 
reassessment of arbitrary points belonging to certain clusters, the only traces of the performed clustering 
are reference points flagged with relevant cluster numbers. Therefore, we needed an alternative way to 
classify test points. 
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Fig.7: Successful implementation of DBSCAN clustering algorithms 

 
We have decided on a geometrical approach to describe and store the boundaries of each cluster. 
Draught and trim were chosen as basic attributes of loading conditions to form a two-dimensional space. 
Each identified cluster in this space is wrapped around using alpha shape to formulate its boundaries as 
a polygon. The polygon definition in turn allows examining any test point’s belonging to a cluster, in 
terms of two mentioned attributes. 
 
Although the alpha shape proved both its usability and reliability, computational performance tests 
revealed unacceptably long execution time in case of more than about 50 points in a cluster. Hence, 
few different approaches were taken to hollow up the point cloud and reduce it to the most important 
points close to the boundary, which illustrate orange points, Fig.8. 
 

 
Fig.8: Polygon representation of a single cluster based on reference points 
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It may happen that two or more polygons are overlapped at a certain place. Potential conflicts between 
polygons are solved one by one. The overlapping part of each polygon is then cut off and the polygon 
is being redefined.  
 
4. Application of models 
 
Having defined the limits of validity for each cluster, operational points of test period are classified into 
certain clusters. Fig.9 demonstrates reference-period (dark) points wrapped into polygons and the 
mapping of test-period (light) points to clusters. 
 

 
Fig.9: Identified polygons overlayed over operational points in test period 

 
According to the operational complexity of the chosen reference period, some part of test points falls 
into specific, coloured clusters. While the outstanding observations (in grey) remain unclassified and 
are not subject to further performance assessment. 
 
Once the test period points were classified according to their adherent polygons, appropriate model can 
be matched allowing for the calculation of a performance indicator. Power increase KPI has been 
selected as the performance measure. It has been defined as: 
 

𝑃𝑜𝑤𝑒𝑟𝐾𝑃𝐼 =
𝑃𝑜𝑤𝑒𝑟𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑜𝑤𝑒𝑟𝑎𝑐𝑐.  𝑡𝑜 𝑚𝑜𝑑𝑒𝑙

𝑃𝑜𝑤𝑒𝑟𝑎𝑐𝑐.  𝑡𝑜 𝑚𝑜𝑑𝑒𝑙
 

𝑃𝑜𝑤𝑒𝑟𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 – is power measured during vessel operation in test period 
𝑃𝑜𝑤𝑒𝑟𝑎𝑐𝑐.  𝑡𝑜 𝑚𝑜𝑑𝑒𝑙 – is power according to reference model defined for same operational conditions 
 
In order to assess vessel performance changes, obtained KPI shall be plotted against time of operation. 
However, in order to make the time trend meaningful, data cleaning must be applied. KPI data exhibit 
significant scatter due to limited credibility of collected data and deficiencies of methods for 
environmental impact filtering and correction. Data cleaning has been implemented in two phases. First 
gross outliers are removed with the use of the Z-Score filter, https://www.geeksforgeeks.org/z-score-
for-outlier-detection-python/. The final shape of the time trend is obtained with the use of smoothing 
techniques. Locally Weighted Scatterplot and Spline, https://pypi.org/project/tsmoothie/, smoothers 
proved to be well fitted for the analysed problem. Smoothing allows for filtering short-term 
performance disturbances which make the long-term trend more pronounced and visible. 

https://www.geeksforgeeks.org/z-score-for-outlier-detection-python/
https://www.geeksforgeeks.org/z-score-for-outlier-detection-python/
https://pypi.org/project/tsmoothie/


 

140 

5. Implementation of the model for performance analyses 
 
The method for automatic (unsupervised) determination of reference model developed by Enamor and 
described here has been implemented as ship performance evaluation tool in SeaPerformerTM system. 
It proved to be useful in cases when design data (results of model tests, CFD calculations, sea trials 
results. Etc.) are not available or are incomplete. It is suitable for the evaluation of vessel performance 
changes in time especially due to hull fouling. The method has been implemented as the time trend and 
therefore enables to: 
 

• capture current and historical vessel performance with respect to the reference model, 
• detect significant changes in vessel performance e.g. due to accelerated fouling development 

caused by long port stay, 
• predict how vessel performance would change in time assuming that operational pattern will 

not change, 
• effectively assess hull maintenance treatment procedures (hull cleaning, re-coating) in short 

and mid-terms, i.e. what is an immediate performance gain after the completion of mainte-
nance procedure and how long the resulting performance improvement is visible.  
 

 
Fig. 10: Performance time trend 

 
An example of vessel performance analysis is presented in Fig.10. Test period covers operation prior 
vessel dry docking and few months following the hull cleaning performed in October 2019. Reference 
model was created over the period after hull cleaning (approximately 6 weeks) and was implemented 
for performance analysis. In the period preceding dry-docking vessel suffered due to hull fouling which 
resulted in ~20% power increase (and similar fuel over-consumption) in comparison to reference 
period. Comparison of performance gain allows for evaluation of hull cleaning effectiveness. 
Observation of the performance trend after the hull cleaning allows for assessment of performance 
durability. Although some fluctuation of trend in entire test period can be observed the implemented 
method allows for clear identification of performance changes. Trend fluctuations reveals limited 
applicability of data cleaning methods which will be addressed in future works. 
 
 

Test Vessel 1 
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6. Future development 
 
Works on the method presented in this paper will be continued. Data preparation algorithms will be 
optimized in order to reduce computation time. At present, building the time trend for a period of 12 
months of vessel operation takes approximately 2 minutes. Execution time can be greatly reduced by 
precomputing partial data each time a new data set is transferred from the vessel to the cloud. Partial 
results will be stored and retrieved when a time trend is created. 
 
Data scatter will be reduced by the application of updated environmental correction methods. The most 
important, with respect to this, is the wave correction algorithm. Currently used methods tend to 
overestimate correction thus lead to inconsistent results. Furthermore, a model quality assessment will 
be developed. In some cases, especially in the case of clusters build on a small number of points, least-
square linear regression tends to create unreliable models. Proper identification of erratic models will 
allow for their rejection and, in consequence, reduce the scatter of the time trend. 
 
7. Conclusion 
 
Unsupervised machine learning algorithms were successfully implemented for the problem of model 
identification. The elaborated method allows for automatic identification of frequent vessel operational 
conditions and the creation of local models. These models are used for the evaluation of ship perfor-
mance which can be practically used for planning and evaluating maintenance procedures allowing 
reduction of vessel operational costs and environmental impact. 
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Abstract 
 
Accurate position measurements are extremely valuable in the shipping industry for various reasons 
such as safety (collision avoidance), fuel saving (weather identification), punctuality (route prediction), 
etc. Although GNSS (Global Navigation Satellite System) receivers installed on-board the ships are 
proven to be highly accurate, the data collection process may occasionally be problematic, mainly due 
to the complexity of the measurements and the decimal precision that is required. Data was collected 
from 3 years of operations of 228 Maersk Line container vessels and an analysis reveals that there is a 
substantial amount (≈ 20%) of historical position measurements sent to shore that does not reflect 
reality. With this study, the authors initially identify the source of the faulty logged position measure-
ments, then they categorize them into segments and finally they apply an interpolation methodology in 
order to validate and correct them by using AIS (Automatic Identification System) data. 
 
1. Introduction 
 
1.1. Background and motivation 
 
Satellite navigation is a very important asset in modern positioning systems of the shipping industry 
and is the only system that can provide a ship’s absolute position relative to the geocentric coordinate 
system, Chang et al. (2020). Consequently, shipping companies should be extremely cautious on taking 
good care of their navigation systems in order to avoid losing coordinates data. There are many internal 
processes that rely on good quality position measurements. The most critical is safety. To name a few 
safety related processes, there is collision avoidance, Hu et al. (2007), motion prediction in ports, Jo-
hansen and Fossen (2016) and accuracy in warships, Núñez et al. (2017). Apart from safety, a strong 
incentive for the shipping companies is fuel saving. The operating cost of a ship is mainly influenced 
by bunker fuel and lubricating oil prices which consist of 50–60% of the total ship operating cost, 
Perera and Guedes Soares (2017). By improving the precision in position measurements, voyage plan-
ning and weather routing could be made more accurate therefore less fuel would be consumed. 
 
The most frequent measurement loss/modification effects of GNSS (Global Navigation Satellite Sys-
tem) antennas are jamming and spoofing. Jamming is a kind of white noise interference, causing loss 
of accuracy and potentially loss of positioning, Morong et al. (2019). Spoofing is an intelligent form of 
interference which fools the GNSS receiver into computing a wrong location, Psiaki and Humphreys 
(2016). Besides the above, there in another issue that has been recently identified by the authors which 
refers to the posterior modification/loss of the position data after the signal has successfully arrived at 
the GNSS receiver. Apparently, for a position data point to reach the shore (shipping company’s data 
center) it travels through a long path which varies depending on the ship type. This path might transform 
the format of the position data point several times before reaching the company’s data center at shore. 
 
The current paper intents to initiate an open dialogue over this issue. Firstly, it describes the posterior 
position measurements path (after the signal has being received from the GNSS antenna) through the 
data recording system of the ship, leading to shore. This path is proven to be maleficent for the position 
measurements in ~20% of the vessels tested in this study. Given that the data analyzed is large enough 
to represent a statistically significant sample, it is assumed that the percentage is not dataset-specific 
but a global standard. There are claims of choosing AIS position data over owned measurements on 
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mathematical model of high precision due to low trust on the latter. This is unreasonable given that 
sometimes, AIS receives satellite coordinates from the same GNSS antenna as the data monitoring and 
recording system of the ships. In a second phase, the paper introduces ways of identifying and correcting 
faulty historical position observations by implementing an interpolation methodology. 
 
1.2. State-of-the-art 
 
Various researchers in the past have proposed solutions for jamming, Gao et al. (2016), Medina et al. 
(2019), and spoofing, Akos (2012), Broumandan et al. (2012), Schmidt et al. (2016), Fukuda et al. 
(2021) which correspond to the most frequent a priori data loss in navigation systems (a priori refers to 
the moment before a position data point reaches the GNSS receiver). Others like Liang et al. (2019) 
explored the issue by building the missing trajectory using a Random Forest model to identify missing 
data and a LSTM(Long Short-Term Memory)-based supervised learning method for trajectory recon-
struction. Ryu et al. (2016)  focus on improving the accuracy of the position data by integrating INS(In-
ertial Navigation System) measurements using an EKF (Extended Kalman Filter) and an UKF (Un-
scented Kalman Filter). As far as we know, no previous research has investigated the a posteriori data 
loss/modification of position measurements (after the data has reached the receiver). 
 
1.3. Objectives 
 
The first asset of this paper is the description of the the data processing steps that the position measure-
ments go through before reaching the ships’s data center. Secondly, the introduction of the interpolation 
methodology algorithm sets the structural basis for solving the problem of a posteriori data loss/modi-
fication. 
 
2. Data 
 
The study includes data recordings from 228 container ships collected over a three-years period (2017-
2020) during operations in the majority of the world’s larger oceans. The data is divided into two cate-
gories, Table I; the CAMS dataset which consists of ~25 million rows of sensor data recordings stored 
in the company’s database, and the AIS dataset which is sourced from two external providers consisting 
of ~50 million rows of data. 
 

Table I: Type, description, frequency, value range and units for CAMS and AIS datasets 

Type Description 
Sampling 
Time Range Median Unit 

C
A

M
S 

Time 10 mins 01/01/2017–22/02/2020 - [UTC] 
ImoNo 10 mins 228 unique vessels - [-] 
Latitude 10 mins −49–61 25.0247 [∘] 
Longitude 10 mins −180–180 23.7328 [∘] 
SOG 10 mins 0–26 12.6 [kn] 

A
IS

 

Time Uneven 01/01/2017–22/02/2020 - [UTC] 
ImoNo Uneven 228 unique vessels - [-] 
Latitude Uneven −50–61 32.1264 [∘] 
Longitude Uneven −180–180 9.9188 [∘] 
SOG Uneven 0–25 12.3 [kn] 
COG Uneven 0–360 188 [∘] 

 
Here, we should note that the reason of sourcing and merging the AIS dataset from two providers was 
to get as many valid points as possible to maximize the average frequency. So the final AIS dataset 
consists of three measurements types (i) terrestrial, (ii) satellite, and (iii) dynamic. In terrestrial, the data 
is broadcast on a common international VHF frequency. In satellite, the data is received through the 
satellite navigation network. Finally, for heavy traffic regions such as the "South China Sea" or the 
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"English Channel" AIS signals collide resulting in position detection failures and inaccurate reporting. 
Dynamic type measurements solve this issue. 
3. Problem Formulation 
 
3.2. Problem Source 
 
GNSS (Global Navigation Satellite System) is the standard generic term for satellite navigation systems 
that provide automated geo-spatial position with global coverage. The term includes the GPS (US), 
GLONASS (Russia), Galileo (EU), Beidou (China) and other regional systems like QZSS (Japan) and 
IRNSS or NavIC (India). GNSS is a term used worldwide and its advantage to having access to multiple 
satellite networks is accuracy, redundancy and availability at all times. Satellite systems do rarely fail, 
because if one fails GNSS receivers will pick up signals from another network, Heukelman (2018), 
Venezia (2015). 
 
The position signal that reaches the GNSS receiver is transformed into a so-called NMEA (National 
Marine Electronics Association) sentence. NMEA is a standard data format supported by all GNSS 
manufacturers. Particularly, the NMEA sentence is in printable ASCII form and may include infor-
mation such as time, position, speed, water depth, etc., NMEA (2021). An example of a NMEA sentence 
is:  
 

$𝐆𝐏𝐆𝐆𝐀, 𝟏𝟖𝟏𝟗𝟎𝟖. 𝟎𝟎, 𝟑𝟒𝟎𝟒. 𝟕𝟎𝟒𝟏𝟕𝟕𝟖, 𝐍, 𝟎𝟕𝟎𝟒𝟒. 𝟑𝟗𝟔𝟔𝟐𝟕𝟎,
𝐖, 𝟒, 𝟏𝟑, 𝟏. 𝟎𝟎, 𝟒𝟗𝟓. 𝟏𝟒𝟒, 𝐌, 𝟐𝟗. 𝟐𝟎𝟎, 𝐌, 𝟎. 𝟏𝟎, 𝟎𝟎𝟎𝟎∗𝟒𝟎

 

 
All NMEA sentences start with the $ character, and each data field is separated by a comma. GP stands 
for GPS position (e.g GL would denote GLONASS). The next value 181908.00 is the timestamp (UTC 
time in hours, minutes and seconds) followed by 3404.7041778 the latitude in the DDMM.MMMMM 
format. Here we should mention that decimal places are variable. N denotes north latitude. 
07044.3966270 is the longitude again in DDDMM.MMMMM format and W denotes west longitude, 
Gakstatter (2015). The rest of the values will not be explained because they are irrelevant for the pur-
pose of this paper. 
 
The NMEA sentence, apart from traveling to shore through internal systems, it is also received from 
the AIS transceiver. AIS stands for Automatic Identification System and is an automatic tracking system 
that is used by vessel traffic services (VTS) supplementing the marine radar for collision avoidance. 
AIS transceivers can be tracked by AIS base stations located along coast lines or, when out of range of 
terrestrial networks, through a growing number of satellites, Contributors (2021). According to the 
literature, AIS transmission rate is relative to ship’s speed and range from 5 to 180 s, ITU (2014). 
 
In order for the data deriving from multiple sensors to be monitored and stored, Maersk is using a data 
processing system called the ADC (Auto Data Collector) which is the source from where the data is 
sent to shore. Within ADC there is a system called CAMS (Control Alarm Monitoring System). CAMS 
is responsible to connect the sensors, normalize and convert each data point, aggregate into either 1 
second or 10 minutes and later log it and transmit it towards multiple internal services. Whenever there 
is good internet connection, ADC sends the 10-minute aggregates to shore. Depending on the vessel 
class, CAMS is bought from a list of manufacturers, each with distinct characteristics. The main char-
acteristic that distinguishes them is the encoding/decoding memory format. They are either 32-bit or 
64-bit. In some unique cases, the memory format is even lower, accepting only 6-digit numbers. The 
memory format of ADC is 64-bit. While converting among memory formats, sometimes data quality is 
degraded up to a few kilometers away. Location closer to the Equator are more sensitive due to the oval 
shape of the earth and need to have at least 4 valid degree decimal points to get ≤10 m error precision. 
Limiting the memory format to 6-digit numbers, it automatically increases the error to ≤100 m. Fig.1 
illustrates the path a data point follows before reaching the shipping company’s data center. 
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Fig.1: Position measurement path on board a vessel before reaching shore 

 
Before we decompose the various sources that degrade the position data, we should first have a look at 
how the position data looks like in a big dataset like the one used in this study. Fig.2 shows the coordi-
nates registered from 228 container ships during 3 years of operation (2017-2020). It is evident in the 
map that there are multiple measurements registered in locations away from a common vessel’s trajec-
tory. 
 

 
Fig.2: Position measurements of 228 container ships during 3 years of operation (2017-2020) 

 
A whole range of different sources degrading the ship’s position data have been identified. The most 
prominent are: 
 

• N/E issue: It refers to when the longitude values do not turn to negative when the vessel crosses 
the prime meridian towards the western hemisphere. As a result, location measurements get 
packed on the upper right quadrant of the map where both longitude and latitude values are 
positive. Fig.3 illustrates the registered trajectory of a vessel with a CAMS system experiencing 
such a problem. The issue is present in classes where Partner #2 and #3 CAMS systems are 
installed. 

 
• Zig-Zag issue: It refers to when either longitude or latitude values go beyond 0.599999. In this 

case, the next step is 1.000000 based on the logic that 1 degree is made up of 60 minutes. That 
is obviously not true, as it should simply be 0.600000, followed by 0.600001. Every time this 
happens, we see a “jump” of 0.4 degrees of either latitude or longitude, which relates to ~40 
km of error. Fig.4 illustrates the location of the vessel on the right part with a zoomed version 
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on bottom right to have a clearer view of the zig-zagging effect. On the left there is a data table 
that indicates the "jumps" in red color. Here, we should mention that the previous source "N/E 
issue" is also visible. The issue is present again in classes where Partner #2 and #3 CAMS 
systems are installed. 

 

 
Fig.3: Registered trajectory of a vessel with "N/E issue". 

 

 
Fig.4: Vessel with "zig-zag issue" on stored position data. Data table (left) indicating the "jumps" in red 

color. Map and zoomed detail (right)  
 

• Scatter issue: It refers to when there are plenty of random iterations of either longitude or lati-
tude scattered around the globe away from the regular vessel’s trajectory. Fig.5 illustrates the 
registered trajectory of the vessel with "scatter issue". Source "N/E issue" is again visible in 
this vessel’s trajectory. The issue is present in vessel classes where Partner #2 CAMS system 
is installed. 
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Fig.5: Registered trajectory of a vessel with "scatter issue" 

 

 
Fig.6: Registered trajectory of a vessel with "drift issue" 

 
• Drift issue: It refers to when parts of the vessel’s trajectory are shifted a few degrees towards 

either East/West or North/South affecting both longitude and latitude values. Fig.6 illustrates 
the registered trajectory of the vessel with "drift issue". Source "N/E issue" is again on top, 
given that the vessels are using the same CAMS system. The issue is present again in classes 
where Partner #2 CAMS system is installed. 

 
• Frozen issue: It refers to when either longitude or latitude values are frozen to 0 degrees. Fig.7 

illustrates the registered trajectory of the vessel with "frozen issue". The issue is present in 
classes where Partner #4 CAMS system is installed. 

 
• Bit-rate issue: Besides the visible issues that were described and showed on the above maps, 

Partners #1, #4 and #5 experience the bit-rate conversion degradation on the position data as 
shown in Fig.1. Given that this is an issue which should also be solved, we sum up 6 issues in 
total. 
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Fig.7: Registered trajectory of a vessel with "frozen issue" 

 
In the next subsection, we introduce the indicators built to identify faulty position measurements in the 
whole dataset. 
 
3.3. Validation Indicators 
 
We know from Gakstatter (2015) that SOG (Speed Over Ground) is included in the NMEA sentence 
which means that the SOG is computed using internal estimation processes by the navigation devices. 
We also know that AIS and CAMS systems record values of SOG from −10 to 50 knots (with 99.9% 
of our dataset being positive values). On top of that, SOG is registered with a single decimal point which 
makes it less vulnerable to accidental measurement degradation (averaging, bit-rate conversion, etc.). 
Taking into account the previous statements and due to speed’s physical relationship with position, 
SOG makes an ideal measurement for comparison purposes. Thus, if we compute the distance a vessel 
has traveled between consecutive data logging/transmission (10 minutes between one another) with two 
different methodologies (one using the position measurements and one using the SOG) the two outputs 
should theoretically match. Based on that we use the following distance deviation indicators to validate 
our assumption. 
 

𝐷𝑐 = 𝑑𝑝
𝑐 − 𝑑𝑠

𝑐 (1) 
𝐷𝑎 = 𝑑𝑝

𝑎 − 𝑑𝑠
𝑎 (2) 

 
Eqs.(1) and (2) describe how the distance deviation indicators 𝐷𝑐 and 𝐷𝑎 are composed. The super-
scripts {𝑐} and {𝑎} stand for CAMS and AIS, respectively. On the right part of the equations, the sub-
scripts {𝑝} and {𝑠} denote the two distance calculation methodologies using position measurements and 
SOG, respectively. In short, in Eq.(1) we use CAMS data to compute the distance deviation 𝐷𝑐 which 
is calculated by subtracting the distance between consecutive coordinates using the SOG methodology 
𝑑𝑠

𝑐 from the same distance using the position measurements methodology 𝑑𝑝
𝑐 . In Eq.(2) we have the 

same computation, but by using the AIS data. 
 
For the position measurement methodology, the shortest route between two points on a sphere is along 
an arc of a great circle. A great circle is a circle drawn on the surface of the sphere, centered on the 
same point as the sphere and having the same radius. An example is the equator of the Earth. Two points 
𝑃 and 𝑄 divide the great circle they lie on into two arcs. The shorter of these arcs gives the shortest path 
between the two points. Fig.8 depicts the distance between 𝑃 and 𝑄 in red color. 
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Fig.8: Arc denoting the path from point 𝑃 to point 𝑄 on great circle 

 
𝑃 and 𝑄 are points with latitudes 𝜙1 and 𝜙2 and longitudes 𝜆1 and 𝜆2, such that 𝑃 = (𝜙1, 𝜆1) and 𝑄 =
(𝜙2, 𝜆2). Given the earth’s radius, the distances 𝑑𝑝

𝑐  and 𝑑𝑝
𝑎 can be computed using the following Eq.(3). 

 

haversin (
𝑑𝑝

𝑅
) = haversin(𝜙2 − 𝜙1) + cos𝜙1cos𝜙2 haversin (𝜆2 − 𝜆1) (3) 

 

 
where haversine is defined by 

haversin(𝑦) = sin2 (
𝑦

2
) (4) 

For the SOG methodology, the travelled distance is computed as the integral of the SOG within the time 
period of 10 minutes. At this point, we should clear out a few assumptions before we move on. 
 
Assumption 1: The vessels are equipped with an AIS Class A receiver providing asynchronous meas-
urements of vessel position (𝝓, 𝝀), SOG 𝑼 and COG 𝝍. The position measurement in the North and 
East directions is affected by zero mean white Gaussian noise with variance 𝝈𝒑

𝟐, i.e. 𝒘𝝓 ∼ 𝓝(𝟎, 𝝈𝒑
𝟐) 

and 𝒘𝝀 ∼ 𝓝(𝟎, 𝝈𝒑
𝟐). The SOG measurement is affected by zero mean white Gaussian noise with vari-

ance 𝝈𝒔
𝟐, i.e. 𝒘𝑼 ∼ 𝓝(𝟎, 𝝈𝒔

𝟐). The COG measurement is affected by zero mean white Gaussian noise 
with variance 𝝈𝒄

𝟐, i.e. 𝒘𝝍 ∼ 𝓝(𝟎, 𝝈𝒄
𝟐). It is further assumed that the noise sources 𝒘𝝓, 𝒘𝝀, 𝒘𝑼 and 𝒘𝝍 

are uncorrelated among each other. 
 
Assumption 2: Earth is a perfect sphere with radius 𝑹 = 𝟔𝟑𝟕𝟖. 𝟐km. 
 
After having introduced that both 𝐷𝑐 and 𝐷𝑎 are the main indicators of this study, there is a third one 
utilized as a safety indicator. That is 𝑑𝑝

𝑏 denoting the distance between AIS and CAMS coordinates. 
The subscript {𝑝} indicates the position measurement methodology and the superscript {𝑏} stands for 
"between". 
 
Figs.9 and 10 show the IQRs of both 𝐷𝑐 and 𝐷𝑎 indicators categorized by encoded ship names 𝑉𝑖𝑚𝑜 
and classes 𝑉𝑐𝑙𝑎𝑠𝑠. Each of the 228 boxes represent the IQR of either 𝐷𝑐 and 𝐷𝑎 of each ship of the 
dataset. The boxes are categorized by ship class showing in different color. The grey dots represent data 
outliers for values outside 99.3% of the distribution. Fig.11 represents the CAMS dataset. 
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Fig.9: CAMS distance deviation 𝐷𝑐 per vessel, categorized by class 
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Fig.10: AIS distance deviation 𝐷𝑎 per vessel, categorized by class 
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Starting from Fig.9 and having in mind the above remarks, it is evident from the boxplots of classes 
such as C.7, C.3, C.16 which have ships with very narrow boxplots and with mean values close to 0, 
that these are the ships with good quality position CAMS measurements on the data base. Classes like 
C.32, C.30, C.19, C.13 and C.10 with medium size boxplots close to the 300 m threshold (ref. Remark 
2) are questionable and need further investigation. Finally, position measurements from classes like 
C.6, C.2, C.17 (only a few ships), C.12 and C.11 are clearly problematic and need replacement. In 
Fig.10 it is a fact that there are no big issues in the AIS dataset. Unfortunately, this does not mean that 
we can blindly replace the faulty CAMS measurements with AIS mainly due to the fact that the data 
logging in AIS is not registered in even time intervals like in CAMS. 
 
To sum up and create an overview of how the CAMS vs. AIS measurements look like on the dataset of 
this study, the requirements for a ship’s position measurements to be of good quality are the following: 
 
Remark 1: The mean value of 𝐷𝑐,𝑎 distribution should be close to 0 m with small variance. 
 
Remark 2: Based on internal company research and considering the results from the boxplots in Figs.9 
and 10, we decided that the IQR (interquartile range) of the 𝐷𝑐,𝑎 of each ship should not exceed 300 m, 
given that IQR represents the 50% of the distribution. 
 
4. Methodology 
 
4.2. Position measurements conversion models 
 
Geodetic position coordinates are measured in degrees. As previously mentioned, degrees close to the 
equator are longer in meters than those close to the poles. That makes any potential usage of the degree 
unit problematic for various reasons. In order to avoid plausible errors, the geodetic coordinates (𝜙, 𝜆) 
must be converted into geocentric (Cartesian) coordinates (X, Y) and then after any modification they 
are turned back to geodetic again. Before showing the methodology, it is important to start with nota-
tion. 
 
𝑎, 𝑏, 𝑒 = semi-major axis, semi-minor axis, eccentricity of reference ellipsoid

𝑋, 𝑌, 𝑍 = Cartesian geocentric coordinates
𝜆, 𝜑, ℎ = geodetic longitude, geodetic latitude, geodetic height

 

 
The coordinate transformation from geocentric to geodetic is given by, Vermeille (2002) 
 

𝑋 = (ℎ + 𝑛)cos𝜑cos𝜆 
𝑌 = (ℎ + 𝑛)cos𝜑sin𝜆 

𝑍 = (ℎ + 𝑛 − 𝑒2𝑛)sin𝜑 
(5) 

 
where: 

𝑛 =
𝑎

√1 − 𝑒2sin2𝜑

 
(6) 

  
To transform back geocentric coordinates to geodetic coordinates, given that (𝑋, 𝑌, 𝑍) is known, first 
we should compute the value of 𝑘 and 𝐷 by the following sequence of formulae: 
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𝑝 =
𝑋2 + 𝑌2

𝑎2

𝑞 =
1 − 𝑒2

𝑎2
𝑍2

𝑟 =
𝑝 + 𝑞 − 𝑒4

6

𝑠 = 𝑒4
𝑝𝑞

4𝑟3

𝑡 = √1 + 𝑠 + √𝑠(2 + 𝑠)
3

𝑢 = 𝑟 (1 + 𝑡 +
1

𝑡
)

𝑣 = √𝑢2 + 𝑒4𝑞

𝑤 = 𝑒2
𝑢 + 𝑣 − 𝑞

2𝑣

𝑘 = √𝑢 + 𝑣 + 𝑤2 − 𝑤

𝐷 =
𝑘√𝑋2 + 𝑌2

𝑘 + 𝑒2

 (7) 

 
Next, we compute the geodetic coordinates 𝜆, 𝜙 and ℎ by: 
 

𝜆 = 2arctan
𝑌

𝑋 + √𝑋2 + 𝑌2

𝜑 = 2arctan
𝑍

𝐷 + √𝐷2 + 𝑍2

ℎ =
𝑘 + 𝑒2 − 1

𝑘
√𝐷2 + 𝑍2

 (8) 

 
The computations in this paper were carried out with 𝑎 = 6378137 m and 𝑒 = 0.081819191. 
 
4.3. Interpolation Methodology 
 
We called this algorithm the interpolation methodology because it underlines the main function used to 
replace the missing vessel trajectories. The scope here is to make a versatile and customizable algorithm 
which will provide a robust solution with a potential to scale up in the future. Additionally, it should be 
possible to run in batch, meaning on datasets with multiple ships of similar characteristics. 
The algorithm starts by creating a vessel subset from each dataset, one for CAMS such that 𝑣𝑠𝑙𝑐 ⊆
𝐶𝐴𝑀𝑆 and one for AIS such that 𝑣𝑠𝑙𝑎 ⊆ 𝐴𝐼𝑆. Focusing on 𝑣𝑠𝑙𝑎 the algorithm starts by converting the 
geodetic-to-geocentric coordinates as described in subsection 4.1. Next, it creates a feature which is the 
time difference in hours between consecutive timestamps of the 𝑣𝑠𝑙𝑎 subset. This feature combined 
with a minimum threshold of 10 h is used in the next step, where 𝑣𝑠𝑙𝑎 is dynamically split into sub-
segments. The split functionality is applied in order to avoid interpolation when the time distance be-
tween consecutive available AIS measurements is greater than 10 h. In such cases, this trajectory gap 
is left uncorrected in order to avoid interpolation over land. Fig.11 illustrates an example. The thresh-
old’s number has been chosen after a series of tests for optimal algorithm performance. A smaller num-
ber creates a lot of splits of short scaled sub-segments resulting to a greater amount of missing values. 
This step can be further improved by invoking a physical system that uses the course over ground to 
approximate the location in such long gaps. 
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Fig.11: Example of AIS coordinates with a gap ≥10 h on the measurements. Red dots indicate the  
            measurements and the black dashed line is considered to be the real trajectory of the vessel. 
 
After the split is over, each sub-segment is initially up-sampled to a 10-minute interval frequency sim-
ilar to that of 𝑣𝑠𝑙𝑐 and then linearly interpolated using the deterministic methodology of polynomial 
interpolation for time-series data described by, Lepot et al. (2017). Then all sub-segments have been 
concatenated to form a vessel’s dataset where the reverse procedure of geocentric-to-geodetic has been 
applied as described in subsection 4.1. Last step before creating the validation indicators 𝐷𝑐, 𝐷𝑎 and 
the safety indicator 𝑑𝑝

𝑏 was to merge 𝑣𝑠𝑙𝑐 with 𝑣𝑠𝑙𝑛𝑒𝑤
𝑎 . Algorithm 1 sums up the methodology step-by-

step as described above including the rule for defining which of the two (AIS or CAMS) coordinates 
are the more accurate for the current vessel. For easier interpretation, Fig.12 illustrates the algorithm up 
to the point where the rule is applied in line 21. 
 
Apart from the two remarks from subsection 3.2 which have defined an initial step on how to validate 
the position measurements of a vessel, we have also created a simple rule based on a series of trials and 
errors: 
 

𝑃(𝜙, 𝜆) = {
𝐶𝐴𝑀𝑆, �̃�𝑝

𝑏 < 1000𝑚 & 𝐼𝑄𝑅(𝐷𝑎) > 𝐼𝑄𝑅(𝐷𝑐)

𝐴𝐼𝑆, (�̃�𝑝
𝑏 < 1000𝑚 & 𝐼𝑄𝑅(𝐷𝑎) ≤ 𝐼𝑄𝑅(𝐷𝑐))   ∥   (�̃�𝑝

𝑏 ≥ 1000𝑚)
 (9) 

  
The rule is generally sufficient to produce good results. In short, the equation clarifies that the final 
position measurement of the historical dataset of one vessel can be drawn directly from the CAMS 
dataset if �̃�𝑝

𝑏 < 1000 m and 𝐼𝑄𝑅(𝐷𝑎) > 𝐼𝑄𝑅(𝐷𝑐). In the contrary, when �̃�𝑝
𝑏 < 1000 m and 

𝐼𝑄𝑅(𝐷𝑎) ≤ 𝐼𝑄𝑅(𝐷𝑐) or �̃�𝑝
𝑏 ≥ 1000 m then the final dataset encloses position measurement processed 

in even time intervals derived from the interpolation. 
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5. Results 
 
Overall, the interpolation methodology obtained sufficiently good results. According to Algorithm 1’s 
output, 18.4% of the fleet on the examined dataset of 228 vessels have been identified as faulty. This 
accounts for 19.2% of the dataset's total position measurements. The slight percentage difference occurs 
due to the variation in the number of measurement points from the different vessels. Some of them 
contribute with a few days of data while others contribute with as much as up to 36 months. 
 
To get a better look we start from the vessel with the most degrading sources combined, as mentioned 
in sub-section 3.1. In Fig.6 we examined the "drift issue". That specific ship apart from drifting it was 
also zig-zaging and losing the values where either longitude or latitude were negative ("N/E issue"). 
Not to mention the frozen coordinates where the equator crosses the prime meridian (0,0) right below 
Nigeria in Africa. The output of Algorithm 1’s output, for this vessel can be seen in yellow-colored 
points of Fig.13. In this case, the rule from equation (9) decided to pick AIS even-spaced estimates over 
CAMS. 
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Fig.12: Flow chart of the interpolation methodology 

 
With a glimpse at the map of Fig.13, it is clear that the yellow points eliminate all degrading sources 
mentioned for that vessel. Here, we should note that the pure AIS coordinates as sourced from the 
external provider were missing by 64% when they merged with the CAMS dataset 𝑣𝑠𝑙𝑐. The interpo-
lation methodology decreased the missing value percentage to < 0.1%. 

In the next examined ship, Algorithm 1 chose CAMS over even-spaced AIS estimates when deciding 
on the best quality coordinates. In fact, if we compare the boxplots (referring to each ship’s 𝐷𝑐 and 𝐷𝑎 
IQRs) from Figs.9 and 10 of vessel I.48 in class C.27, 𝐷𝑐’s boxplot is narrower than that of 𝐷𝑎 which 
confirms the second scale of the rule in Eq.(9). 
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Fig.13: Trajectory of vessel I.36 from class C.12. Red points refer to the CAMS registered coordinates 

and yellow refer to even-spaced AIS estimates of the interpolation methodology. 
 
In Fig.14 we have the vessel’s trajectory both in CAMS and in AIS even-spaced estimates. Note that in 
the AIS even-spaced coordinates, the effect of land interpolants mentioned in Fig.11 is visible when the 
vessel is crossing the Gulf of Oman, despite the minimum threshold splitting of 10 h. In this case, the 
time difference was smaller than 10 h. Luckily for this case, CAMS measurements were chosen over 
AIS estimates. 
 

 
Fig.14: Trajectory of vessel I.48 from class C.27. Red points refer to the CAMS registered coordinates 

and yellow refer to even-spaced AIS estimates of the interpolation methodology. 
 
In line with the acquired knowledge from applying alternative algorithms (Linear/Non-linear Kalman 
Filter) during the process of building the interpolation methodology, it can be concluded that if we 
create a hybrid model invoking a state-space model into the interpolation methodology it will bring 
optimal results in historical data validation and correction. Additionally, it will form the fundamentals 
to build a real-time model that can validate and correct position measurements right before the data has 
been recorded into the ship's database. In the next sub-sections, two vessels were chosen to evaluate the 
results of the methodology. 
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6. Summary and Conclusions 
 
This paper has been conducted to tackle the a posteriori data loss/modification of position measurements 
which refers to the posterior modification/loss of the position data after the signal has successfully 
arrived at the GNSS receiver. 
 
We categorized the faulty measurements into 6 groups; (i) the "N/E issue", (ii) the "zig-zag issue", (iii) 
the "scatter issue", (iv) the "drift issue", (v) the "frozen issue" and finally (vi) the "bit-rate issue". Some 
groups are visible in ships with different CAMS installed where others are only visible in CAMS from 
specific providers. 
 
Further, we created 3 validation indicators with which someone can identify if a ship carries faulty 
measurements in a specified time range. These validators are designed to be used in batch processing 
and not in individual data points. 
 
Lastly, we have proposed an algorithm/methodology for correcting the faulty measurements by revers-
ing to the raw state right in the beginning of their path from the GNSS receiver to the company's data 
center. The methodology used interpolation as its main ingredient. According to the evaluation of the 
methodology, it achieved sufficiently good results mainly due to its highly customizable algorithm. 
 
6.2. Future Work 
 
Various processes can be improved to achieve better results. The main proposal is to use a hybrid meth-
odology which will combine both interpolation and a state-space model into it. More specifically: 
 

• In cases where there is more than 10 h gap between consecutive AIS coordinates, the interpo-
lation methodology leaves the trajectory gap uncorrected. This can be improved by invoking a 
physical system that uses the COG to approximate the location in such long gaps. 

• We could extend the validation in per-month or per-day state. Right now, the validation refers 
to the IQR of the data from the whole time that the ship has operated. Apparently, this is not a 
fair judgement because many CAMS systems have been fixed and after that they register good 
quality data. Unfortunately, the proposed validators are built for batch corrections and not for 
individual data points. 

• We could use a state-space model directly into the CAMS position measurements in real-time. 
Unfortunately, for the time being, both COG and compass true heading measurements from 
CAMS are missing most of the times (72% and 28%, respectively). Additionally, some ships 
have frozen or faulty position measurements for long periods of time - say up to 6 months. So 
the use of AIS data is unavoidable, if those problems are not solved. 

• We could develop a data-driven/automatic identification of when a signal falls into one of the 
6 identified categories. Subsequently, the correction algorithm could then use this information 
(e.g. with an identified frozen signal in CAMS, we can use AIS measurements to initiate a state-
space model until CAMS gets unfrozen). 
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Abstract 
 
The draught & speed band of a sea trial is often so narrow, that only small fragments of the vessel’s 
operation can be compared to it. Still, it has become common practice by Vessel Performance Analysts 
to say: “We use sea trials as our baselines.” A true lie, as extensive extrapolation of the baselines is 
required to cover the actual vessel operation band. Many approaches use only Naval Architecture 
principles or pure data science for the baseline creation. This paper describes a hybrid approach.  

 
1. Introduction 
 
1.1. The need for a baseline and the available data 
 
When one wants to analyse hull & propeller performance developments over time one needs a baseline. 
A model where the measured operation is held against, which stands for the expected performance. The 
difference between the expected performance and the observed performance is described through a 
performance indicator, such as the percentage Speed Loss, ISO (2016), Power Percentage, Added 
Resistance or similar. 
 
It is beneficial, when the reference model is available as soon as a vessel starts to feed operational data 
into an analytics system as the ship operator can directly see, where the vessel is compared to her 
reference and take actions accordingly. Most important is however that the model describes the hull & 
propeller performance accurately. 
 
The one and predominantly only set of curves describing vessels propulsion performance a ship operator 
has available right away is the speed test of the sea trial. Every vessel that is built needs to prove that 
her propulsion performance is as good as it was stated in the building contract. For this purpose and to 
understand the power/speed/rpm relations the yard conducts a speed trial, where the vessel is tested at 
one or several main engine loads. A sea trial gives typically 2 to 5 measurements at the time when the 
vessel was built. 
 
Usually, one loading condition is tested and a calibration factor between the model basin curve and the 
measured and corrected Speed & Consumption values is determined. In case more than one speed power 
curve was given by the model basin the percentage difference is used to calibrate the curves. In this way 
the vessels design speed point, so the contract design speed and propulsion power at design draught, 
can be proven regardless of the sea trial draught condition.  
 
Speed Test diagrams often show 3 curves (Ballast, Design and Scantling condition), but not always. 
We analysed available information from a sample of 100 sea trial (Speed Trial) documents. Fig.1 shows 
how many different sailing conditions were given in the documents. Little less than half of them had 
three separate curves (Ballast, Design and Scantling). Many documents had only one curve available, 
that is woefully little data to develop an accurate model. This study describes how additional data was 
used to improve the situation substantially.  
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Fig.1: Available information at a sample of 100 sea trial documents 

 
1.2. Modelling options 
 
By definition, a model is an estimate of the reality. Besides the above-mentioned speed tests, there are 
several ways how one can obtain a speed-power model. The methods differ with the type of information 
that is used, and the resources needed to create it. Typical approaches are: 
 

a. Model only based on Speed Test (Sea Trial): 
Such approaches use the Speed Test measurements to create a model. The main advantage is 
that this can be done quickly, and the modelled curves of the given draughts are close to the 
optimum performance of the vessel, as the hull and propeller(s) were most likely in a good 
shape back when the Sea Trial was conducted. The main disadvantage is that the range of the 
sea trial measurements is often very narrow, so that one can only analyse a small band of data. 
More details to this modelling approach can be found in chapter 2.1. 

 
b. Models based on the measured values 

Such approaches are mostly used when one receives sufficient information from the vessel, i.e. 
high-frequency data. Using suitable filters, advanced data analytics and appropriate mathe-
matical fitting models, this method can provide good estimates. The main advantage is that the 
modelled performance will reflect current performance of the vessel fairly well. The main 
disadvantage is that one needs to collect sufficient data before one can achieve this. Further 
details about this modelling approach are given in chapter 2.2. 

 
c. Model based on computation of fluid dynamics (CFD) 

Numerical simulations on a 3D hull shape of the vessel are used to compute the resistance. The 
main advantage of this methodology is that one can determine the hull performance in any 
sailing condition. The model is wider as off-design conditions and different trims can be 
simulated, Krapp and Bertram (2016). The disadvantage is that creating a proper hull shape 
and studying its hydrodynamics via CFD can be labour intensive. It pays off well for trim 
studies of large container vessels, which are using a lot of fuel, but not necessarily for smaller 
vessels. Finally, using CFD technics correctly, one can get very good reference models for 
vessels, but the quality of results seems to depend significantly on the chosen CFD experts and 
service provider, Tsarsitalidis and Rossopoulos (2018). 
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d. Models based on extensive tests within the model basins 
These models require larger investments when the vessel is built. The model basin supplies 
their prognosis for additional off-design and low-speed conditions. In this way one obtains a 
model covering most common sailing conditions. The advantage is a more reliable model, 
though the quality of scaling factors in off-design conditions might be a challenge. The 
disadvantage is the high costs of the towing tank time. 
 

Fig.2 qualitatively compares the modelling approaches. The modelling approaches are assumed to be 
working well (green bullets) and having challenges (yellow/orange bullets) in different fields. 
 

 
Fig.2: Comparison of modelling approaches 

 
Within this study, CFD based or towing tank-based approaches are not analysed further. Reasons are 
required effort and (limited) available vessel design data in our applications. An approach was chosen, 
that uses the little data that exists upon system entry and uses it in the starting phase until sufficient 
high-frequency data is available to verify and correct the model. Fig.3 shows a qualitative judgement 
of the developed hybrid approach. 
 

 
Fig.3: Hybrid modelling approach 

 
In the following section, an example method of model creation is described when models are created 
only based on Speed Test or only based on the measured values. 
 
2. Typical power model creation  
 
2.1. Power models based on Sea Trials 
 
Many service providers for hull performance analytics state that they are creating their speed- 
consumption models based on the available sea trial information. Then only through interpolations and 
extrapolation a model covering the whole operation profile of the vessel can be created. Fig.4 shows 
how this may work, when the sea trial curves cover a wide speed range and Ballast, Design and scantling 
curves are given.  
 
The approaches can give somewhat useful models when sufficient information is available within the 
sea trial documents and the vessels are predominantly sailing in Ballast or Scantling conditions. The 
methods may use linear interpolation or the admiralty formula between the draughts and polynomial 
extrapolation methods for speeds. For container vessels, this can lead to particularly inaccurate models, 
Krapp and Bertram (2016). The method fails even more, when the available information is too limited 
(e.g. only 1 curve given). Using linear or polynomial methods to extrapolate more than 90% of the 
vessel operation only through a small set of known data will likely lead to very inaccurate models.  
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Fig.4: Interpolation/Extrapolation of model curves Speed Trial (3 curves) 

 
2.2. Power models based on mathematical methods 
 
Mathematical curve fitting approaches that create a best fit curve based on the measured speed-power 
data have become more popular over the last decade. The quality of these models is sufficient when 
high-frequency data is used, which is collected by data loggers and is combined with weather data, 
available from third party or obtained from vessels.  
 
The high-frequency data usually includes information on other parameters such as location, GPS speed, 
telegraph position, RPM, anemometer data, etc. They can be used to include several layers of validation 
and filtering. The filters help in removing noise, such as variations due to wind speed. Some data 
logging systems also have wave and current information recorded which can help in improving the 
filtration scheme. If such data is not available, then hindcast weather information can be used.  
 
A mathematical curve is determined for each draught, which goes through the data in the best way. One 
can use a function like, Boutillier et al. (2015): 
 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  𝛽 ∙ 𝑆𝑝𝑒𝑒𝑑𝛼 
 

The parameters of the curve (here e.g. β and α) are determined based on the data. An example is shown 
in Fig.5. It can help to separate curves for say each Beaufort (BF) scale or even a current calm weather 
curve by normalizing them. 
 
In this way, one obtains quickly power curves that reflect the current performance of the vessel fairly 
well. Putting a certain margin upon such curves gives a decent charter party contract curve.  
 
A main disadvantage of pure mathematical approaches is that the model only covers experienced sailing 
conditions of a vessel. Such models may not accurately predict in newly encountered conditions simply 
because the models have no experience data to do so, Bertram (2014). 
 
For certain vessel types like Bulker and Tanker vessels the sailing condition often does not change over 
longer periods. This, combined with fouling impacts, can lead to models that do not reflect the 
performance differences between the sailing conditions correctly.  
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Fig.5: Consumption vs. speed mathematical model fit, Boutillier et al. (2015) 

 
Another disadvantage of these approaches is that a clear indication of the “optimum performance” can 
only be given after a dry docking. Hence data logging systems need to be in place for fairly long periods 
(length between drydocks) to develop understanding of the optimal performance of a vessel. 
 
3. Hybrid Model – Initial Model creation 
 
3.1 Overview of approach 
 
The goal of the developed modelling approach is to use physical principles of naval architecture to 
analyse an individual vessel’s sea trials and make reasonable extrapolations. The methodology selection 
depends on the available information. It is assumed that at least the General Arrangement plan, a dis-
placement table and some general information about the propeller are available. The methodology esti-
mates a power model which covers Ballast, Design and Scantling condition over a wide speed range. A 
draught extrapolation is required when the sea trial has only 1 or 2 of these curves available. Additional 
draught conditions can be added when the model is compared to high-frequency data. 
 
3.2 Analysis of the Sea Trial 
 
The following is read from the Sea Trial document: 
 

1. The corrected Speed vs. Power curves  
2. The Speed, RPM & Power measurements  

 
Some sea trials cover only the actual measurements. The sea trial curve is then often just a mathematical 
curve between the measurement points. For the sample analysis, this was the case for ~15% of the 
documents. To bring all sea trials to the same base, one needs to run an ISO 15016 correction on the 
data in such cases.  
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3.3 Propulsion efficiency 
 
Physically the required propulsion power is described as: 
 

𝑃𝐷 =
𝑅𝑇∙𝑣𝑠

𝜂𝐷
 (1) 

with RT = Total vessel resistance, hull resistance determined in chapter 3.4 
 vs = vessel speed through water 
 ηD = propulsive efficiency 
 
The propulsive efficiency is defined as: 
 

𝜂𝐷 = 𝜂𝐻 ∙ 𝜂𝑅 ∙ 𝜂𝑂 =
(1−𝑡)

(1−𝑤)
∙ 𝜂𝑅 ∙ 𝜂𝑂   (2) 

 
The individual factors are derived by: 
 

- 𝜂𝑅 (relative rotative efficiency): Values are between 0.99…1.05 for single-screw vessels, 
Krüger (2017); due to lack of information, we set 𝜂𝑅 = 1 → 𝑄 = 𝑄0 . 

- 𝜂𝑂 (propeller open-water efficiency): Is read from the digitized open water propeller diagram. 
If this is not available, the propeller geometry parameters are used to create an open-water 
propeller model of the Wageningen B-Series Propeller, Bernitsas et al. (1981). The sea trial 
measurements (RPM, Speed, Power) give then an indication of the open-water efficiency at sea 
trial condition. The open-water propulsion efficiency of all other conditions can be determined 
through KT-identity, when speed and resistance are given, or KQ-identity, when speed and power 
are given. 

- t (Thrust deduction factor): Determined through estimation formulas, Schneekluth and Bertram 
(1998). 

- w (wake fraction): Determined by estimation formulas, Schneekluth and Bertram (1998), over 
the whole speed and draught range and calibrated based on the sea trial measurements condition 
at design speed and using the open-water propeller diagram. 
 

3.4 Hull Resistance 
 
The total resistance coefficient cT, excluding weather impacts, is calculated for the sea trial condition. 
This value is then decomposed to the viscous resistance coefficient cF, the wind resistance coeffiicent 
cW, the correction factor cA and the residual resistance cR. cF gets calculated through the ITTC 1957 
formula and cA is estimated through the standard formula, Hollenbach (1997). With this the residual 
resistance can be calculated for the sea trial: 
 

𝑐𝑅𝑆𝑒𝑎𝑇𝑟𝑖𝑎𝑙
= 𝑐𝑇𝑆𝑒𝑎𝑇𝑟𝑖𝑎𝑙

−
0.075

(𝐿𝑜𝑔(𝑅𝑒)−2)2 − 𝑐𝐴 − 𝑐𝑊   (3) 
 
3.4.1. Draught extrapolation 
 
The residual resistance value of the Sea Trial speed power curve is the basis to determine the residual 
resistance coefficient for other sailing conditions were no speed-power curves are available. An over-
view of the process for this is shown in Fig.6. The central element of the approach is that the residual 
resistance of non-sea trial conditions is estimated by the typical value difference of the different sailing 
conditions. For instance, when the residual resistance coefficient for Ballast condition is given, the val-
ues for Design and Scantling can be computed by: 
 

𝑐𝑅−𝐷𝑒𝑠𝑖𝑔𝑛 = 𝑐𝑅−𝐵𝑎𝑙𝑙𝑎𝑠𝑡 ∙ (1 + 𝐶ℎ𝑎𝑛𝑔𝑒%𝐷𝑒𝑠𝑖𝑔𝑛)  (4) 
𝑐𝑅−𝑆𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔 = 𝑐𝑅−𝐵𝑎𝑙𝑙𝑎𝑠𝑡 ∙ (1 + 𝐶ℎ𝑎𝑛𝑔𝑒%𝑆𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔) (5) 
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Fig.6: Power estimation for Design draught at a given Ballast draught power value 

 
The CR% change factors are retrieved by an empirical method, which uses standard series methods, 
Hollenbach (1997), and enriches them with the information from available sea trials, where sufficient 
information, i. e. three power curves were available. The resistance coefficients are to a certain amount 
depending on speed. It was chosen to use the “Design Speed Point” as the general reference to compute 
𝐶ℎ𝑎𝑛𝑔𝑒%𝐷𝑒𝑠𝑖𝑔𝑛, but allow individual changes over speed in the review mechanism.  
 
3.4.2. Speed extrapolation 
 
Another requirement to the power model is, that it covers an extensive speed vs. power range. To run 
the vessel efficiently, operators may need to execute voyages with super slow steaming at 10% of MCR 
power with speeds as low as 9 kn speed (Fn ≈ 0.08). Most low-speed extrapolation methodologies use 
a cubic speed power relation to extrapolate. Some vessel performance analytics companies use machine 
learning based approaches to correct for this, e.g. Hympendahl et al. (2018). No matter which method 
one choses, generally the accuracy with which one can predict low power values is limited.  
 

 
Fig.7: Low speed extrapolation of cR coefficients using cubic parametric splines 
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In order to give ship operators a fair indication of the lower speed power values the developed 
methodology extrapolates the residual resistance coefficient over the Froude number. The residual 
resistance for three Froude numbers is estimated through an empirical model and a cubic parametric 
spline function is used to connect the points, Fig.7. The empirical model is based on curve comparisons 
with valid high frequency data. Findings of this empirical model were that the residual resistance 
generally seems to increase at lower speeds, particularly for vessels with a high block coefficient. 
Detaching flow effects and a bigger hydrodynamic mass could be the reason for this. 
 
4. Hybrid Model – Review mechanism 
 
When one ensures its validity, high-frequency data allows to create accurate models, Reimer (2020). 
Having high-quality sensors and a scheme of ensuring the validity in place, one gets measurements 
which can be used to correct and calibrate the initial model. 
 
As mentioned above, pure mathematical models would only describe the current performance of the 
vessel, including fouling and aging effects. The goal of the hybrid model developed here is that it 
describes the optimum (sea trial) performance of the vessel in holistic and accurate manner.  
 
4.1. Data selection and preparation 
 
It is important to select a data period where the hull performance was steady and where a wide 
operational band is covered. Preferably data after a dry docking should be used, whereas data with long 
idle periods should be avoided. It is not important for the model review that the data is recent. 
 
The measurements need to be filtered to remove points with unstable operating conditions. Using such 
filters, a significant number of the data may get excluded, but this is often necessary to remove any bias. 
The remaining data gets corrected for the weather impact, either through high frequency weather data 
from ship, which is averaged on a 3-hours base or hindcast weather data from a weather company. Fig.8 
gives an overview of the process. 
 

 
Fig.8: Filter process for model review 

 
4.2. Review mechanism 
 
The initially created model is held against the filtered and corrected operational data. As a major part 
of the hull and propeller model is derived through empirical formulas, its accuracy is limited by the 
quality of the empirical models. The review mechanism improves the accuracy of the models estimates 
and in a further process also the empirical model. However, the sea trial curves are assumed to be 
correct, and they are usually not changed but only visually inspected. The review mechanism has its 
limits, a few assumptions remain:  
 

- The thrust deduction factor t is not reviewed as there is in most cases no thrust meter available 
to distinguish between thrust and resistance.  

- The relative rotative efficiency ηR and the open-water characteristics are not changed. Only the 
wake fraction is taken as a variable. 

 
A slightly modified admiralty formula is used to account for smaller draught differences between the 
model and reference curves. In case significant performance change is evident within the data, 
additional loading conditions can be added and reviewed separately. 
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At the review mechanism a mathematical best fit approach is used to create a calibrated curve of graphs 
for reference. Using the measurements, the shape of the power over speed, power over RPM and wake 
fraction over speed curves are assessed for each loading condition. An overview of the review process 
is given in Fig.9. 
 

 
Fig.9: Review process of the generalized power model 

 
A curve comparison allows to assess, where and how a change is needed. Using not only the power vs. 
speed assessment, but also the power vs. rpm curves allows to determine where the propeller operation 
point is different than estimated. This is partly corrected via a change of the modelled wake fraction 
slope over speed. In a second step the estimated resistance parameters are analysed further. As the 
values are interacting, i.e. the propeller operation point is dependent of the wake fraction and the 
resistance, the review process is iterative.  
 
4.3 Final model 
 
To derive the final model, it is assumed that the fouling impact in percentage of power is similar over 
the speed range. The final model is close to a minimum curve of the corrected measurements. An 
example for a container vessel curve in one of the Laden conditions is shown in Fig.10. The difference 
of the curve to the measurements is due to fouling and other environmental impacts which are yet not 
taken care of by the weather correction models. Future work may include improvements in this field. 
 
The generalized power model (power vs. RPM vs. Speed model) is derived from a resistance model and 
a model of the propellers open water efficiency in the background. The advantages of this approach as 
compared to two-dimensional speed-power models that do not cover RPM, are: 
 

- Measured Power and corresponding RPM can be cross-validated. 
- More accurate assessment of weather and fouling impacts as the impact on propulsion 

efficiency is considered. Note: Any additional resistance causes a drop of propulsion efficiency, 
which is not modelled when one estimates: 𝜂𝐷 ≈ 0.7 ≈ 𝑐𝑜𝑛𝑠𝑡. 
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- When converted from “clean hull” to “current performance” model, proper RPM and Power 
predictions can be derived. 
 

Overall a more accurate prediction of RPM and power can be given through cross-validation. 
 

  
Fig.10: Left: Orange curve - Optimum modelled curve; Black curve with red markers - Calibrated best 

fit; Grey points – High frequency observations. Right: Main Engine Diagram with modelled 
propeller curve (orange)  

 
5. Summary 
 
In order to assess the vessel’s capabilities a ship operator needs an accurate hull and propeller model 
for clean hull conditions. The modelling approach described in the paper achieves this by verifying an 
initial model, based on sea trials and empirical models from naval architecture, with valid high-
frequency vessel measurements. The approach is hybrid as typically sea trial data, standard series 
methods and vessels operational data is used.  
 
The hull and propeller are modelled separately to account for the interaction of the propeller and the 
hull when resistance changes. By this, the theoretical achievable power and RPM can be estimated and, 
via calibration to the current fouling condition, the vessels RPM and power can be predicted for the 
current vessel operation condition.  
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Human Factor, the Double-Side Effect 
 

Matteo Barsotti, IB, Genoa/Italy, m.barsotti@ib-marine.com 
 

Abstract 
 
There is now the trend of the autonomous ship, but it has to be clarified that is not a “we don’t need a 
human in the ship’s handling” but it’s just a “we do not need him located on the vessel”. Why is so 
important and sometime tricky the human factor? The IoT and the machine learning are of course 
replacing the humans in most of the activity, but the decision will have to be always coming from a 
human. So, it is always important to keep in mind that we can digitalize everything and bring onshore 
al the sensor data, create all the alerting and the analytics but then the human, his expertise is the 
key. Usually there is the idea that human factor is the human error that is correct but, in any case, 
this is not the only meaning, the human factor is also the human understanding and interpretation of 
an information that a system can give. Nowadays we have plenty of system that promises wonderful 
saving and claims to be fully automatic. Sometimes it is true but there is something behind, the 
expertise from whom give you the software and then the expertise of the customer in understanding 
and then using the information received. Here will be the focus on three main topics that have to be 
accompanied by the human factor to be fully used: Alerting, ISO19030 and Machine Learning. 
 
1. Introduction  
 
One of the bullet points of IMO's Strategic Plan (2018-2023) is to "integrate new and advancing 
technologies in the regulatory framework". This involves balancing the benefits derived from new and 
advancing technologies against safety and security concerns, the impact on the environment and on 
international trade facilitation, the potential costs to the industry, and finally their impact on 
personnel, both on board and ashore. In 2017, following a proposal by several Member States, IMO's 
Maritime Safety Committee (MSC) agreed to include the issue of marine autonomous surface ships 
on its agenda. This was in the form of a scoping exercise to determine how the safe, secure, and 
environmentally sound operation of Maritime Autonomous Surface Ships (MASS) may be introduced 
in IMO instruments. 
 
For MASS vessels, the IMO has established four degrees of autonomy: 
 

• Degree one: Ship with automated processes and decision support: Seafarers are on board to 
operate and control shipboard systems and functions. Some operations may be automated and at 
times be unsupervised but with seafarers on board ready to take control. 

• Degree two: Remotely controlled ship with seafarers on board: The ship is controlled and 
operated from another location. Seafarers are available on board to take control and to operate 
the shipboard systems and functions. 

• Degree three: Remotely controlled ship without seafarers on board: The ship is controlled and 
operated from another location. There are no seafarers on board. 

• Degree four: Fully autonomous ship: The operating system of the ship can make decisions and 
determine actions by itself. 

 
The scoping exercise was seen as a starting point that would touch on an extensive range of issues, 
including the human element, safety, security, liability and compensation for damage, interactions 
with ports, pilotage, responses to incidents and protection of the marine environment. The regulatory 
scoping exercise (RSE) was finalized at the 103rd Session of the MSC in May 2021. The outcome 
highlights several high-priority issues, cutting across several instruments, that would need to be 
addressed at a policy level to determine future work. 
 
It has been defined the new concepts of   
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- global degree of automation of a ship that is the lowest degree of automation of main system 
covering essential services, Fig.1.  

- degrees of control that represents the degree of availability of human operating the ship 
aboard (crew) or remotely outside the ship from a remote-control centre (operators), Fig.2. 

 

 
Fig.1: Degree of automation 

 

 
Fig.2: Degree of control 

 
As a result, the guidelines introduce the concept of the Remote-Control Centre that is exactly the 
place where the ship management is moved along with the knowledge, that previously was on board; 
this is exactly where the crew is now needed, so it can be considered as just a relocation.  
 
Of course, this is not easy and it takes time, but we have to consider that all the system that are 
available today in terms of automatic data collection and performance monitoring have behind the 
idea of Decision Support System. 
  
Decision Support System (DSS) is an information system that supports business or organizational 
decision-making activities. DSSs serve the management, operations, and planning levels of an 
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organization (usually mid and higher management) and help people make decisions about problems 
that may be rapidly changing and not easily specified in advance.  
 
The Human Factor is clear then where it fits in this environment and then the positivity that can bring. 
There is then also negative aspect related to the Human Factor that can be either voluntary or not 
voluntary. If a crew member wants to hide something to an Owner, an Operator or a Charterer and the 
ship has no other means of reporting than the noon report (manual) then for him is very simple.  
 
Nowadays with more restriction in Emission, security, and all other aspect there is no possibility to 
not get as much information from a vessel that override the human intervention. This is where is the 
dilemma, from one side we have the good Human Factor because it means experience and valuable 
help but on the other side there is the bad Human Factor that hide something; it is in the human nature 
but the system available today can help in this dilemma so as said in Middle Ages and coming from 
Aristoteles “ in medio stat Virtus”, the solution will be take the Human knowledge but also use 
Human-independent means to get the information. Nevertheless, not all is on the crew’s shoulder but 
there is other two parties with their Human Factor in the data handling. The first is the provider of a 
solution, as there should be the expertise to explain and make the customer really use the solution and 
not just sell the solution to make money and then forgot about us. The second is obviously the support 
on shore, someone in office with the expertise and capabilities to read the data and support the crew. 
Selling a performance monitoring system could be easy if we promise wonderful savings, fully 
automatic system and no crew intervention; but it is not exactly like that, it is important to understand 
the goal of the customer and then to be clear with him about the capability of a system but also about 
the action from the ships or the office onshore.  
 
2. Alerting 
 
When it comes to alerting, we receive always a very good feedback from the customer because the 
Human Factor in reporting could be a tricky element. There is more and more the need of the 
Shipowner/Ship operator to know immediately if something happens and this is because when you 
trust only on noon report you have only to trust in one report per day and hoping that is not so wrong 
(because it is wrong!). This could be due to the human error in the evaluation but also on meeting a 
charter party, covering some bad weather that cannot be avoided etc. What is sometimes not 
considered or told from some vendors is the fact that there is always the need to interpret a data 
coming from a sensor or at least someone to receive the alert and manage it. Furthermore, on a single 
signal we could have a problem and not find until some time, no matter how many alerts you put on it 
because it is there when human factor do its part. Let’s take an example: if a from a flowmeter we 
take only the actual flow and use this to evaluate the daily consumption of course we will obtain a 
value that is different from the consumption measured by a very well-done manual sounding. If the 
flow has a minimum bias, it means that at every measurement it will add some consumption and then 
at the end the total consumption will be more than the real one. In a case like this we must combine to 
the following actions: 
 

➢ Do the maintenance of the flowmeters as per maker recommendations. 
➢ Integrate the flow of the flowmeter with additional data to evaluate the correctness of the 

signal received (example the Shaft Power and calculate the SFOC) 
➢ Integrate with the tank sounding signals.  

 
It is only a very simple example, but it is just to underline that depending on the data we get we can 
build alert together with the customer plus involving the crew in order to cover all the cases and issues 
that may arise. The crew or the operator on shore are a valuable help in understanding what can be 
monitored otherwise the risk is to have on shore a thousand of signal but then missing an important 
one.  
 
Not every customer is structured to have a dedicated person or department in analyzing the data and 
then the alerts can be useless in fact it is important to set alerts that the customer can use. Creating an 
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alert to highlight when the vessel has 2 out of 3 Diesel generators at sea with MCR below 40% is 
extremely good but then, which is the point if all (onshore and on-board) will disregard it?  
 
The job is not easy, as in most cases, it is a change of mentality, “we used to do like this”, “we always 
do like that”, ”we receive too many emails”, “you are spying on us” but at the end it worth if it is 
managed in the proper way because the incident and failure prevention along with emission saving 
will re-pay all the efforts. Alerting is a very helpful tool but should be set up in the proper way 
according to the customer need and Humans’ participation. 
 
3. ISO 19030 
 
When it is presented a module that cover the ISO 19030 it is then strictly important to have clearly in 
mind the capabilities, the requirement, and the outcome of this ISO standard. The aim of this 
International Standard is to prescribe practical methods for measuring changes in ship specific hull 
and propeller performance and to define a set of relevant performance indicators for hull and propeller 
maintenance, repair, retrofit activities. Hull and propeller performance refers to the relationship 
between the condition of a ship’s underwater hull and propeller and the power required to move the 
ship through water at a given speed. Hull and propeller performance is related to variations in power 
because ship hull resistance and propeller efficiency are not directly measurable quantities. Changes 
in underwater hull resistance are due to alterations in the condition of the hull. Changes in the 
propeller efficiency are due to both alterations in the condition of the propeller and to modifications to 
the flow of water to the propeller (the hull wake) as consequence of alterations to the hull condition. 
In order to measure changes in the speed-power relationship for a vessel in service, it is necessary to 
compare two periods (a reference period and an evaluation period) where the environmental 
conditions and the operational profile are adequately comparable (filter the observed data) and/or 
apply corrections (normalize the observed data). Hull and propeller maintenance, repair and retrofit 
activities influence the energy efficiency of a ship in service. An indication of these effects can be 
obtained by measurement of changes in the delivered power required to move the ship through water 
at a given speed between two periods for which the environmental conditions and operational profiles 
have been made adequately comparable through filtering and/or normalization of the observed data.  
 
The above definition gives ship’s speed through the water and delivered power as the two primary 
parameters when measuring changes in hull and propeller performance -> Primary Parameters. In 
order to apply the filtering and normalization procedures necessary to make the reference period and 
evaluation period adequately comparable, measurements of both the environmental conditions and the 
ship’s operational profile are required -> Secondary Parameters. For both parameters, the parameters 
are set up as shown in Fig.3. 
 
It then follows, in the standard, the chapter related to the sensor installation maintenance and 
calibration because otherwise the standard cannot be applied, and it is one strong point to be stressed 
here; the human factor it is essential in the evaluation and the management of the various system.  
 
Not only on the accuracy of the measurement the standards give indications but also on the data 
acquisition frequency, Fig.4, and here is one of the most critical point of the standard. If the data 
collection system has not this requirement, then the system is not ISO 19030 compliant. 
 
After the data acquisition there is the data filtering and validation: 
 

➢ One outlier in a 10-minutes dataset determine the invalidity of the whole dataset 
➢ Correction for environmental factors 
➔ The data filtering and validation provides the Corrected Dataset 

 
Excluding the dataset that contains one dataset it is another criticality and it means that the system 
will require a bigger amount of data to be collected in order to build a valid Corrected Dataset. 
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Fig.3: Minimum sensor requirements 

 
Then it is possible to calculate the Performance Values that is the percentage of speed loss compared 
to a reference speed power relation. 
 
From the Performance Values it is possible to evaluate the Performance Indicator PI, Fig.5, as the 
differences between the average percentage speed loss of Reference period and Evaluation period. 
 
The next step is to create the Reference Period and here is another hot point because it is possible to 
consider a period as reference if they are all met simultaneously the following: 
 

➢ water temperature is >2°C and if there is no other indication that the vessel is trading in ice; 
➢ the wind speed is between 0 – 7.9 m/s (BF 0 and BF 4); 
➢ water depth is greater than the larger of the values obtained from two formulae dependent on 

ship breadth, ship speed and mean draft 
➢ delivered power has to be within the range of power values covered by the available speed-

power reference curves, 
➢ displacement has to be within ±5% of the displacement values for the available speed-power 

reference curves, 
➢ absolute rudder angle value is smaller than 5° 
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Fig.4: Minimum data acquisition rates 

 

  
Fig.5: Basic hull and performance indicators 

 
Reference Period and Evaluation periods: 
 

• Dry-docking performance:   
One year Period 
Reference Period: immediately before dry-docking 
Evaluation Period: immediately after dry-docking 
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• In-service performance 
Minimum One year Period 
Reference Period: immediately after Dry-dock 
Evaluation Period: from the end of Reference Period until the end of the same dry-docking 
period 

• Maintenance Trigger 
Minimum three months Period 
Reference Period: immediately after Dry-dock 
Evaluation Period: from the end of Reference Period of the same length in the same dry-
docking period 

• Maintenance Effect 
Minimum three months Period 
Reference Period: immediately before maintenance event 
Evaluation Period: immediately after maintenance event 

 
As a result, the general feeling is that is not easy and even if in the Part 3 of the standard are provided 
“Alternative Methods” not every data collection is feasible to the standard, so it is better to take care 
when it is presented an ISO 19030 compliant system. Or better, maybe a system can be compliant but 
not the ship or the company if not all the required data are mapped. The Human factor here is less 
visible but is in the expertise of explaining on how to deal with the requirements and on how to use 
the four PIs. These PIs can give a ship manager and especially a shipowner the possibility to do a lot 
of analysis and have information, not only “clean the ship is dirty” that a well-experienced Master can 
give without an ISO standard but long-term analysis on Dry-docking interval, the best time to clean 
and also to create a sort of ranking of the Hull/Propeller cleaning providers, etc. 
 
Again, all of this is possible if there is the human on both sides that understand and interpret the data 
and analysis created. 
 
4. Machine Learning  
 
Machine Learning is another topic that is in almost all presentation about performance monitoring and 
data collection but most of the time is presented as Black box but not as the definition of the algorithm 
but as a sort of miracle with no possibility of questions, like “do you believe in machine learning?” as 
it is a new religion. Of course, as an algorithm that learns from the data can be considered as a sort of 
mystery but again here some explanations are needed for everybody’s comprehension. 
 
Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on the 
use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. 
Machine learning is an important component of the growing field of data science. Through the use of 
statistical methods, algorithms are trained to make classifications or predictions, uncovering key 
insights within data mining projects. These insights subsequently drive decision making within 
applications and businesses, ideally impacting key growth metrics. As big data continues to expand 
and grow, the market demand for data scientists will increase, requiring them to assist in the 
identification of the most relevant business questions and subsequently the data to answer them.  
 
Machine learning algorithm can is divided into three main parts: 
 

1. Decision Process: In general, machine learning algorithms are used to make a prediction or 
classification. Based on some input data, which can be labelled or unlabeled, your algorithm 
will produce an estimate about a pattern in the data. 

2. Error Function: An error function serves to evaluate the prediction of the model. If there are 
known examples, an error function can make a comparison to assess the accuracy of the 
model. 

3. Model Optimization Process: If the model can fit better to the data points in the training set, 
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then weights are adjusted to reduce the discrepancy between the known example and the 
model estimate. The algorithm will repeat this evaluate and optimize process, updating 
weights autonomously until a threshold of accuracy has been met.   

 
There are three types of machine learning: 
 

1. Supervised machine learning             
Supervised machine learning is defined by its use of labeled datasets to train algorithms that 
to classify data or predict outcomes accurately. As input data is fed into the model, it adjusts 
its weights until the model has been fitted appropriately. This occurs as part of the cross-
validation process to ensure that the model avoids overfitting or underfitting. Some methods 
used in supervised learning include neural networks, naïve bayes, linear regression, logistic 
regression, random forest, support vector machine (SVM), and more. 
 

2. Unsupervised machine learning 
Unsupervised machine learning uses machine learning algorithms to analyze and cluster 
unlabeled datasets. These algorithms discover hidden patterns or data groupings without the 
need for human intervention. Its ability to discover similarities and differences in information 
make it the ideal solution for exploratory data analysis, cross-selling strategies, customer 
segmentation, image and pattern recognition. Other algorithms used in unsupervised learning 
include neural networks, k-means clustering, probabilistic clustering methods, and more. 
 

3. Semi-supervised learning  
Semi-supervised learning offers a happy medium between supervised and unsupervised 
learning. During training, it uses a smaller labeled data set to guide classification and feature 
extraction from a larger, unlabeled data set. Semi-supervised learning can solve the problem 
of having not enough labeled data (or not being able to afford to label enough data) to train a 
supervised learning algorithm. 

 
The most available machine learning algorithm in the shipping are the supervised machine learning 
algorithm with a labeled data set to predict a measure, usually Power or Slip. What is usually hidden 
and where is the Human Factor, is the selection of the dataset because different dataset as input will 
provide a different output that will be more accurate or less accurate. It is a matter of measured data, 
how they are measured, and which are selected; it helps again experience from the vendors in giving 
the best advice on the standard measures but also from the customer because a measured data cannot 
be available or maybe is better to use another measure that is more significant for a specific vessel. In 
other words, if not well prepared the machine learning algorithm can give very bad information, it is a 
very good example of “Garbage In - Garbage Out”, Human factor then in the selection of the inputs is 
essential. 
 
5. Conclusions 
 
Human factor has a double side effect, good and bad. Bad is when the Human want to hide something 
from someone, or it can be related to the error in the evaluation of a measure that is intrinsic of a 
human. Human factor is also bad when there is lack of expertise and then someone want to make 
benefit of it. The expertise is the good of the Human Factor but it has to come along with honesty and 
willing to teach. Whenever there is a change, it is always a battle to change the mentality and to focus 
on what  really worth in the jungle of the providers. From a provider’s point of view, the biggest value 
is to have a dedicated customer with experience because this enables both to improve using both 
experience in developing and updating the system to a better and competitive result. Together it is 
possible to reduce the bad side effect of the Human factor enabling the crew and then the ship 
owner/ship operator to really use what they are paying for otherwise it will be only a good marketing 
tool to show to third parties. 
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Noon Reports Data Collection Systems 
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Abstract 
 
Noon reports data is often deemed unsuitable to perform any accurate performance analysis. This paper 
identifies reporting of the daily averages of vessel speed, propeller rpm, and shaft power demand as an 
intrinsic source of error of noon reports data collection systems. To prove that hypothesis, first a 
mathematical model is derived such that it accurately characterizes the shaft and effective power 
demand of a vessel, which is then validated with Series 60 and KVLCC2 data. This model is used to 
derive a methodology to evaluate the performance of a vessel, which is tested over a synthetic dataset, 
ensuring reproducibility and validation against a known benchmark. Then the proposed performance 
evaluation procedure is applied to a noon report dataset. The results identify vessel speed variability as 
an intrinsic source of error of noon reports, and show that by omitting these noon reports, it is possible 
to conduct an accurate performance evaluation of a vessel. 
 
Symbols 
 

Ae/Ao Expanded blade area ratio 
D Propeller diameter 
J Advance coefficient 

Joq Zero-torque advance ratio 
Jot Zero-thrust advance ratio 
KQ Torque coefficient 
KQo Zero-speed torque coefficient 
kq Curvature parameter of the torque closed-form equation 
KT Thrust coefficient 
KTo Zero-speed thrust coefficient 
kt Curvature parameter of the thrust closed-form equation 
n Propeller rotation rate 

P/D Pitch to diameter ratio. 
PD Delivered power 
PE Effective power 
PS Shaft Power 
Q Torque 

Rn Reynolds number 
RT Total resistance of the hull when towed 
R2 Coefficient of determination 
T Propeller thrust 
t Thrust deduction fraction 
V Ship speed 

VA Propeller advance speed 
w Taylor wake fraction 
Z Number of propeller blades 

ηo Propeller efficiency in open water 
ηR Relative rotative efficiency 
ηS Shafting efficiency 
ρ Mass density of fluid 
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1. Introduction 
 
In January 2014, the International Maritime Organization (IMO) introduced amendments to MARPOL 
Annex VI “Regulations for the prevention of air pollution from ships”, IMO (2009), to quantify the ratio 
of the environmental costs to the transport capacity-mile achieved by ship through the mandatory Energy 
Efficiency Design Index (EEDI) for new ships, and Ship Energy Efficiency Management Plan (SEEMP) 
for all ships. 
 
In parallel, the shipping industry nowadays operates in an economic sphere in which the markets of the 
goods transported, as well as the particularities of the shipping markets, determine operating profiles, 
costs and prices, Lindstad et al. (2013). In addition, strategic investments oriented to increase fuel 
efficiency face the intricacies of the interactions between ship owner, charterer, and ship manager, 
Agnolucci et al. (2014). 
 
The increase of voyage costs as a percentage of revenue, either due to the rise of fuel costs or the 
reduction of freight rates due to the overcapacity of ships, makes fuel efficiency to become a key element 
in the ability of a ship owner to remain competitive. Thus, operational decisions by ship owners and 
managers trend towards fuel reduction. 
 
To realize savings, assess investment risks and remain competitive in tough financial and regulatory 
times, changes in performance must be quantified for their conversion to a monetary impact. As 
described by Armstrong (2013), quantification is a significant aspect of the development of optimization 
initiatives. 
 
The arrival of data acquisition systems and improvement of sensor accuracy provides large amounts of 
operational vessel sailing data to stakeholders, already incentivized due to fuel costs and international 
regulation, to find ways to reduce operational costs by increasing vessel efficiency. 
 
However, a significant share of the world fleet still relies on Noon Reports data acquisition systems. 
Noon reports are a vessel data collection system in which the captain submits a daily report detailing the 
fuel consumption and other relevant parameters that reflect the ship operational profile over the previous 
24 hours. The uncertainty related to the manual entry round-off error in these reports is accepted as an 
impassable barrier to perform any meaningful performance analysis. However, it will be shown that a 
source of error in the noon reports data happens due to the loss of information sustained by submitting 
simple averages as aggregated measures of vessel speed and propeller revolutions. 
 
2. State of the art of vessel performance modeling 
 
According to ISO 19030, ISO (2016), vessel performance refers to the relationship between the 
condition of hull and propeller, and the power required to move the ship at a given speed. A 
straightforward approach to characterize this relationship is to somehow control all the influential 
variables: draft, trim, weather, etc. which could be done in the following ways: 
 

1. Sea trial tests. Sea trials at specific range of speeds and loading conditions produce accurate 
results, which are easy to analyze and interpret. Both ITTC (2012) and ISO 15016, ISO (2015), 
provide sea trial guidelines. Even though the latter provides additional corrections for resistance 
due to wind, waves, depth, and water density and temperature, they are fully compatible with each 
other, Strasser et al. (2015). Sea trials for ship performance evaluation are advocated by Bazari 
(2007) and by hull and propeller performance monitoring companies. However, sea trials are 
disruptive, costly and time-consuming activities, Munk (2006).  

2. Normalization. Normalization implies correcting each influential variable: wind, waves, draft and 
water depth to a baseline by employing a model that quantifies the expected shaft power for all 
operational conditions. The main problem of this approach is that the model used for the 
corrections may lead to uncertainties that arise from incorrect model functional form or model 
parameters due to either omitted variables or unknown effects. 
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3. Data filtering. Filtering implies decimating the dataset, eliminating the data afar from reference 
conditions. The filtering approach is easy to implement and interpret, Flikkema (2013), as no 
assumptions are made regarding the inner consistency of the data. However meaningful data 
might be lost, and longer evaluation periods are required to collect adequate volumes to infer 
statistically significant results. 

 
Current approaches to ship performance modelling can be broadly categorized into theoretical, statistical 
and hybrid methods: 
 
1. Theoretical Models. Theoretical models are based on model tests that determine calm water 

resistance, on top of which the added resistance due to wind, waves, current, ice, and fouling is 
considered. The calm water resistance is the sum of frictional, residual and air resistance. A standard 
model-ship correlation line, ITTC’57, accounts for scale effects. The exact total resistance 
calculation method is outlined in the 1978 ITTC Performance Prediction Method. Hansen (2010) 
includes theoretical models for added resistance in wind, waves, steering and shallow water. Eljart 
(2006) includes the effect of sea state, wind, course-keeping and shallow water. Hansen (2010) 
corrects for wind/weather to calculate the power demand at a reference speed and draft to quantify 
the fouling effect. Also, there are some semi-empirical models, acceptable from an initial design 
perspective, such as those by Holtrop and Mennen (1982), Guldhammer and Harvald (1965), 
Hollenbach (1998) and Gertler (1954).  
However, the underlying formulae in all theoretical models have assumptions and associated 
uncertainties. Logan (2011) indicates that many of the theoretical models that measure the ship’s 
resistance remain un-validated in the scenario in which they are applied. Also, the hull and propeller 
fouling create difficulties for validating models, as each added resistance cannot be attributed to its 
source. The weather conditions limit opportunities for validation since calm conditions are needed. 
Further, full validation requires a large dataset that represents a wide range of ship operating 
conditions which may take many years to accumulate. There are as well inconsistencies surrounding 
which specific added resistance factors should be included. And there is no described method that 
accounts for interaction effects between each component of added resistance. 

2. Statistical and Machine Learning Models. Pedersen and Larsen (2009) describe methods of predict-
ing ship propulsion power, and they compare the prediction accuracy of artificial neural networks 
(ANN) and regression models. They concluded that ANNs successfully predict propulsion power, 
yet they also find validation errors insensitive to different combinations of input variables. Petersen 
et al. (2011a) compare gaussian processes (GP) to ANNs predicting fuel consumption and speed 
from a set of measured features. Petersen et al. (2012) implement a time-delay neural network to 
predict the response of speed, trim, draught, and heading to a change in a control variable (pitch, 
rudder angle, current, headwind and crosswind). 
Brandsaeter and Vanem (2018) applied regression models to predict ship’s speed using a set of 18 
vessel parameters collected from high-frequency sensors over 3 months. The goal of outperforming 
the Admiralty coefficient formula (𝐶𝐴𝐷𝑀 = Δ

2

3𝑉3/𝑃𝑆) was not achieved for the complete range of 
operational speeds. Perera and Mo (2016,2018) proposed a three-steps procedure for operational 
data processing: sensor faults detection, data classification and data compression using Principal 
Components Analysis and Gaussian Mixture models, but no quantitative metrics were published. 
Ahlgren and Thern (2018) relied on an unsupervised machine learning algorithm to predict ship fuel 
consumption. Their best performing model achieved accuracy similar to previous researchers but 
with lower number of used features. Soner et al. (2018) developed ship propulsion models based on 
shrinkage models such as Ridge and Lasso over high-frequency data. They utilized the same dataset 
as Petersen et al. (2012) and reported similar accuracy. 
Wang et al. (2018) also uses a Lasso regression to model the FOC of containerships from a dataset 
that included 97 vessels, significantly improving the accuracy of predictions. Gkerekos et al. (2019) 
developed a three-step process: data pre-processing, the training of a family of regression models 
and selection of the best performing over the test set. 
Farag and Olçer (2020) combined high frequency data with weather data with an ANN and a multi-
regression model to predict a VLCC tanker’s break power and specific fuel oil consumption, 
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achieving high accuracy (99.6%) predicting the dataset used to train the model. Gkerekos and 
Lazakis (2020) combined a deep-neural network prediction model with a weather routing algorithm. 
Anomalies in the ship dataset were filtered by applying a ±3σ cut-off value in each parameter.  
Coraddu et al. (2017) used random forests as feature selection strategy. Coraddu et al. (2019a) 
blend auto-logged and AIS data from a research vessel to train a Support Vector Machines and k-
nearest neighbors to classify the vessel’s hull and propeller condition as “clean” or “fouled”. 
Coraddu et al. (2019b) used a large dataset obtained from on-board sensors of two Handymax 
chemical/product tankers to develop the ships’ digital twin with Neural Networks with the goal to 
estimate the speed loss due to marine fouling, outperforming the ISO 19030 standard approach.  
Aldous (2015) and Themelis et al. (2018) compare data from noon reports (NR) to continuous 
monitoring (CM) data, concluding that there is a significant reduction of uncertainty by using CM. 
Statistics and machine learning models make it difficult to detect the significance of input variables 
and to understand the inner consistency between parameters. Also, these approaches require the 
dataset to be an unbiased sample, and this seldom happens, because operational constraints produce 
preferred speeds, drafts, and trims in vessel operational sailing datasets. 

3. Hybrid Models. Telfer (1926) assumes a linear relationship between the torque coefficient and the 
slip, and proposes the Generalized Power Diagram (GPD) which relates power, ship speed, propeller 
revolutions and slip, for a particular wake fraction in one diagram. The generalized power diagram 
can be derived either from speed trials, Telfer (1926), Townsin et al. (1975), or propeller open-water 
characteristics from model tests, Telfer (1926), Garg (1972). Fig.1 shows an example of a GPD for 
a cargo liner for shaft power, slip, ship speed and propeller revolutions for a wake fraction of 0.22. 
Journée et al. (1987) developed a hybrid model of a ship’s fuel consumption. Measured signals were 
used to adjust the coefficients of the hydrodynamic model over various draft, trim and speed 
combinations in calm sea, to predict vessel speed, power, and fuel consumption. Predictions were 
found to be poor in bad weather conditions assumed due to inaccurate weather measurements.  
Munk (2006) describes a commercial model that predicts hull fouling using weekly recordings of 
performance data taken with constant navigation, calm weather, and controlled draft. The added 
resistance due to fouling was obtained by comparing the observed values and the model output. The 
model is based on first principles and approximation formulae with empirical constants, although 
accuracy of results was not disclosed.  
Leifsson et al. (2008) developed a hybrid model that integrates hydrodynamic constraints with a 
feed forward neural network to predict the fuel consumption and speed of a container vessel. They 
compare and report the advantage of using a hybrid model over a theoretical-only model for fuel 
consumption predictions during validation in extreme environmental conditions, although it is noted 
that their theoretical model does not include the effect of added resistance in waves. Also, the 
theoretical model seems to be superior over the range of operating values, which suggests that its 
performance could have been improved in the more extreme environmental conditions if wave data 
and a theoretical wave model were included. Also, the data is collected over a narrow vessel speed 
variance, which may have limited the network training and have affected the comparisons between 
methods. 

 
3. The open-water propeller 
 
The open-water propeller refers to a propeller working in uniform inflow, independent of the influence 
of the ship to which it may be fitted. Open-water tests allow to take measurements of thrust (T) and 
torque (Q) taken for a range of speeds of advance (VA) and propeller revolutions (n) of a propeller 
running in undisturbed water. The recorded thrust and torque are then nondimensionalized applying the 
relationships shown in Eqs. (1) and (2). 

 KT =
T

ρ ⋅ n2 ⋅ D4
 (1) 

 KQ =
Q

ρ ⋅ n2 ⋅ D5
 (2) 

D is the diameter of the propeller and ρ is the mass density of the water. The open-water performance 
of the propeller can be computed using Eq.(3). 
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 ηo =
J ⋅ KT

2 ⋅ π ⋅ KQ
 (3) 

J is the advance ratio: 

 J =
VA

nD
 (4) 

Now, let us define KTo as the zero-speed thrust coefficient or the thrust coefficient KT when the value 
of the propeller advance ration J is zero (KTo = KT(J = 0)), and KQo as the zero-speed torque 
coefficient or the torque coefficient KQ when the value of the propeller advance ratio J is zero (KQo =

KQ(J = 0)). We can further define the coefficient Jot as a zero-thrust propeller advance ratio or the 
propeller advance ratio J such that the thrust developed by the propeller is zero (Jot = J(KT = 0)), and 
Joq as the zero-torque propeller advance ratio or the propeller advance ratio J such that the torque 
delivered to the propeller is zero (Joq = J(KQ = 0)). Since KQ is a smooth continuous curve connecting 
the points (Joq, 0) and (0, KQo), let us express KQ as 

 KQ = KQo ⋅ (1 −
f(J)

f(Joq)
) (5) 

The Taylor Series expansion of f(J) around a point “a” such that it would have been neglected the terms 
of order J2 and higher, would give a straight line connecting the points (Joq, 0) and (0, KQo), 

 KQ = KQo ⋅ (1 −
f(a) +

f ′(a)
1!

(J − a) +
f ′′(a)

2!
(J − a)2 + ⋯

f(a) +
f ′(a)

1! (Joq − a) +
f ′′(a)

2! (Joq − a)
2

+ ⋯
) ≈ KQo ⋅ (1 −

J

Joq
) (6) 

from where it is apparent that a = 0 and f(0) = 0. At the same time, the Eq.(5) can be rewritten as: 

 KQ = KQo −
KQo

f(Joq)
f(J) (7) 

such that the first derivative of KQ respect to J is 

 
dKQ

dJ
= −

KQo

f(Joq)

d

dJ
 f(J) (8) 

and since 

 −
KQo

f(Joq)
=

KQ − KQo

f(J)
 (9) 

then 

 
dKQ

dJ
=

KQ − KQo

f(J)
⋅

d

dJ
 f(J) (10) 

From where it seems to be possible expressing the first derivative of KQ as a function of KQ: 

 
dKQ

dJ
= f(KQ) (11) 

such that f(KQ) could be approximated by a Maclaurin series expansion, 

 
dKQ

dJ
= f(KQ) = f(KQ = 0) +

f′(KQ = 0)

1!
⋅ KQ +

f ′′(KQ = 0)

2!
⋅ KQ

2

+ ⋯ 
(12) 

Then, the simplest approximation of dKQ

dJ
= f(KQ) could be of dKQ

dJ
 approximately equal to a constant 

value c1, 

 
dKQ

dJ
≈ c1 (13) 

Solving for KQ by integrating the Eq.(13) would lead to expressing KQ as the straight line connecting 
the points (Joq, 0) and (0, KQo) mentioned before. It follows that the simplest non-trivial approximation 
for dKQ

dJ
 could be that of linear dependency with KQ: 

 
dKQ

dJ
≈ c1 + c2 ⋅ KQ (14) 
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Solving for KQ by integrating Eq.(14) yields: 

 KQ = c3 ⋅ ec2⋅J −
c1

c2
 (15) 

c1, c2 and c3 are constants and combining Eq.(15) with Eq.(5) leads to: 

 KQo ⋅ (1 −
f(J)

f(Joq)
) = c3 ⋅ ec2⋅J −

c1

c2
 (16) 

To satisfy Eq.(16), the following holds: (1) KQo = c3 −
c1

c2
; (2) Joq =

1

c2
⋅ ln (

c1

c2⋅c3
); and (3) kq = c2, 

thus f(J), 
 f(J) = ekq⋅J − 1 (17) 

which yields the following expression for KQ: 

 KQ = KQo ⋅ (1 −
ekq⋅J − 1

ekq⋅Joq − 1
) (18) 

Similarly, the thrust coefficient (KT) can be represented by the following expression: 

 KT = KTo ⋅ (1 −
ekt⋅J − 1

ekt⋅Jot − 1
) (19) 

And in view of Eqs.(18) and (19), the efficiency of the open-water propeller (ηo) can be expressed as  

 ηo =
J

2π
⋅

KTo

KQo
⋅

(ekq⋅Joq − 1)

(ekt⋅Jot − 1)
⋅

(ekt⋅Jot − ekt⋅J)

(ekq⋅Joq − ekq⋅J)
 (20) 

 
4. Wageningen B-Series Propellers 
 
The Wageningen B series is a general purpose, fixed pitch, non-ducted propeller series extensively used 
for analysis and design. The series was presented by Troost (1937,1939,1951) in the late 1940s. 
Reviewing early results, inconsistencies due to the scale effects from different model tests were 
observed, and complete re-appraisal of the series was conducted by van Lammeren et al. (1969). Table 
I shows the extent of the series in terms of a blade number versus blade area ratio. 
 

Table I: Wageningen B series – blade number versus blade area ratio 
𝑍 Blade area ratio AE/AO 
2 0.3  0.38             
3  0.35   0.5   0.65   0.80     
4   0.40   0.55   0.70   0.85  1.00  
5    0.45   0.60   0.75   0.90  1.05 
6     0.5   0.65   0.80   0.95  
7      0.55   0.70   0.85    

 
Oosterveld and Oossanen (1975) reported a multiparametric regression analysis of the original open-
water test data of 120 propeller models, in which the open-water characteristics of the series are 
represented at a Reynolds number 2 ⋅ 106 by the Eqs.(21) and (22). 

 KT = ∑ Cn ⋅ (J)sn ⋅ (
P

D
)

tn

⋅ (
Ae

Ao
)

un

⋅ (Z)vn

39

n=1

 (21) 

 KQ = ∑ Cn ⋅ (J)sn ⋅ (
P

D
)

tn

⋅ (
Ae

Ao
)

un

⋅ (Z)vn

47

n=1

 (22) 

Table II shows the open-water characteristics (J, KT, KQ) of the propeller B5-75, P/D = 1.0 generated 
with the B-Series polynomials for Rn = 2 ⋅ 106. Regressing equations (18)-(20) to the open-water 
propeller data J, KT and KQ set of values listed in Table II leads to the fitting parameters KTo, Jot, kt, 
KQo, Joq, and kq used to calculate the estimated values KT̂ and KQ̂ shown in Table III, achieving the 
goodness-of-fit characterized by the determination coefficients R2(KT), R2(KQ) and R2(ηo) shown in 
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Table III. Fig.1 shows the J, KT and KQ values generated using the polynomials and the Eqs.(18)-(20) 
fitting curves. 
 

Table II: Open-water characteristics (J, KT, KQ) of the propeller B5-75, P/D = 1.0 

J KT KQ KT̂ KQ̂ 
0 0.468994 0.068961 0.473452 0.069412 

0.1 0.441187 0.065404 0.440648 0.065361 
0.2 0.408566 0.06126 0.405672 0.060977 
0.3 0.371608 0.056558 0.368381 0.056234 
0.4 0.330794 0.051328 0.328622 0.051102 
0.5 0.286604 0.045598 0.28623 0.045548 
0.6 0.239516 0.039399 0.241032 0.039539 
0.7 0.190011 0.03276 0.192842 0.033037 
0.8 0.138567 0.025709 0.141462 0.026001 
0.9 0.085666 0.018277 0.086681 0.018387 
1.0 0.031785 0.010493 0.028273 0.010149 

 

 
Fig.1: B5-75, P/D=1.0, KT, KQ, and ηo values and fitting expressionsKT̂, 

10KQ̂, ηô 

Table III 
KTo 0.4735 
Jot 1.0462 
kt 0.6410 

KQo 0.0694 
Joq 1.1133 
kq 0.7886 

R2(KT) 0.999651 
R2(KQ) 0.999804 
R2(ηo) 0.997127 

 
  

 

 
This process was repeated for each one of the propellers with number of blades and blade aspect ratio 
listed in Table I, for pitch ratios in the range (0.5, 0.6, … , 1.4). Fig.2 shows the histograms of the 
resulting coefficients of determination obtained by fitting the Eqs.(18) - (20) to the KT, KQ and ηo curves 
obtained during the simulation.  

 

 
Fig.2: Histograms of R2 obtained fitting Eqs.(18)-(20) to the Wageningen B-Series simulated propellers 

at Rn = 2 ⋅ 106 
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5. Full-scale vessel 
 
The effect of moving the propeller from an open-water scenario to a behind the hull scenario is typically 
quantified through the inclusion of the wake fraction (w), the thrust deduction coefficient (t), and the 
rotative relative efficiency (ηR). 
 
The wake fraction coefficient (w) accounts for the loss of speed of the water due to the presence of the 
hull at the propeller position. The wake is the combination of the boundary layer associated with skin 
friction, the flow velocities occasioned by the streamlined form of the ship and the orbital velocities of 
the waves created by the ship. If the ship speed is V and the average velocity of the water relative to the 
hull at the propeller position is VA, the wake speed, V − VA, leads to the definition of the non-dimensional 
wake fraction coefficient as w = 1 − VA/V. 
 
The action of the propeller causes the water in front of it to be sucked towards the propeller. This results 
in extra resistance on the hull. The thrust force (T) on the propeller must overcome both the ship’s 
towing resistance (RT) and the extra resistance on the hull due to the sucking action of the propeller. 
The difference between the thrust force (T) and the towing resistance (RT), T − RT, corresponds to a 
loss of thrust. Thus, a non-dimensional thrust deduction coefficient (t) can be defined as t = 1 − RT/T. 
 
Since water closes in around the stern, the flow through the propeller disc will not be the same 
everywhere and will not, in general, be parallel to the shaft line. These effects can be combined and 
expressed as a relative rotative efficiency (ηR) as ηR = ηB/ηo, where ηB is the behind-the-hull propeller 
efficiency and ηo is the open water propeller efficiency. Both ηB and ηo express a ratio between the 
thrust power (PT) and the delivered power (PD). The thrust power (PT) is the power developed by the 
thrust (T) of the propeller at the speed of advance (VA) (PT = T ⋅ VA), and the delivered power (PD) is 
the power absorbed by the propeller. 
 
The power measured in the shaft is the shaft power (PS) delivered to the shafting system by the propelling 
machinery (PS = PD/ηS), where the shafting efficiency (ηs) is a measure of the power lost in shaft 
bearings and a stern tube. The effective power demand (PE) needed to tow a ship at a constant speed V 
(PE = RT ⋅ V). Thus, shaft power (PS) and effective power (PE) can be expressed as shown in equations 
(45) and (46) respectively. 

 PS =
1

ηS ⋅ ηR
⋅ 2 ⋅ π ⋅ ρ ⋅ n3 ⋅ D5 ⋅ KQ (23) 

 PE = (1 − t) ⋅ ρ ⋅ n2 ⋅ D4 ⋅ V ⋅ KT (24) 
And in view of Eqs.(18) and (19) providing mathematical expressions for KQ and KT, it follows: 

 PS =
1

ηs ⋅ ηR
⋅ 2 ⋅ π ⋅ ρ ⋅ n3 ⋅ D5 ⋅ KQo ⋅ (

ekq⋅Joq − ekq⋅
(1−w)⋅V

n⋅D

ekq⋅Joq − 1
) (25) 

 PE = (1 − t) ⋅ ρ ⋅ D4 ⋅ V ⋅ n2 ⋅ KTo ⋅ (
ekt⋅Jot − ekt⋅

(1−w)⋅V
n⋅D

ekt⋅Jot − 1
) (26) 

Telfer’s Generalized Power Diagram (GPD) can be seen now as a polynomial approximation of the 
surface represented in Fig.3. Telfer predicts a GPD for each value of wake coefficient. Eq.(25) indicates 
that there is a shaft power surface for each pair (w, ηR). A few examples illustrate the applicability of 
Eqs.(25) and (26). Figs.5-9 show the open-water characteristics of a few propellers used to test several 
Series 60 Models, Todd (1964). Fig.10 shows the open-water characteristics of the propeller KP458, 
http://www.simman2008.dk/PDF/MOERI%20propeller%20for%20KVLCC's.zip, used to test the 
KRISO Very Large Crude-oil Carrier 2 (KVLCC2), Seo et al. (2020). 
 
Regressing Eqs.(18)-(20) to the open-water propeller data J, KT and KQ selected set of values listed in 
Tables IV-IX leads to the fitting parameters KTo, Jot, kt, KQo, Joq, and kq achieving the goodness-of-fit 
characterized by the determination coefficients R2(KT), R2(KQ), R2(PS) and R2(PE) shown in Table X.  

http://www.simman2008.dk/PDF/MOERI%20propeller%20for%20KVLCC's.zip
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Fig.3: PS surface from Eq (25) assumed w=0.319 and ηR=1.018; and Series 60 Models 4221, 4280, 

4281, 4282 published data 
 
6. Estimation of the vessel performance evolution over time 
 
Vessel performance evaluation tries to quantify the speed reduction or increase of the power demand 
that results from the in-service degradation of the vessel. In a general sense, it can be assumed that the 
wake fraction coefficient depends on the vessel sailing parameters. It also makes sense that the 
progressive increase of frictional resistance due to the biofouling growth in the hull must have some 
effect in the set of all the possible values of the wake fraction coefficient. Should this effect happen 
uniformly over the whole set of possible values of w, then the time evolution of the average of the wake 
fraction coefficient (w̅) must capture the increase of hull frictional resistance over time. 
 
In other words, it is expected that the average of all the possible wake fraction values of a smooth hull 
to be smaller than the average of all the wake fraction values of an otherwise same hull but with 
significant higher level of roughness. Similar reasoning can be applied to the relative rotative efficiency, 
where the time evolution of the average of the relative rotative efficiency (ηR̅̅ ̅) could be seen as a 
manifestation of the variability over time of the propeller efficiency range. 
 
Zamora (2021) describes the following method to estimate the evolution of the performance of a vessel 
over time: given a time series of operational vessel sailing data, a series of values (ηR̅̅ ̅, w̅)i can be 
obtained by iteratively applying regression analysis of the Eq.(27) over a moving window of data along 
the time series.   
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Fig.4: PE surface from Eq.(26) assumed t=0.1977; and Series 60 Models 4221, 4280, 4281, 4282 

published data 
 
The evolution of the values (ηR̅̅ ̅, w̅)i captures the average time degradation of the set of values (ηR, w)i. 

 PŜ =
1

ηs ⋅ ηR̅̅ ̅
⋅ 2 ⋅ π ⋅ ρ ⋅ n3 ⋅ D5 ⋅ KQo ⋅ (

ekq⋅Joq − ekq⋅
(1−w̅)⋅V

n⋅D

ekq⋅Joq − 1
) (27) 

Then, given pre-defined nominal conditions (no, Vo), the calculation of the vessel power demand at 
(no, Vo) for each pair (ηR̅̅ ̅, w̅)i would yield the evolution over time of the vessel power demand as if the 
vessel had continuously sailed at the nominal conditions (no, Vo), thus reflecting the evolution over time 
of the performance of the vessel. 
 
As a simple but illustrative example of the application of this patented method, consider a synthetic 
dataset of 8740 data points (each point corresponding to one hour along a year). A variable “ht” can be 
defined as an incremental counter between 1 and 8740. For this example, it will be assumed that the 
vessel speed, expressed in knots, changes daily following the equation 
 Vsynth = 15 + 7 ⋅ (−1)⌊

3
400

⋅ht⌋ (28) 
The draft, in percent displacement, changes weekly following the equation, 

 Draftsynth = 60 + 40 ⋅ (WN − 2 ⌊
WN

2
⌋) (29) 

Where “WN” is calculated as 

 WN = 1 + ⌊
DN

14
⌋ (30) 



191 

 
Fig.5: Propeller DTMB 3376 open-water 

characteristics, Moss (1963) 

Table IV 
J KT KQ 
0 0.4570 0.06990 

0.1 0.4286 0.06626 
0.2 0.3990 0.06275 
0.3 0.3662 0.05865 
0.4 0.3326 0.05392 
0.5 0.2958 0.04885 
0.6 0.2596 0.04360 
0.7 0.2203 0.03779 
0.8 0.1790 0.03198 
0.9 0.1348 0.02548 
1.0 0.0889 0.01841 
1.1 0.0413 0.01100 

 

 

 
Fig.6: Propeller DTMB 3378 open-water 

characteristics, Moss (1963) 

Table V 
J KT KQ 
0 0.48595 0.07214 

0.1 0.4537 0.06819 
0.2 0.4191 0.06387 
0.3 0.3845 0.05936 
0.4 0.3455 0.05447 
0.5 0.303 0.04923 
0.6 0.26176 0.04357 
0.7 0.21887 0.03758 
0.8 0.1731 0.03128 
0.9 0.1273 0.02452 
1.0 0.0779 0.01706 
1.1 0.02599 0.00905 

 

 

 
Fig.7: Propeller DTMB 3380 open-water 

characteristics, Moss (1963) 

Table VI 
J KT KQ 
0 0.4762 0.07568 

0.1 0.4481 0.07127 
0.2 0.416 0.06631 
0.3 0.3807 0.06105 
0.4 0.3425 0.05591 
0.5 0.3043 0.05052 
0.6 0.2636 0.04488 
0.7 0.2241 0.03902 
0.8 0.1821 0.0329 
0.9 0.13806 0.02621 
1.0 0.09206 0.01941 
1.1 0.04419 0.01231 
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Fig.8: Propeller DTMB 3379 open-water 

characteristics, Moss (1963) 

Table VII 
J KT KQ 
0 0.4366 0.06171 

0.1 0.4118 0.05939 
0.2 0.384 0.05654 
0.3 0.3516 0.05283 
0.4 0.315 0.04852 
0.5 0.2767 0.0436 
0.6 0.2364 0.0385 
0.7 0.1949 0.03305 
0.8 0.1529 0.0272 
0.9 0.10898 0.02108 
1.0 0.06067 0.01404 
1.1 0.00956 0.00633 

 

 

 
Fig.9: Propeller DTMB 3377 open-water 

characteristics, Moss (1963) 

Table VIII 
J KT KQ 
0 0.3856 0.04877 

0.1 0.3604 0.04682 
0.2 0.3329 0.04412 
0.3 0.3013 0.0408 
0.4 0.266 0.03695 
0.5 0.2273 0.03267 
0.6 0.1861 0.02797 
0.7 0.146 0.02295 
0.8 0.10086 0.01702 
0.9 0.05253 0.01032 
1.0 0.00077 0.00276 

 

 

 
Fig.10: Propeller KP458 open-water characteristics 

Table IX 
J KT KQ 
0 0.3183 0.0311 

0.10 0.2843 0.02932 
0.20 0.2493 0.02682 
0.30 0.2132 0.02388 
0.40 0.1757 0.02067 
0.50 0.1365 0.01721 
0.60 0.0951 0.01344 
0.70 0.0511 0.00915 
0.75 0.028 0.00671 
0.80 0.004 0.00402 
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Table X 
Model Prop. KQo Joq kq KTo Jot kt R2(KQ) R2(KT) R2(PS) R2(PE) 
4210 3378 0.072 1.2082 0.6835 0.4872 1.1486 0.4307 0.99999 0.99995 0.99992 0.99935 
4213 3379 0.062 1.1732 0.9210 0.4407 1.1165 0.5654 0.99954 0.99975 0.99983 0.99996 
4214 3377 0.049 1.0331 1.2231 0.3880 1.0000 0.7115 0.99982 0.99984 0.99997 0.99993 
4215 3378 0.072 1.2082 0.6835 0.4872 1.1486 0.4307 0.99999 0.99995 0.99990 0.99974 
4218 3380 0.076 1.2654 0.4292 0.4791 1.1879 0.4017 0.99996 0.99989 0.99991 0.99987 
4221 3376 0.070 1.2327 0.7298 0.4575 1.1810 0.5122 0.99992 0.99999 0.99994 0.99912 
4256 3380 0.076 1.2654 0.4292 0.4791 1.1879 0.4017 0.99997 0.99989 0.99989 0.99989 
4260 3377 0.049 1.0331 1.2231 0.3880 1.0000 0.7115 0.99982 0.99984 0.99999 0.99999 
4272 3378 0.072 1.2082 0.6835 0.4872 1.1486 0.4307 0.99999 0.99995 0.99987 0.99967 
4280 3376 0.070 1.2327 0.7298 0.4575 1.1810 0.5122 0.99992 0.99999 0.99967 0.99889 
4281 3376 0.070 1.2327 0.7298 0.4575 1.1810 0.5122 0.99992 0.99999 0.99962 0.99871 
4282 3376 0.070 1.2327 0.7298 0.4575 1.1810 0.5122 0.99992 0.99999 0.99970 0.99921 

KVLCC2 KP458 0.031 0.8765 1.1326 0.3174 0.8107 0.4702 0.99979 0.99997 0.99803 0.99034 
 

 
The values of propeller revolutions, wake fraction, relative rotative efficiency, and shaft power demand 
are obtained by matching the synthetic speed and draft values obtained before to the Series 60 Model 
4280 data. 
 
Then, to simulate the progressive increase of power demand due to biofouling, the synthetic shaft power 
demand is multiplied by a coefficient that starts at a value of 1 and increases linearly over time. An event 
such as a hull cleaning, propeller polishing or the application of a new coating during dry dock, is 
simulated by dropping the biofouling coefficient back to a value of 1, before increasing over time once 
more. For example, if the vessel begins operation on January 1 having a biofouling coefficient with a 
value of 1 and rises to a value of 1.02 by June 30, the vessel can be cleaned at the half year mark on July 
1 such that the biofouling coefficient drops back down to 1. Fig.11 shows the time evolution of the 
biofouling coefficient. 
 

 
Fig.11: Biofouling coefficient 

 
Fig.12 shows the resulting vessel synthetic speed (Vsynth), synthetic draft (Draftsynth), synthetic rate of 
propeller rotation (nsynth), and synthetic shaft power demand (PS,synth) with the biofouling coefficient 
already applied. 
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Fig.12: Synthetic dataset 

 
We can now specify the vessel nominal conditions as Vo = 20 knots = 10.3 m/s and no = 90 rpm =
1.5 Hz. Also, in this case, the size of the moving window is defined as 30 days. The first step is to take 
data within the first 30 days. An example of a first 30-day window, between January 1 and January 30, 
extracted from the synthetic dataset is provided in Fig.13. Using regression analysis, we can fit the 
Eq.(27) to the data selection over the 30-day window and obtain the fitting parameters ηR̅̅ ̅ and w̅. Then, 
the fitting parameters can be used to calculate the shaft power demand at the selected nominal sailing 
conditions. For example, if ηR̅̅ ̅ = 1.149 and  w̅ = 0.405, then, using Eq.(27): 

PS,i =
1

ηS ⋅ ηR,i̅̅ ̅̅̅
⋅ 2 ⋅ π ⋅ ρ ⋅ no

3 ⋅ D5 ⋅ KQo ⋅ (1 −
e

kq
(1−wi̅̅ ̅̅ )Vo

noD
 
− 1

ekqJoq − 1
) = 

=
1

1.0 ⋅ 1.149
⋅ 2 ⋅ π ⋅ 1025 ⋅ 1.53 ⋅ 7.3155 ⋅ 0.070 ⋅ (1 −

e0.730⋅
(1−0.405)⋅10.288

1.5⋅7.315
 − 1

e0.730⋅1.233 − 1
) = 18.2 MW 

The 30-day moving window can then be advanced by 1 day, repeating the process in the data range 
January 2 – January 31, and so on. The process finalizes when the 30-day moving window arrives at the 
end of the dataset.  We can interpret the series of values PS,i as the shaft power demand that would have 
been obtained if the vessel had continuously sailed at the fixed conditions of Vo = 20 knots and no =
90 rpm. 
 

 
Fig.13: Time evolution of vessel performance  
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Fig.13 shows the series of values PS,i obtained in the example, as well as the biofouling coefficient 
previously defined. The graph shows that the series of values PS,i reflect changes in the in-service 
degradation of the hull, successfully identifying the hull cleaning event that occurred on July 1, the 
maximum increase of shaft power demand, and the hull degradation rate. 
 
7. Intrinsic error of Noon Reports data collection systems 
 
Let us consider a KVLCC2 vessel sailing at 16.5 kn for 12 h, and at 12.5 kn for another 12 h. The captain 
would submit a Noon Report summarizing the performance metrics of the 24 h reporting period as 
follows: 
 

- Average vessel speed: 14.5 kn 
- Average propeller rpm: 67.76 rpm 
- Average shaft power demand: 17.324 MW 
- Main Engine fuel consumption: 74.8 mt 

 
For simplicity, it is assumed that ηS = 1 and SFOC = 180 g/kWh. If the same vessel had sailed with 
same draft, trim, and weather conditions at 14.5 kn during 24 h, the fuel consumption would have been 
69.1 mt, and the reported 74.8 mt would have been interpreted as 8.2% higher than expected. 
 
If the sailing speed pattern during the reporting period happened due to justified operational constraints, 
it cannot be said that the vessel underperformed with an 8.2% fuel consumption increase above the 
expected baseline. Moreover, it cannot be said that the Noon Report was wrong. However, it is apparent 
that this noon report doesn’t reflect the baseline performance of the vessel, and it should be omitted 
when evaluating the performance of the vessel. 
 
This simple example illustrates that reporting simple average values of vessel speed, propeller rpm, and 
shaft power demand produces unreliable noon report data whenever the vessel experiences high speed 
variability during the reporting period. 
 
A more rigorous proof can be derived from Eq.(25). Let us consider a series of values PS,i, Vi, and ni, 
1 ≤ i ≤ 24, one data-point per hour during the 24-h reporting period, during which it is assumed that 
the draft, trim, and weather sailing conditions did not change. Each data-point will verify the internal 
consistency captured by Eq.(25): 

 PS,i =
1

ηs ⋅ ηR
⋅ 2 ⋅ π ⋅ ρ ⋅ ni

3 ⋅ D5 ⋅ KQo ⋅ (
ekq⋅Joq − e

kq⋅
(1−w)⋅Vi

ni⋅D

ekq⋅Joq − 1
) (31) 

Reporting average values as summarizing metrics of power, speed and rpm is sustained on the 
assumption that 

 PS̅ =
? 1

ηs ⋅ ηR
⋅ 2 ⋅ π ⋅ ρ ⋅ n̅3 ⋅ D5 ⋅ KQo ⋅ (

ekq⋅Joq − ekq⋅
(1−w)⋅V̅

n̅⋅D

ekq⋅Joq − 1
) (32) 

Which can happen if, and only if,  
V1 =⋅⋅⋅= Vi = ⋯ = V24 = V̅ 
n1 =⋅⋅⋅= ni = ⋯ = n24 = n̅ 

PS1
=⋅⋅⋅= PSi

= ⋯ = PS24
= PS̅ 

i.e., i.i.f. speed, rpm, and sailing conditions are kept constant during the reporting period. 
 
8. Vessel performance with Noon Reports data 
 
In section 6, a synthetic dataset of hourly values was created to illustrate the applicability of a 
performance evaluation method. This dataset was used to create a secondary synthetic dataset by 
calculating the average speed, rpm and shaft power demand at every 24 h period. Applying the vessel 



196 

performance evaluation procedure described in section 6 over this secondary synthetic noon reports 
dataset would yield Fig.15. Fig.16 shows that the noon reports covering periods with high vessel speed 
variability introduce a significant level of error, masking the actual baseline performance of the vessel. 
 

 
Fig.15: Noon Reports synthetic dataset 

 

 
Fig.16: Time evolution of vessel performance with Noon Reports synthetic dataset 

 
Fig.17 shows the synthetic noon reports dataset, in which the noon reports covering periods where the 
vessel experienced high speed variability have been omitted. Applying the vessel performance 
evaluation procedure described in section 6 over the dataset yields the Fig.18, which coincides with the 
expected vessel performance evolution over time. 
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Fig.17: Synthetic dataset of filtered Noon Reports 

 

 
Fig.18: Time evolution of vessel performance with Noon Reports selected data 

 

9. Conclusion 
 
Closed-form mathematical expressions were derived that allow expressing the shaft and effective power 
as a function of the open-water characteristics of a propeller, the vessel speed, propeller revolutions, 
propeller diameter, fluid density, wake fraction coefficient, thrust deduction fraction, shaft efficiency 
and relative rotative efficiency.  
 
The Series 60 and KVLCC2 model data was used to test the feasibility of these equations. The 
coefficients of determination obtained indicate that this mathematical model can be used to characterize 
the power demand of a full-scale vessel. Furthermore, a method was introduced to estimate the evolution 
of vessel performance over time such that it does not require knowledge of the maintenance history of 
the vessel. 
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A synthetic dataset was created using the Series 60 Model 4280 as a baseline reference. The baseline 
power demand was affected by a sawtooth waveform, thus replicating the effects of progressive 
performance degradation due to fouling as well as a hull cleaning event. Then, from this data, a 
secondary dataset was created, mimicking the noon reports that the captain would have submitted. Then 
the proposed performance evaluation procedure was used to identify vessel speed variability as an 
intrinsic source of error of noon reports, and show that by omitting these noon reports, it is possible to 
conduct an accurate performance evaluation of a vessel with noon reports as data collection system. 
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Abstract 
 
This joint article between D'Amico and GreenSteam will investigate speed optimization (SO) for the 
vessel Cielo di Cagliari. The SO problem consists of a given route, which is broken into stretches by 
the SO algorithm, and for each stretch, the algorithm finds the best speed to reduce the total fuel 
consumption – in this example we achieved a saving of 3.7% fuel. We will compare the propulsion 
model's influence on the results by comparing a classical naval architecture approach and a data-
driven machine learning approach. We will also compare the models' ability to predict the actual fuel 
consumption for voyages, and the impact of fouling and weather are also studied. 
 
1. Introduction 
 
Speed Optimization solves the problem of sailing from point A to point B in the most fuel cost-efficient 
way given the departure and arrival times, and possible other constraints. The primary way it can save 
fuel is to avoid bad weather, adverse currents, and other factors such as taking ECA zones into account. 
The problems include modeling the vessel's fuel consumption, weather forecasts, and the speed 
optimization algorithm. Weather forecasts include total sea currents, waves, and wind. The fuel 
consumption models can be independently developed, Coraddu et al. (2019), Petersen et al. (2011), 
Karagiannidis and Themelis (2021), for various applications, out of which SO is one of the most 
popular. Speed optimization algorithms are discussed further in the literature review section.  
 
The importance of SO application has gained momentum following the global efforts to reduce Green 
House Gasses (GHG) emissions and the strict targets set by IMO (MEPC 74, 75 and 76), the Sea Cargo 
Charter, and other initiatives as mentioned by IMO’s (2018) initial strategy on reduction of GHG 
emissions from ships, operational measures appeared as one of the prominent short-term measures to 
achieve them. They require minimum capital expenditures (in comparison to other measures) and can 
be implemented on every type of vessel without major modifications or time delays. However, in order 
to successfully implement these measures (i.e. Speed Optimization) and reduce emissions, it is crucial 
to develop accurate and sophisticated models and algorithms.  
 
Nevertheless, the race to reduce emissions is going to have many side effects on the competitiveness 
and the commercial benchmark of the ships worldwide. Ship managers or owners that demonstrate 
lower CO2 emissions will get higher ratings from IMO, as per the CII scheme. Inevitably, there will be 
incentives for the charterers to transfer cargo with more efficient and less emitting ships to demonstrate 
eco-friendly operations and increased sustainability of their business. In this context, speed optimization 
of every voyage could be considered as a competitive advantage or even as an industry standard.  
 
2. Literature Overview 
 
Speed Optimization is approached as a mathematical problem of optimization. Studies model the ship 
speed profile problem using an objective function that estimates the total fuel cost of the voyage with 
the constraints of the problem being the ETA and any intermediate deadlines that need to be met. The 
solution is found by minimizing the objective function while respecting the constraints. Variations 
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between different studies/approaches appear in the mathematical modeling i.e. the definition of the 
objective function and/or the constraints but also in the method selected for solving the optimization 
problem i.e. finding the local or global minima. 
  
However, the mathematical modelling of the optimization problem and its proper solution do not 
guarantee an effective SO application. The main source of uncertainty in SO applications has its roots 
in the assumed speed-consumption relation. The framework of SO is generic but to apply it successfully 
to each vessel it is essential to have a highly accurate ship-specific speed-consumption model that is 
incorporated in the objective function. Such a model needs to take into account all the parameters that 
influence the vessel's propulsion efficiency i.e. wind, waves, currents, temperature, hull and propeller 
condition, trim, draft etc. Only then, the minimization of the objective function will produce a 
realistically optimized speed profile that will allow the subject vessel to arrive on time and save fuel, 
hence reducing costs and emissions. 
  
Some examples of SO studies are listed here. Kim et al. (2016) suggests a speed optimizer for multiple 
ports based on a nonlinear mixed-integer program that can find optimal speed considering multiple time 
windows for each port. This work doesn't consider the optimal speed between ports concerning the 
weather. Psaraftis (2019) compares speed optimization and slow steaming, highlighting some problems 
with the latter. Yang et al. (2020) describes a speed optimization approach using a Genetic Algorithm. 
Their propulsion model uses STW instead of SOG to estimate the vessel's resistance and considers 
involuntary speed loss due to added resistance in wind and waves. 
 
3. GreenSteam Approach 
  
3.1 Modeling 
  
GreenSteam's ML model consists of a Bayesian model with prior knowledge about the physical system. 
In a Bayesian model, the posterior distribution for the model parameters and predictions are found using 
Bayes theorem. This way, the model can learn from operational data collected from the vessel and 
update its view. The statistical priors are defined using probability distributions, which can tell the 
model what reasonable values to begin with.  
 
The ML model can handle fouling as added fouling resistance, this in a Bayesian way, so for example, 
we can indicate to the model using the priors what we expect the fouling levels to be before the model 
sees any data. 
  
3.2 Speed Optimization Algorithm 
  
We define a route between points A and B by dividing it into legs, which are given as a number of 
waypoints. The route is broken into smaller stretches by the SO algorithm. Each stretch has a fixed 
distance for which the SO finds the optimal advice speed based on the optimal solution for the route 
respecting the ETA and other constraints on power and speed. The SO problem is solved using a 
Dynamic Programming approach, where the problem of reaching a point on the route using the least 
fuel can be broken into similar subproblems, resolving them recursively. 
 
4. Case Study 
  
Developing advanced algorithms for optimization and complex machine learning models is of limited 
value in the real world, unless validated with actual experiments. In the following case-study a D’Amico 
managed tanker, whose principal particulars are presented in Table I, is chosen to optimize her speed 
profile using GreenSteam’s advanced Speed Optimization service. Details of the live trial voyage are 
also given in Table II. 
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Table I: Ship Principal Particulars 

Ship Type Oil products tanker 

Year of Built 2018 

Summer Deadweight 74999 tons 

Length Over all  228 m 

Max Breadth 36 m 

Draft (laden) 11.6 m 

  
The scope of the case-study is to validate through a real-life trial the effectiveness of the algorithm and 
the ship propulsion model behind it. This was achieved by a close collaboration among three parties: 
owner (D’Amico), charterer, and provider (GreenSteam). For the subject voyage, the vessel is given 
specific speed advice daily from GS. The algorithm runs on updated weather forecast data every few 
hours and so the crew is requested to adjust the ship speed. The charter is providing the requested ETA 
to the next port of call.  
  

Table II:  Live Trial Voyage Details 

Start of Voyage leg Balboa, Panama Canal 

Date of Departure 12 June 2021 

End of Voyage leg Gwangyang, South Korea 

Date of Arrival 09 July 2021 

Total Distance 8,353 nm 

Loading Condition Laden 

 
  
5. Results 
  
The above-mentioned effectiveness of GreenSteam’s solution can be quantified by the vessel’s timely 
arrival at the port and the total cost of fuel consumption and emissions emitted. However, before re-
viewing the live trial results we need to establish some confidence on the ship propulsion model which 
is the key element to the success of this process. 
  
5.1 Model accuracy 
  
In this study, the GreenSteam Machine Learning model (GS ML model) is tested and compared to a 
reference model that resembles the state-of-the-art academic ship propulsion model from DTU (DTU 
Ship Simulation Workbench). The main difference between these models lies in the hybrid nature of 
the GS ML model that incorporates data-driven Bayesian components and its ability to take fouling into 
account. The DTU Ship Simulation Workbench model doesn’t account for the fouling and pure empir-
ical naval architecture models are inaccurate in heavy sea states by nature because of their empirical 
towing tank inheritance, so the model has a clear disadvantage, and will most likely tend to underpredict 
the power. Not taking fouling into account reflects a quite common practice in the industry today when 
looking at speed optimization. 
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Both models can predict the required shaft power or fuel consumption of the vessel by having as input 
a set of operational parameters and ship geometry characteristics. Hence, the error of the models’ pre-
dictions on the measured shaft power of the vessel is estimated. The evaluation period extends over all 
the available data of the vessel, and it covers a period of about 3 years (07/2018 to 07/2021). The error 
is given as a Normalized Root Mean Square Error (NRMSE) value, and it is computed for four different 
aggregation intervals.  
  

Table III: Ship Propulsion models’ error comparison 

Aggregation GS ML Model Reference model 

10 minutes 12.75 % 22.56%  

1 hour 12.26% 22.37% 

6 hours 10.87% 21.89% 

24 hours 9.02% 21.32% 

  
Fig.1 shows the 10-minute values of measured and predicted Shaft Power as a function of the Speed 
Through Water. From Table III the error of the GS ML model is 12.75% while that of the reference 
model is 22.56%. The same gap between these two models is maintained in the rest aggregation inter-
vals. The reference model is under-predicting the required shaft power in most cases since it is not 
compensating properly for the hull fouling, in contrast with the GS ML model that explicitly models 
fouling as well. 
  

 
Fig.1: Measured STW vs Shaft Power values and the respective models’ predictions 

  
5.2 Live Speed Optimization 
  
The next step of the process is to optimize the subject voyage of the vessel (ref. Table 2) with Green-
Steam’s optimization algorithm. The algorithm is executed to optimize the exact same voyage under 
the following two scenarios: 
 

1. The GS ML model is used as the ship propulsion model and 
2. The reference model is used as the ship propulsion model. 
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The optimization process is sensitive to the shaft power and fuel consumption prediction, and therefore 
different models may produce significantly different speed advice. The advised Speed Over Ground 
(SOG) profiles for the two scenarios and the voyage route are shown in Figs.2 and 3, respectively.  
  

 
Fig.2: Ship’s route for the Speed Optimization voyage 

  

 
Fig.3: The advised SOG from the SO using the GS ML model and the reference model 

  
Table IV: Summary of optimal costs for both scenarios.  

GS ML Model total fuel cost 221,761$ 

Reference Model total fuel cost 176,479$ 

Difference 45,282$ or 20.4% 

 
Simply by adopting a different ship propulsion model in the Speed Optimization process the encoun-
tered weather conditions would also change. The encountered wind speed and significant wave height 
for both scenarios are plotted in Figs.4 and 5. The average relative wind speed and wave height, though, 
are almost the same for the voyage in total, estimated to be average relative wind speed of 10.7 kn and 
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average wave height of 1.7 m. However, the fuel consumption prediction from the two models, pre-
sented in Fig.6, differs by almost 20% and so does the total voyage cost, presented in Table IV. 
 

 
Fig.4: Encountered Relative Wind Speed (kn) 

by the vessel in each scenario 
 

 
Fig.5: Encountered Significant Wave Height (m) 

by the vessel in each scenario 

 
Fig.6: Model’s Fuel Consumption Prediction in each scenario 

 

 
Fig.7: The optimized power value (power advice) against the actual (measured shaft power), for each 

fraction of the voyage, and the percentage difference between them. 
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The above direct comparison of the SO advice and the models’ prediction is legitimate since all the 
constraints of the problem are identical, however the comparison of the actual live trial with the SO 
predictions is not totally plausible. One reason is that the crew receives instructions in terms of power 
required to achieve the “optimal” SOG for a particular fraction of the voyage and so, some error might 
be introduced in the process of implementation. This is demonstrated in Fig.7, where the advised and 
the measured Shaft Power are plotted as well as the percentage difference among these two. The average 
power difference is just 2% but it is important to note the much higher deviation from “advice” at the 
very start and close to the end of the sea passage due to local restrictions related with port traffic. 
 
Another unforeseeable reason for deviation among the optimized voyage total cost and the actual cost 
is that of the weather forecast. Even with a ship propulsion model that achieves 100% accuracy, the 
slight difference of the forecasted against the actual weather conditions faced by the vessel will intro-
duce some error in the final result.  
  
Table V compares actual voyage data and the GS Optimisation predictions. The middle column, “Actual 
Voyage Predictions” refers to the model prediction under the actual speeds and weather conditions that 
the vessel experienced which differ from the optimal voyage predictions for the above stated reasons. 
The error from the actual voyage consumption is 6.3% which is well within the expected error range. 
  

Table V: Comparison of actual, predicted and optimal voyage cost and consumption 
 

GS Optimal Values Actual Voyage Predictions Actual Voyage Values 

Total Cost:  221,761$ 249,260$ 273,813$ 

Total Consumption:  548 tons 605 tons 643 tons 

  
The most meaningful comparison though would be among the actual voyage and the simulated voyage 
at constant average speed, hence without the GS SO advice. The constant speed scenario, which is 
selected as reference for the actual savings, provides a pessimistic estimation of the savings because the 
vessel only at the best-case scenario would sail at constant speed and not in an arbitrary, sub-optimal 
speed profile. The estimated actual savings are presented in Table VI.  
 

Table VI: Actual voyage data against constant speed consumption prediction 
 

Constant Speed  Actual Voyage Difference  

Average Voyage Speed 12.84 knots 12.84 knots 
 

Total Fuel Consumption 666.4 tons 643 tons 24.7 tons or 3.7% 

 
Table VII: Estimation of emissions reduction and CII rating 

  Attained CII 
(g.CO2/DWT.nm) 

Reduction in CII - Compared 
to  2019 

  IMO DCS 2019 3.9470   

  IMO DCS 2020 3.9004 1.2% 

  Voyage (Actual) 3.5590 10.9% 

  Voyage (Constant speed) 3.6821 7.2% 

Attained CII Rating A 
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The fuel consumption savings of the optimized voyage are also translated into emissions reduction for 
the particular voyage and into CII benchmark. An estimated reduction of 3.7% is found in the mass of 
CO2 and a CII rating A is achieved. The voyage is compared with the total average rating for the ves-
sel from 2019 and 2020 respectively in the Table VII.  
 
6. Conclusion 
 
Using a precise model that can adapt to operational data from the vessel and handle fouling can consid-
erably improve the SO applications' overall performance and metrics. Not accounting for the fouling 
will lead the SO application to assume that the vessel can make the voyage with less fuel than needed. 
The underpredicted required propulsion power will result in the ship constantly lagging behind, com-
promising the ETA and resulting in suboptimal speeds. 
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